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Introduction 

In  this paper we continue the study of Markov operators begun in [2, 3]. 
Among all measure-preserving transformations the rotations on a compact abelian 
group play a special canonical role. (Cf. [7] and [6j, pp. 46--50.) I t  turns out that  
among all Markov operators with a finite invariant measure those which act on 
functions on a compact abelian group and are spatially homogeneous, in a sense 
to be defined below, play essentially the same role. We show that  every such 
operator T has an integral representation over the set of translation operators. 
Using this representation we then investigate the spectrum of T and prove a 
theorem analogous to the representation theorem of P. R. ttALMOS and J. yon  
NE~MA~ [7] for measure-preserving transformations with a discrete (pure-point) 
spectrum. 

1. Markov Operators and the Translation Group 

Let (X, ~ ,  m) be a finite measure space, and let us denote by L2 the Banach 
space of square-integrable, complex-valued functions on X. We shall say that  
an operator T on L2 is positive if / ~ 0 ~ T / ~  0 (] ~ L2). A Marlcov operator 
(with invariant measure m) is a positive linear operator T on L~ satisfying 
TI--~ T*I  --~ 1. I t  was shown in [2] that  the set M of all such operators is a 
convex set, which is compact in the weak operator topology. Moreover, there is 
a one-to-one affine correspondence between M and the set of all doubly stochastic 
measures on X • X, i.e. positive measures ~ on (X • X, J • i f )  such that  
~(A • X )  z ~ ( X  • A)  z re(A) for A ~ - .  This correspondence is given by 

(/, Tg) = S ] ( x ) g ( y ) ~ ( d x ,  dy) ( / , g e L 2 ) .  (1) 
x •  

Moreover, the group ~b of all invertible measure-preserving transformations ~0 of 
(X, ~ ,  m) is canonically embedded in M by setting Tr ~- /(~x). The induced 
topology on r is the weak topology of [6]. 

Let X be a compact, abelian group, let ~ be the class of Borel subsets of X, 
and let m be normalized t taar  measure on X (m(X)  = 1). The group X can be 
embedded as a subgroup into ~b C M by setting 

Ty ] (x) : ] (x - -  y) (x, y e X ,  / e L2). 

Our first result is that  this is a topological, as well as algebraic, embedding. 
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Theorem 1. The relative topology on X induced by the weak operator topology o/ 
M coincides with the given topology o] X. 

Proo/. Since M is compact  in the weak operator topology, any Hausdorff  
topology on M which is weaker than  the weak operator topology must  coincide 
with the latter. Thus a subbase for the relative topology on X consists of all sets 

N ( y 0 ; / ,  g, e) = {y  ~ x :  r(/,  T y g )  - -  ( / ,  Ty0g) r < ~} 
= {y  ~ X :  l ]  / (x) [g (x - -  y)  - -  g ( z  - -  y0)]  m (dx) l < ~}, 

where Y0 e X, e ~ 0, and / and g are continuous functions on X. For each such 
choice of / and g the function h (x, y) --~ / (x) g (x - -  y) is uniformly continuous on 
X • X. Hence there exists a neighborhood Ne of 0 E X in the given topology 
such tha t  

y - -  y0 e N~ ~ I / (x) g (x - -  y) - -  / (x) g (x - -  Y0) ] < e (x e X) 

l~ / (x)  [g ( / -  y) - g(~ - yo)~m(dx) l  < ~. 

Thus Yo -~ Ne c N (yo;/, g, e), and the given topology on X is stronger than the 
weak operator topology. Since X is compact in its given topology, the two must  
coincide. | 

According to the Choquet representation theorem (see, for instance, [9]), for 
each T e M there exists a regular probabil i ty measure # on the Borel subsets of 
M such tha t  

(/, Zg) = f (/,Sg)/~(dS) ( / ,geL2) ,  (2) 
M 

and such tha t /~  vanishes on any Baire set not containing extreme points of M. 
Unfortunately,  no completely adequate description of the set of extreme points 
of M is known even when X is the unit interval (circle group), although J.  LIN])]~N- 
STRAUSS [8] has given a necessary and sufficient condition for the doubly stoch- 
astic measure 2 to be extremai. I t  is easily seen tha t  the set of extreme points of 
M contains ~b and hence X. 

