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Introduction 

The classical paper by R6nyi [9] on ergodic properties of transformations 
associated with f-expansions has given a great impetus to the investigation of 
various algorithms by which a sequence of integers, termed as the digits of x, is 
attached to any x in the unit interval. Most of these algorithms are stationary, 
i.e. each digit an(x ) is determined, independently of n, by making use of a system 
with fixed components. The recent monograph [11] by Schweiger is aimed at 
presenting such stationary algorithms from a unified point of view. As for the 
non-stationary algorithms, only two types have been considered. One of them, 
constructed with the help of a sequence of functions fn, was introduced by 
Krabill and Reichaw [6J in order to generalize f-expansions of real numbers. 
The other one is defined in terms of a sequence (en, 7,) of pairs of functions, and 
forms the core of the work [3] by Galambos. However, as already remarked in 
[13], this last algorithm may be described as well by a suitable sequence of 
piecewise linear functions in place of a sequence of pairs of functions. 

The present paper deals essentially with an algorithm of the type considered 
in [6]. In Section 1 we rigorously define this algorithm, and give a detailed 
description of the set of all realizable sequences of digits. On account of this 
description, in Section 2 we indicate necessary and sufficient conditions under 
which there exists a probability 2 on the Borel subsets of [0, 1) that makes the 
digits independent random variables with prescribed distributions. The central 
part of the paper is Section 3. Here, we present dichotomy properties for the 
probability measures constructed in Section 2 which proceed from the zero-one 
law. In Section 4, under some necessary and sufficient condition, we find a way 
of reducing our algorithm to that leading to f-expansions. This enables us to 
precise Theorem 4 of the preceding section. 

Finally, it should be pointed out that, in order to simplify the exposition, we 
deal only with sequences of increasing functions f~. However, the techniques 
developed in this paper enable one to obtain the correspondents of all results 
below when working with appropriate sequences of decreasing functions. 
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1. ( f l ,  ]'2, ...)-expansions of Numbers in [0, 1) 

1.1. Assume that we are given a sequence T,, 0 < T, < Go, n > 1, and a sequence 
f , ,  n > 1, of continuous functions on [0, o~) such that  f ,  is increasing on [0, T,), f ,  
maps [0, T,) onto [0, 1), and f , ( t )=  1, t >  T,. For  t , > 0 ,  n >  1, we use the following 
notat ion throughout  the paper. Whatever k > l ,  set X k,~(tk)=fk(tk), and define 
inductively 

X_k,,+l(tk, t k+l , . . . , t k+ , )=fk ( t k+Xk+l , , ( t k+l ,  . . . , tk+,)) ,  n>=l. 

For  any k > 0 and n > 1, put 

Xk +l,n(tk +l, "' ' ,  tk +n)= X-k +l,n(tk + l, ' ' ' ,  tk +n- l '  tk +n JV1)" 

Then, the monotony  of f , ,  n > 1, implies that  

xk + l , , ( t k  +1, . . . ,  t k + . ) <  x_k + L .  +l ( tk  +~, . . . ,  t k+ . ,  t~ + .  +1) 

<=Xk +l . ,+l ( tk  +l, . . . ,  tk +n, tk +n+l) <=Xk +l,n(tk +l . . . . .  tk +n), 

k>O,  n > l ,  

and so there exist 

X k+~(tk+l, tk+2, ...) = lira X_k+~,,(tk+~,..., tk+,), 
n---~ o~ 

Xk+l( tk+l ,  tk+2, . . . ) =  lira Xk+l,n( tk+l ,  . . . ,  tk+.), k >=O. 
n---~ o~ 

Moreover, on account of the continuity of f , ,  n > 1, we get 

X-k+l(tk+l, t k + 2 , ' " )  

= X_k +~,,(tk +l . . . .  , tk +,-1,  tk +n + X--k +,+l(tk +,+a, tk +n+ 2, " .)), 

k>=O, n > l ,  

and 

~k +l(tk +l, tk+2, ...) 

= X_k +l,n(tk +l, . . . , t k  +n_l,  tk +n + Xk +n+l(tik +n+l, tk  +n+ 2, "")), 

k>O,  n > l .  

We also set 

x_, (q  . . . . .  t ,)  = x_l,,(tl ,  . . . ,  t ,),  ~ ,  (tl,  . . . ,  t , )  = ~ , , ( t ~  . . . ,  t , ) ,  

n > l ,  

and 

x_(tl, t2, ...)=_xa (tl, t2, ...), x ( t l ,  t2, . . . )=  Xl(tl, t2, .,.). 

