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Introduction 

A great  deal of  work concerning the quadratic variat ion of  a stochastic process 
has been done in the last few years. 

The problems dealt  with have taken  the following form:  
Let  {X(t), F(I ) ;  t e T} be a stochastic process on the probabi l i ty  space 

(~9, ~,~, P)  where T = [0, 1], X(t)  is F(t) measurable, and F(s) o F ( t )  c F  for 
= = .. .  ,(n) 1} be a part i t ion of  s, t ~ T with s < t. Let  Jrn = {0 t(0 n) < t(~ n) < < ~zr = 

[0, 1 ] for each n > 1. We assume ~rn+l is a refinement of  zn  and max  ( t~  1 - -  t~ "))-+0 
as n --> oo. Let  i 

d2 x (t?)) = IX (t~l) - z (t~-))]2. 

I f  {Y(t), F( t ) ;  t ~ T} is a stochastic process, we let 

z .  (t) = ~ Y (~")) A 2 Z (t~ ")) 
t 

where ~. means sum out  to  the last ] with ~i+~'(n) =< t, and  ~n) e [t~ ~), t~+l].(n) 
t 

The problem is of  course to determine when the limit of  the sequence of 
processes {Sn (t), F (t) ; t e T} exist in probabili ty,  almost  surely or in the mean, 
and  to  find this limit when it exists. 

I n  this paper  we assume the X process is a second order martingale and  Y = 1, 
or Y is a sample continuous process. I n  this case we obtain probabi l i ty  and  in 
some cases mean  limits. 

The main  theorems are Theorem 1.1 and Theorem 1.2. These limit theorems 
are more general in some cases than  those in [4] and [6]. However ,  some of  the 
limit theorems in [4] and [6] are stronger in the sense that ,  due to the special 
nature  of  the processes involved, certain mean and a.s. convergence is obtained 
where our  limits are in probability.  

Section 1 

I n  this section we state some known results and develop the body  of  the paper.  

Lemma 1.1. [3]. Approximation theorem/or sample continuous processes: 
Let {X  (t), F (t); t e T} be an a.s. sample continuous process. There is a sequence 

o] stopping times {T, I ~ >~- 1}, such that i t {X~ (t), F (t); t e T} is the X-process 
stopped at ~ ,  then i) each X~ is sample equicontinuous and uni/ormly bounded by v. 

* T h e  t h e o r e m s  i n  S e c t i o n  1 a r e  e s s e n t i a l l y  c o n t a i n e d  i n  a t h e s i s  w r i t t e n  u n d e r  P r o f e s s o r  
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ii) There is a set A ~ ~ ,  P (A) = O, such that i / to ~ A, then there exists ~ (co) such 
that X ,  (t) = X (t) /or all t e T, i/ ~, >~ ~ (co). 

Lemma 1.2. [1, 2, 3]. Submartingale decomposition theorem: 
I /  {X (t), F(t); t ~ T} is an a.s. sample continuous submartingale, then it has 

a unique decomposition, 

P([X(t)  = Xl(t)  q- X2(t) for all t e  T]) ~-- 1 

where X1 is an a.s. sample continuous martingale, X2 has a.e. sample /unction 
monotone non-decreasing and continuous with 

Xg, (t) = P lim ~, E lAX  (t~ n)) I F (t~n))], 
t 

i/ and only i/ 
l imnP([sup]X( t )]  >= n]) = 0. 

In particular, if the X-process has a.e. sample function non-negative, then 
the condition is always satisfied. 

N o t e :  The decomposition theorem was first proved by M~Y~n [1], and the 
given condition for an a. s. sample continuous snbmartingale was given by J o ~ s o N  
and H~L~S [2]. 

Let {X (t), F (t) ; t ~ T} be an a.s. sample continuous second order martingale. 
Let 

z(t) = [x(t)]~. 

Then {Z (t), F (t); t e T} is a non-negative sample continuous submartingale and 
hence by Lemma 1.2, i t  has the unique decomposition 

P([Z(t) =Z l ( t )  -FZ2(t) for all t~ T]) = 1 

where Z1 is a sample continuous martingale and Z2 has a.e. sample function 
monotone non-decreasing and continuous. We observe that  Z2 (0) ----- 0 a.s. 

Theorem 1.1, With X and Z as just defined 

t Ii.i.m. Zt~2X(tl.n) ) 
Z2(t) = o ] dZ2(t) ~ [1.i.m. ZtE[AZ(t~n)) I F(t~.n))] 