In  the remainder of this paper  we discuss operators T having a representation 
of the form (2) with/~ concentrated on the set of translation operators. According 
to Theorem 1, /~ can be thought  of as an ordinary Borel measure on X, and 
equation (2) becomes 

(/, Tg) = f  f / (x )g(x- -y)m(dx)#(dy)  ( / ,geL2) .  (3) 
X X 

We shall see tha t  the condition tha t  T have such a representation has a natural  
probabilistic interpretation, when T is associated with a Markov transition func- 
tion, and a natural  geometric interpretation. 

2. Spatially Homogeneous Operators 
Definition. A doubly stochastic measure 2 on X • X (or the associated Markov 

operator T) is said to be spatially homogeneous if 

( ( A ~ - x )  x ( B ~ - x ) ) = 2 ( A •  (4) 

for all x e X ,  A, B e ~ .  
We shall denote the set of all spatially homogeneous Markov operators by  ~.  
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I n  order to see the probabilistie significance of  spatial homogeneity,  let us 
suppose tha t  T is given by  a Markov transition ]unction: 

T / ( x )  ---- ~](y) P(x ,  dy) (] e L2), (5) 
:r 

where P (x, B) is a measurable function of  x e X for each B e o ~ and a proba- 
bili ty measure in B e ~ for each x ~ X. I t  follows f rom (1) and (5) t ha t  

,~ (A • B) -~ ~ P (x, B) m (dx) (A, B e o~). (6) 
A 

Then Z is spatially homogeneous ff and only if 

P ( x - ~ y , B - + y ) - ~ P ( x , B )  m - -  a.e.(x) (7) 

for each y e X ,  B e ~ ' .  

N o t e .  I t  can be shown tha t  T always has a representat ion of  the form (5) if 
X is metrizable. I n  this case it can be shown ra ther  easily t ha t  T is a (left) cen- 
tralizer in the sense of  J .  G. W ~ D ~ L  [10], and our Theorem 3 is a special case 
of  his Theorem 1. For  the details see [I]. 

We now turn  to the geometric interpretat ion of spatial homogeneity.  

Theorem 2. The Marlcov operator T is spatially homogeneous i]] it commutes 
with all translations. 

Proo]. For  A ~ ~176 let ;~A denote the characteristic funct ion of  A. According 
to (1), we m a y  rewrite (4) as 

(ZA, T ZB) : (TxZA, T T x x B )  = (ZA, T_x T T z z B )  

for all A, B e ~-,  x e X. However,  this is equivalent to 

T - ~ T _ x T T x  or T x T = T T x  

for all x E X .  

Corollary. The convex set Z is closed, and hence compact, in the weak operator 
topology. 

3. Integral Representation of Spatially Homogeneous Operators 
We begin by  proving a lemma. 

Lemma.  The set o] extreme points o] Z coincides with X .  

Proo]. For  each doubly  stochastic measure ~ ~ X let us define ~ on the Borel 
sets of  X by  

] ( B )  = ~{(x ,  y) :~  - -  y e B } .  (8) 

Since the mapping  (x, y) --> x - -  y is a continuous mapping  of  X • X onto X ,  

is a probabil i ty measure on X. The correspondence ~ --> ~ is thus an affine mapp-  
ing of X into the set of  all probabil i ty measures on X. Let  us show tha t  it is one- 
to-one. 

The mapping  (x, y) --> (x, x - -  y) is a homeomorphism of X x X onto itself. 
For  fixed ~ E ~ and B e ~ let us define 

vB(A) = ,~{(x,y) : x ~ A ,  x - -  y ~  B ) .  (9) 

F rom the spatial homogenei ty  of  ~ it  follows t h a t  

vB(A ~- z) = ~((x  + z, y + z) : x c A ,  x - -  y ~ B}  = vB(A) .  
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By the uniqueness of Haar  measure v B must be a multiple of m. Comparing (8) 
and (9) we see that  

v B (A) ~- ~(B) m (A). (10) 

Comparing (9) and (10) and noting that  the mapping (x, y) --> (x, x - -  y) is its 
own inverse, we see that  

)~(A • B) = (m • ~) ((x, y) : x cA,  x --  y E B} (11) 

for all A, B e ~ .  I t  follows from (11) tha t  the correspondence 2 --> ~is one-to-one. 