(1) 

(2) 
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1.2. Using the above sequences of functions, we can associate with any x~[0, 1) 
a sequence a,(x), n > 1, of non-negative integers, termed as the digits of x, and a 
sequence r,(x), n > O, of numbers in [0, 1), termed as the remainders of x, defined 
recursively by way of the algorithm 

ro(x)=x 

rn_l(x)=f,,(a,(x)+rn(x)), n> l.  (3) 

For any n > l ,  a,(x) and rn(x ) depend only on f , . . . , f , .  When we wish to 
emphasize this functional dependence, we write them in the form a,(f~, . . . , s  
and rn(fl, ...,fn; x). The equations 

rk+n(f,...,L+n; x) 
=rn(k+l  .... ,fk+,; rk(f*, '",fk; X)), k > l ,  n > l ,  (4) 

and 

ak.n(fl,...,L+,;x) 

=an(L+,,...,L+,; r~(f~ ..... L; x)), k>l,  n>=l, (5) 

which proceed from (3), are of prime importance in proving Theorem 4 below. 
Now, whatever n > 1, denote I .  as the set of the non-negative integers which 

are strictly less than T.. Obviously, a, e I . ,  n=> 1, and therefore we can define the 
mapping a from [0, 1) into H In by 

n>.l 

a(x) = (al (x), a2(x), ...), x~[O, 1). 

If necessary, we specify the dependence of a(x) on the underlying sequence 
fl ,f2,- . ,  by writing it as a( f l , f2  .. . .  ; x). I f a  is injective, then any xe[O, 1) may be 
recovered from the sequence of its digits. More exactly, in this case we have the 
representation (see Corollary 3 below) 

x =  lim x_n(al(x ) . . . .  ,a .(x))= lim ~n(al(x) . . . .  ,an(x)), x~[0, 1), (6) 
n~oo n-+oo 

which is called the (fi,fz ... .  )-expansion of x. (For fn = f  n > 1, we get the classical 
f-expansion of x.) A sufficient condition ensuring the injectivity of a is as 
follows. There exist 7n, n > 1, such that [ I  7. = 0, and 

n>__l 

f~(t')--f,(t)<=7,(t'--t), O<=t <t'.  (7) 

This can be shown, by using Proposition 1 below, through repeated application 
of (1), (2) and (7). However, nothing as strong as this condition is needed to 
guarantee the injectivity of a. 

Finally, let us indicate that, whatever (il, i2,...)e ]7[ In, we put 
n>l  

A.(i 1 . . . .  , i . )={x:  a l (x )=i  i . . . .  ,a . (x)=i .} ,  n>=l, 
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and 

A(il , i2, . . . )= {x: al(x)=ii ,  a2(x)=i 2, ...}. 

1.3. In what  follows, we describe the set of all realizable sequences of digits with 
respect to (w.r.t.) the algorithm (3), i.e. the image a([-0, 1)) of [0, 1) under a. This 
description is essentially contained in the condit ions of Theorem 2 below. We  
begin with the following result. 

Proposition 1. For (il, i2,...)~ I~ I,, we have 
n>__l 

f [x ( i i ,  i2,".) ,  x(il, i2 . . . .  )] /f (ii, i2, . . .)e W 
A(il, i2, 

"")=).[x(ii,:- i2, . . .) ,x(ii ,  i2 . . . .  )) /f (il, i2, ..)•W, 
(8) 

where 

W = {(il, i2,...)E 1-I I,:  x(ii, i2,...) < x,( i l , . . . ,  i,), n > 1}. i 
n > l  

Proof. If a,(x)=i, ,  n > l ,  then iteration of (3) yields that x=x_,( i i , . . . , i ,_ i , i  . 
+r,(x)), n >  1, and thus, by the mono tony  o f f ,  and the inequalities 0 < r , ( x ) <  1, 
n >  1, we get 

x_,(ii, ...,i,)<=x<2,(ia, ...,i.), n>=l. 

Therefore, we always have 

x_(i1, i 2 , . . . )  ~ X < X ( i l ,  i2 . . . .  )" 

(9) 

(10) 

Now,  if (il, i2, ...)r then there exists k >  1 such that x(il , i2, . . .)=Xk(il,  ..., ik) 
and so, in view of (9), the last inequality of (10) is strengthened. 