(where 1.i.m. i~wlieates limit in the mean}. 
Proo/. We observe that  

E { ~  d ~X (t~"))} = E {~, E [d ~X (t~.")) I F (t~"))]} 
t 

= E { ~  E / i s  ( t ~ )  -- X~ (tl. n)) ] F (tl.n))]} 
t 

= E{~E(AZ(t~n))]F(t~.n))]} 
t 

-~ E { ~  E[zJZ2(t~n)) l F(t~n))] } 
t 

---- E {~  AZz (t~n))} = E {Z2 (t~?)) -- Z2 (0)} 
t 

: E {Z2 (t~?))}, where t~ ) is the last t~ n) <= t. 
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Then, since a.e. sample function of the Z2-process is monotone non-decreasing, 
Ze (tl.~)) --> Z2 (t) as n -+ 0% and the monotone convergence theorem is applicable. 
Hence, for each t e T, 

l i m E { ~  A2X(t~n))} = l i m E { ~  E[AZ(tl. ~)) [ F(t~n))} = E{Z2(t)}.  
n --+ oo t n---~ oo l 

Since the sequences are non-negative, it is sufficient (see H ~ M o s  [7], p. 112) 
to show that  the probability limits exist and are as stated in the theorem. From 
Lemma 1.2 however, we have 

P lim ~E [AZ (el"))I F ( t l % ]  = z~ (t). 
g 

We now establish that  

P lim ~ A 2x (t?)) = p ~m 7~ ~ [Jz  (tl"))I F (t?))]. 
t t 

Let {X~(t), F(t);  t E T} be the sequence of processes as given in Lemma 1.1. 
Then each X~ is a uniformly bounded, a.s. sample equicontinuous martingale. 
Letting Z~----X 2, we have the decomposition Z~----ZI~/-Z2~, as given by 
Lemma 1.2, so that  for each v >-- 1, 

Z2~ (t) = P lim ~ E [AZ~ (t~ n)) l F (t~n))]. 
t 

Consider now 

E {1~  A ~x~ (tl")) - E [~z~ (t~ ")) I r (tff)] l~} 
t 

= E { I E ~2x~(t?)) ~- '-(-) -- E[A 2~t~ i )] F(t~'0)]12 } 
t 

= E { I Zt A 4X~ (t~ n)) -- E 2 [A 2X~ (t~ n)) I F (tl.n))] I} 
t 

E { ~  A4/~(tl.~))} g E{maxA2X~(tl.  n)) XA2X~(t~))} 
t i 

e n E { l X ( 1 ) - - X ( O ) 1 2  }, where 
sn = ess, sup. max A2 X~(tl. n)) ---> 0 

j 

as n --> oo because of the uniform sample equicontinuity of the X~ process. 

Thus for any ~ ~ 1, 

P l i m  ~ d2X~(t~ n)) = Pl im ~ E[AZ(t~n))]F(t~n))] = Z2v(t) " 
t t 

I t  is easily established [3], that  P lira Z2,(t) ~ Z~ (t) for all t e T, and that  

Pr im ~ A2X~(tl. n)) = ~. A2X(t~ n)) 
t t 

the convergence being uni/orm in n. I t  follows that  

P lim ~, A 2X (t~ n)) --~ P lira Z2~ (t) = Z2 (t) 
t 

and the theorem is completed. 

1 9 "  
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Definition 1.1. A process {X(t), F(t); t e T} is called a quasi-martingale if 
there exist processes (X~ (t), F (t) ; t ~ T}, i = 1, 2, such that  

P([X(t) = Xl(t) + X2(t) for all t e  T]) = 1 

where X1 is a martingale and X2 has a.e. sample function of bounded variation 
(b. v.) on T. 

Corollary 1.1. I / X  is a quasi-martingale with X1 a sample continuous second 
order martingale and X2 having a.e. sample/unction continuous, and i/ 

z( t )  = x~ (t) = z l  (t) + z2 (t) 

is as de/ined previously, then 

P lim ~' A2X (t(nh = Z2 (t) 
t 

Proo/. We have 

P l im  Z A 2 X  (t)-(n))= P l i m ~  A~X1 (ti n)) + P l im ~ A2X2(tl n)) 
t t t 

+ P l im ~ AX1 (t~ .n)) AXu (t~. n)) -~- Z2 (t). 
t 

Theorem 1.2. Let X be a quasi-martingale satis/ying the condition o/Corollary 1.1 
and let Z (t) -~ X~ (t) = Zt  (t) + Z2 (t) be as given there. I /  { Y (t), F (t) ; t e T} is 
a.s. sample continuous, then 

Re ~ Y(s)dZ2(s)= /P l i  m t~ y(t}n))E[AZ(t}n))iF(t}n)) ] (1.2) 

where R ~ denotes the ordinary Riemann-Stielt]es integral which exists a.s. under 
the stated conditions. 