Moreover, if ~ is any probability measure on X, then (11) determines a measure 

~ Z satisfying (8). That  is, the correspondence 2 -~ ~ is onto. 

I t  follows that  2 is an extreme point of ~ iff ~ is an extremal probability 

measure on X, which is true iff ~ is concentrated at a point z ~ X, 

~(B) = zB(~). 
Finally, it follows from (8) and (11) tha t  this is true iff 2 is concentrated on the 
graph of the translation x -~ x --  z, tha t  is 

( 0 )  = m ( x  : (x,  x - z) e C } .  

This completes the proof. | 

Theorem 3. Suppose that T e Z and let ~ be the associated doubly stochastic 
measure on X • X .  Then there is a unique probability measure # on X such that 

2 (A  • B) -~ f m ( A  (~ (B -~ y) ) #(dy)  (12) 
x 

/or all A ,  B e ~ .  Moreover, 

T / ( x )  = ~ / ( x  - -  y )~ (dy )  m - -  a.e.  (13) 

/or all ] ~ L2. x 
Proof. Clearly, (12) holds for all A, B e ~ iff (3) holds for all f, g e L2. More- 

over, by the Fubini theorem (3) is equivalent to (13). Thus existence follows 
from the Lemma and the Chequer theorem. (Since X is closed, we actually need 
only the Krein-Milman and l~iesz representation theorems.) 

Since (13) may be read T / ~  f ,  fl, uniqueness of/~ follows from properties 

of the Fourier transform. Thus if [ and ~ denote Fourier and Fourier-Stie]tjes 
transforms of / ~ L2 and the regular Borel measure v, we have 

l , v  = o ( / + L 2 )  ~ ]'+ = O ( t + L 2 )  
~ = 0  

r=O. I  
From the Lemma, the Krein-Milman theorem and the fact tha t  the closed 

convex hull of a set of operators is the same in the weak operator topology and 
the strong operator topology ([5], p. 477), we obtain the following result, which 
is closely related to Theorem 4 of [10]. 

Coronary. Z is the closed convex hull o / X  in the strong operator topology. 

4. Spectral Properties of T and the Isomorphism Theorem 

Let  2~ denote the dual group of X. Then 2~ is discrete, and by the Pontryagin 

duality theorem we can identify its dual with X. For x ~ X and ~ e X we shall 
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write ~ (x) -= (x, ~>. We shall indicate integration with respect to Haar  measure 

by  f dx and ~ d~ on X and/X, respectively. 

Theorem 4. Suppose that T e S has the representation (13). Then the spectrum 

o/ T is C = {fi (~) : [ce X} ,  T has pure point spectrum, and the proper space cor- 

responding to 2 ~ C is the subspaee spanned by {~ ~ X : fi ([c) -~ 2}. 
^ ~ .  

Proo]. I f  x ~ X, then ~ ~ L2, and we have by  (13) tha t  

T ~ (x) = ~ ( x  --  y, x> # (dy) 
X 

= ~ (x,  ~:> (y, ~> ~ (dy) 
X 

= f i  ( x ) .  

Thus ~ is a proper function of T corresponding to the proper value ~ (k). 
On the other hand, if  

T / ( x )  = f / ( x  --  y )# (dy )  = 2](x) a.e. ,  
X 

then 

X X 

= ~ ~ (x,  ~> ] (x --  y) dx # (dy) 
X X 

= .~ (y, iv> .~ <x --  y, iv> ] (x --  y) dx # (dy) 
X X 

-~ f ( y , )>  # (dy) f (x,  2> [(x) dx 
X X 

= 

I f  ] :~ 0, then fdoes  not vanish identically. I t  follows tha t  2 = ~ (~) e C for some 

/c e/X, and tha t  

l(x) = y <x, 

belongs to the subspace spanned by  the set of ~ such tha t  f(~) # 0, i.e. 