Conversely, if x belongs to the right-hand side of (8), then (9) holds on account  
of the definition of W. In particular, for n = l ,  we ge t f i ( i l )<=x<f l ( i l+l ) ,  and 
thus a 1 (x) = il. Now,  if a, (x) = i~, 1 _< n -< m, then x = x_,, (i 1 . . . . .  ir,- 1, in + r~ (x)) and, 
by virtue of (9), it follows that fm+l(ira+l)<=rm(x)<fm+i(i,~+l + 1). Consequently,  
am+l(x)=im+l, and thus we have proved inductively that a,(x)=i,,  n >  1, q.e.d. 

The following corollaries are easy to verify. 

Corollary 1. We have 

a([0, 1)) = W u  {(il, i2,...)e W': x_(il, iz,...) < X(ii, i 2 . . . .  )}, 

where W'=  ( l~ I , ) -  W. 
n > l  

Corollary 2. I f  a is injective, then a([0, 1))= W. 

Corollary 3. a is injective if and only if  (6) holds. 

Sometimes, we will write Ws~,s ..... to emphasize that W depends on f l , f 2  . . . . .  
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Now, for each k > 1, we introduce a sequence Jk,,,, n > 1, defined recursively by 
Jk,n = S up { i~ I k + ~_ 1 : X_k,n (Jk, 1 , ' " ,  Jk , , -  1, i) < 1 } and jg, ,  +1 = (Z) in case Jk,, = GO. Fur-  
ther, for any k >  1, let 

Ak = {(ik, ik +l . . . .  )~ I ]  In: ik +, -1  =Jk,~, n >>- 1, or ik +,_ 1 =Jk,n, 
n > k  

1 .<-n<-m, and ik+m>Jk,,~+ 1 f o r  s o m e  m>>_ 1}. 

In order  to characterize the set W' ,  we need the next lemma. 

L e m m a  1. L e t  (ik, ik+ 1 . . . .  ) e [ I  I , .  Then  2 k ( i > i k + l , . . . ) = l  i f  and  on ly  i f  
n > k  

(ik, i k + l , . . . ) e A k .  

P r o o f  If ik+n_l=-Jk,n, n > l ,  then ff~,n(ik . . . .  ,ik+ ~ 1)=1, n > l ,  and hence 
Xk(ik, ik + 1 , " ' )  = 1. Whereas, in case i k +,_ 1 =Jk, , ,  1 <- n <-- m, and i k +m >Jk, m + 1 for 
some m > 1, we can write, using (2), 

Xk(ik, ik+ 1, '" " ) = X - - k , m + l ( J k ,  1, . . . ,Jk,m, ik+m ~-Xk+m+l(ik+m+l ' ik+m+2, ""))  

~ X--k,m + l (Jk, 1 . . . .  Jk,m, ik +m) 

> ~2k,,+ l (jk,~ . . . .  ,Jk, m,Jk, m+ l ) =  l ,  

and so 2k(i l ,  i 2 , . . . )  = 1. 
Conversely, assume that there exists r > 1 such that ik+ ,_  1 = J k ,  n, 1 < n < r, and 

ik + r-  1 <Jk, r" Then, by (2), we have 

~k(ik, ik + 1," ')=X-k,r(Jk,  1 . . . .  ,Jl~,r- 1, ik +r- 1 + Xk +,.(ik +r,ik +~ ~ ' ,  ""))  

~-~--Xk,r(Jk, 1 . . . .  ,Jk, r -  1, ik +~- * + 1) < 1, 

and the proof  is complete,  q.e.d. 

Theorem 1. We have  

W ' =  ~ {(i>iz, .-.)e 1-[ I , :  (ik, ik+l,  ...)eAk}. (11) 
k=>l n ~ l  

Proof .  Let  (i> i2, ...)~ W'. If ~(i 1, i 2 . . . .  ) =  1, then (il, i>  ...) belongs to the right- 
hand  side of (11) by L e m m a l .  Whereas,  in case 2(i1, i 2 , . . . )<1 ,  choose k =  
rain {n: 2(il ,  i 2 . . . .  ) = 2n( i1 , . . . ,  ix) }. Then, by making use of (2), we see that 

i n + X n + l ( i , + l ,  in+ 2 . . . .  ) < T , ,  l<_n<_k. 

Consequently,  by the strict m o n o t o n y  o f f ,  on [0, T,), 1 < n < k ,  and the equat ion 

X--k(il, " . ,  ik-  1, ik + "2k + 1 (ik + 1, ik + 2 , ' "  ")) =X--k( i l  . . . .  , ik-  1, ik + 1), 

it follows that 2k+l ( i k+ t , i k+2 ,  . . . ) = l .  Therefore,  (i1,i2 . . . .  ) belongs to the right- 
hand  side of (11) on account  of  L e m m a  1. 