Proo/. I t  is clear from Theorem 1.1 and Corollary 1.1 that  if either of the 
probability limits exist, then so does the other and they are equal. Hence it is 
sufficient to show that  

t 

R ~ Y(s) dZ2 (s) = P l im  Z Y(t~ n)) E[AZ(t~'))I 2'(t~ n))] 
0 t 

= P l im ~ Y(t~ n)) E[AZ~ (t}")) I _F(C))]. 
t 

1. Assume Y and Z2 are uniformly bounded, then 

E { ]y~ y (C) ) (Az2 (C) ) - E [AZ2 (C)) 12 (C))]) 12 } 
t 

= E { ~  I r (t?)) 121Az~ (C)) - E [~z~ (C)) I ~ (C))] ] ~ } 
t 

t 

< .M2 E {max I Az2 (C))I ~_,]Az2 (C)) 1} 
J 

= M 2 E {max IAZ2 (t~.n))]Z2 (1)}. 
1 

But this expression goes to zero as n --> oo because of the uniform boundedness 
and continuity of Z2. 
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2. We now observe that  ff X~ is X stopped at T~ as given in Lemma 1.1, then 
X~ is again a quasi-martingale with X~ = XI~ + X2" where Xi~ is Xi stopped 
at ~ .  Also 

X ~  = Z~ = ZI~ + Z2~ 

where Z~ is Z~ stopped at ~ .  

Thus ff X~ and Y~ are X and Y stopped at ~ ,  what has been proved in 1, 
gives us the desired result for each X~ and Y~. The result now follows from the 
approximation. 

~Tote: One can show that  (1.1) holds even ff t~ ~) is replaced by ~I- n) with 
t~n) =< ~n) =< ~j+l~(n) simply by using the continuity of the Y-process. 

Section 2: Some Applications 

We let {W(t),  F(t);  t ~ T} be a Brownian motion process. We will denote by 
t 

D S q5 (s, ~) W (d s, e~). The stochastic integral as defined in [5]. 
0 

Lcmma 2.1. (Theorem. 5.3, page 449, DOOB). Let {X  (t), F (t); t e T} be a second 
order a.s. sample continuous martingale. I /  there is a measurable, a.s. positive 
process {q~ (t), F (t) ; t e T}  such that /or tl ,  t2 ~ T with tl ~ t2 

t~ 
{ I x (t~) - x (tl) L ~ I F (tl)} = E (S ] ~ (t) I~ d t I ~' (tl)) a.s. 

tl 

then there is a Brownian motion process { W (t), F (t) ; t e T} such that 
t 

X (t) : X (a) + D ] q5 (s) W (d s) a.s. 
0 

From this theorem and what we have proven in Section 1, we get the following 
theorem. 

Theorem 2.1. Let {X(t), F(t) ;  t e T} be a second order a.s. sample continuous 
martingale. Let X 2 ~ Z = Z1 Jr Z2 be the decomposition o / X  2 as given in Lemma 1.2. 
I / / o r  a.e. o~, Z2 (t) is absolutely continuous w.r.t .  Lebesgue measure, and i/ 

z ~ ( t )  = ~ -d~ Z2(t) 

is a.s. positive (it is a.s. non-negative), then there is a Brownian motion process 
{ W (t), F (t) ; t e T}  such that 

t 
X (t) = X (O) -~- D f [Z'2(s)]l12 W (ds) a.s. 

0 

Since Z2 (t) = P l i m ~  A2X (tl.n)), we can choose a sequence of partitions such 
t 

that  
Z2 (t, ~o) = a.s .  lira ~ d 2 X  (t} n)) 

t 

and one may ask ff Z2(t, w) is always absolutely continuous w.r. t .  Lebesgue 
measure. However ff one takes a Brownian motion process with Var (X (t)) = C (t), 
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where C(t) is the Cantor  function, and X (0) ---- 0 a.s., then the resulting Z2 (t) 
is just  C(t). One m a y  have some difficulty proving directly t ha t  if  

G(t) -~ tim ZtA2g(t~.n)) , 

where g(t) is continuous,  then G(t) need no t  be absolutely continuous w.r . t .  
Lebesgue measure. I n  [4] and [6], the limit Z2 (t, co) is always a.s. sample absolutely 
continuous w.r . t .  Lebesgue measure because the mart ingale processes considered 
are exact ly  those given in L e m m a  2.1. 

Wi th  Theorem 2.1 we obtain a theorem similar to t h a t  proved in [6]. 

Theorem 2.2. Assume that (X  (t), F(t ) ;  t ~ T} is a diffusion process given by 
the integral equation 

t t 

X (t) ~-- X (0) -~ ] m Is, X (s)] ds ~- n ~ a Is, X (s)] W (ds) 
0 0 

where W (t) is a Brownian motion process. 
Then 

t 

a) P lJm ~ A2X(t~ n)) : f (~2[s, X(s)] ds and 
t 0 

b) i / ( Y  (t), F (t); t E T} is an a.s. sample continuous process 
t 

P lim ~. Y (t~. n)) ~ 2X (t~ n)) -~ f Y (8) cf 2 Is, X (s)] ds. 
t 0 

Proof. We need only observe t h a t  X is a quasi-martingale satisfying the 
conditions of  Corollary 1.1 with 

t t 

Xl(t)  -~ n ](~[s, X(s)] W(ds), X2(t) ---- X(O) ~- ]m[s, X(s)] ds. 
0 0 

As was shown in [6], the limit in 2. is actual ly  in the mean  if one uses the 
sufficient conditions on m(. ,  .) and a ( . ,  .) given in [5] to insure the existence of  
a solution of  the diffusion equation. 
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