= 

Finally, since X spans L2, it follows tha t  T has pure point spectrum. | 

N o t e .  The spectral possibilities for T ~ X are not as simple as in the case 
of a measure-preserving transformation with pure point spectrum. For instance, 
the proper values do not in general form a group, but  only the range of a positive- 
definite function on some discrete group. Nor do the proper values need to have 
absolute value I, aIthough, as for any T e M, they are contained in the unit disc. 
Moreover, the proper values are not necessarily simple even if T is ergodic (in 
which case 1 is a simple proper value). 

Consider, for instance, the symmetric random walk on the group of integers 

modulo n. In  this ease, X = X -~ (0, 1 . . . . .  n - -  1 } with 

<k, i> = e =n~j~/', 
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and 

Thus 

T I ( ~ )  = l l ( k  - -  ]) + 11(~ + ]) = ~ l ( k  -- 1)if(l). 
1 

~(]) = ~ (k, ]>if(k) 
k 

= �89 (~,j> + ~ 4-  ],]7 
= cos (2 7~ ]/n). 

I f  follows tha t  1 and possibly - - 1  are simple proper values, while others are 
double. A similar situation holds for the Brownian motion on the circle group. 

Finally, if  # = m so tha t  

T ] (x) = f / (y) dy -~ const.,  
x 

then 1 is a simple proper value, while 0 has infinite multiplicity. 
I t  is true, however, tha t  the linearly independent proper functions of T ~ Z 

may  be chosen to have constant absolute value 1 and to form a group under 
pointwise multiplication. We shall show tha t  these properties characterize spa- 
tially homogeneous Markov operators up to spatial homomorphism. 

Definition. Let  T1 and T2 be bounded linear operators on L2 (X1, ~ 1 ,  ml) and 
L2 (X,~, ~ '2 ,  m2), respectively. We say tha t  T1 and T9 are speetralty isomorphic if 
there exists an invertible isometry U of L2 (X1, ~ 1 ,  ml) onto L2 (X2, ~ ,  m2) 
such tha t  T I - ~  U-1TU. They are spatially isomorphic if  U/(x)=/(~0x)  
( /~  L2(X1, ~-1, ml)), where y;: X2 -+ X1 is an invertible measure-preserving 
transformation (modulo sets of measure 0). 

P. R. H~L~os and J.  vo~ l ~ v ~ A ~  have shown [7] tha t  Tr ~ fi5 is spatially 
isomorphic to a translation in a compact group iff it has pure point spectrum. 
The next  theorem extends this result. The proof is a modification of tha t  of HAL~rOS 
and vo~  51~U~A~N. 

Theorem 5. A Marlcov operator T on L2 (X) o/ the /inite measure space (X, ~ ,  m) 
is spatially isomorphic to a spatially homogeneous operator ZT on a compact abelian 
group G ill there exists a complete orthonormal system C/or  L2 (X) consisting o/ 
bounded proper functions o/ T and ]orming a group under pointwise multiplication. 

5Iote .  I f  T is spatially isomorphic to an ergodic measure-preserving trans- 
formation, then it can be shown (see, for instance, [1]) tha t  T is also given by  a 
measure-preserving transformation. For such a transformation our condition is 
equivalent to requiring tha t  T have pure point spectrum (see [6], p. 34). Thus 
Theorem 5 is indeed an extension of the above-mentioned theorem. 

Proo/. For X = G the necessity follows from Theorem 4. More generally, the 

isometry U v which implements the isomorphism carries G onto an orthonormal 
basis C for L2 (X) and preserves the bonndedness and multiplicative properties 
of tha t  set. 

To prove the sufficiency we let the group C have the discrete topology and 
denote its dual group by  G. Then G is compact. Under the identification of C 

with G the set C becomes a complete orthonormal system in L2 (G). We shall 
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indicate the corresponding isometric isomorphism of L~(X) and L2(G) by ] -+ /~  W]. 

Thus, in particular W maps C onto G. Now let T - ~  W T W  -1. We shall show 

that  T is spatially homogeneous, and that  W = U v is induced by a measure- 
preserving transformation ~. 

For each ~ e C we have 

ZT(W~) = W(T~) = ,~(W~), 

where 2v is the proper value of T corresponding to the proper function ~. Thus 

W~ is a proper function of T corresponding to the same ~v. 
Let  g e L2 (X). Then ~ ~ Wg has the Fourier expansion 

~(~) = ]~(~) < ~, x> d~ (x ~ G) 
C 

and so 

T~(x) = .[~(~:) ~<~, ~> ~ (x e G). (14) 
C 

I f  Ty (y ~ G) is defined as in w 1, and ff h ----- Ty[t for fixed y ~ G, then 

?~ (~) = ~ h (~) <~, x> d~ 
q 

= Sg(x -- y)<~,x> dx (157 
G 

= S~(~) <~,x + u> dx 
G 

= <T, y> 9 (T) (~ ~ C). 

Combining (14) and (15) gives 

C 

= S~(~) ~ <~, x - y> dx 
C 

= T y  ~'(t(x) (x ~ ~). 

Thus T commutes with each Ty (y ~ G), and according to Theorem 2 T is spatially 
homogeneous. 

I t  remains to show that  the isometry W of L2(X) onto L2(G) is a spatial 

isomorphism. Since the restriction of W to C is a group isomorphism of C onto G, 
the equality 

W(/g)  = (W/) (Wg) (16) 

holds for all ], g ~ C. By linearity (16) holds for al l / ,  g in the linear space spanned 
by C. I f  B ~ ~ ,  let / be a fixed linear combination of elements of C, and let 
gn "-~ ZB in L2(X). Then / and W / a r e  bounded functions so t h a t / g n  --> ]ZB and 
(W/) (Wgn) --~ (W]) (WzB). Thus W(fZB ) =- (W/) (WZB). Similarly, letting 
/n --> gS gives W(Z~) = W(ZB ) = (WzB)2. Thus WZB ~ 0. I t  follows that  W / ~ 0  
whenever / ~ 0, i.e. W is a positive operator. Clearly, W1 ---- 1 ( =  W*I). Since 
W is an invertible isomctry, we have by a trivial modification of Theorem 5 of 
[2] tha t  W ~ U~ for some invcrtible measure-preserving transformation ~o. | 
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Corollary 5.1. I] T satisfies the hypotheses o/ Theorem 5, then there exists a 
probability measure tt on X and a measurable /amily {~x:x  ~ X} o] measure. 
preserving trans]ormations o/ X with pure point spectrum such that 

T / ( x )  = f/(7)yX)tt(dy) a.e. (17) 
x 

/or each / ~ L2 (X). 

Proo/. This is simply a change of variables in (13) with Tqgy -~ Uv Try U~ 1 
so tha~ ~u has pure point spectrum. | 

Corollary 5.2. I] T satis/ies the hypotheses o/ Theorem 5, then T is spatially 
isomorphic to its ad]oint T*. 

Proo/. I f  T and T are isomorphic, then so are T* and T*. Thus we may 
assume that  T is spatially homogeneous. Then 

Tl ( x )  ---- f / (x  --  y) #(dy) 
x 

and 

Let ~ p ( x ) = -  x. Then 

T* l (x  ) = ,[ / (x  + y) #(dy) .  
x 

U~(T*I)  (x) = T * I ( - -  x) 
= f l ( - -  x -~ y)tt(dy) 

x 

= T (U~ 1) (x). 

Thus T* : U ~ I T  U v as asserted. | 
R e m a r k .  J. R. C~OKSI has recently shown [4] that  for non-ergodic trans- 

formations with pure point spectrum spectral isomorphism need not imply 
spatial isomorphism. However, the above proof of Theorem 5 does not depend 
on ergodicity as in the case of [7]. Thus our theorem applies to non-ergodie trans- 
formations. 
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