Conversely, let ( i l , i  2 . . . .  ) belong to the r ight-hand side of (11). Then, by 
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Lemma 1, there exists k>  1 such that ~Yk(ik, ik+l . . . .  )=  11 If k=  1, then 2(il, i2, ...) 
=~,(i  1 . . . . .  i,) = 1, n>  1, while in case k >  1, 2(il, i 2 . . . .  )=Xk- 1(il . . . .  , ik-- 1) by (2). 
Hence ( i l , i z , . . . ) eW' ,  q.e.d. 

1.4. Notes. When a is injective, Corollary 2 and Theorem 1 give a complete 
description of the set of realizable sequences of digits. 

As for certain general algorithms, several authors acknowledge that the 
problem of characterizing the realizable sequences of digits is important but still 
open. In connection with this, see Problem 2 in [3], p. 128, and [11], p. 3. 
Besides our present contribution, this problem was solved in a few special cases 
only. Namely, Parry [8] specified the set of realizable sequences of digits in 
/Lexpansions, and Sp~ttaru [14] characterized the same set in the more general 
case of f-expansions. A detailed description of this set with respect to 
(~0,f)-expansions is also given in [13]. 

2. Stochastic Independence of the Digits 

2.1. Throughout the rests of this paper, we work with a fixed sequence of 
functions f , ,  n > 1, such that the mapping a is injective. Then, Corollary 3 ensures 
that the a-algebra generated by the digits a,, n > 1, coincides with the a-algebra 

of Borel subsets of [0,1). Now, for each n > l ,  consider a probability 
n n distribution p -(Pi)i~i. on I,.  We next indicate necessary and sufficient con- 

ditions under which there exists a probability 2 on N making the digits 
independent random variables such that, for any n>  1, the distribution of a, 
under 2 is p". These conditions are based on the description of W' given in 
Theorem 1. 

Theorem 2. If 

(._1)1 k+._l] 0 P i  = 1-I ok.+"- 1 = 0 , ~ j ~ , ,  k>l,_ and P~k,, / Y, k>-l,_ m>__l,_ (12) 
n >  l - -  i > j k ,  r n + l  

then there exists a probability 2 on ~ making the a, independent random variables 
with 

2(a, = i) - " > 1. (13) - P l ,  ie I , ,  n 

Conversely, if 2 is a probability on ~ under which the digits a, are independent 
and distributed according to (13)for some p", n> 1, then (12) holds. 

Proof We present a construction of 2 under (12) which is adequate for our 
further purposes. Let ([-[ 1,, S , P )  be the product probability space formed 

n > l  

from the probability spaces (I,, ~(1,), p"), n > 1. Then, on account of (11) and (12), 
it follows that P(W) = 1. Denote S w the a-algebra of subsets of W that belong to 
stY, and let Pw be the restriction of P to Jfw. Since, by Corollary 2, a maps [0, 1) 
onto W, there exists a unique probability 2 on a-l(,,Y'w) such that 2a-1  =Pw on 
X w. Further, as 
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a,=~z, oa, n >  l, (14) 

where, for each n~l,  ~, stands for the projection of l~ I ,  onto I , ,  we see that 
n > l  

a 1 (Xfw) = ~,  and 

()~a- 1) (A)  = P ( A ) ,  AE~f ". (15) 

Now, the independence of a, under )~ follows, on account of (14) and (15), from 
the independence of nn under P. Finally, (13) holds by (14) and (15). 

Conversely, if 2 is as stated in the second part of the theorem, then the left- 
hand sides of (12) always represent the probability of appropriate empty sets, 
and the theorem is proved, q.e.d. 

2.2. Notes. The cumulative distribution function F ( x ) =  2([-0, x)) is given by 

m--1 ) 
f ( x )  = ~ Pa,tx) Samtx), Xe(0, 1), (16) 

m_-->l n = I  / 

where s i - ' - 1 -  2 P~, i~ I , ,  n>__ 1. Indeed, by making use of Corollary 3 and the 
l>i 

independence of a, under 2, we have (with x o = 0) 

f ( x )  = lim 2([0, x_,(a 1 (x) . . . .  , a,(x)))) 

= lira ~ )~([_x m_ l (a l (x)  . . . .  , % _  l(x), x__m(al(x ) . . . . .  % _  l(x), am(x)))) 
r~oo m:  l 

= 2  
m=> 1 

= 2  
m_->l 

)~(a,=a,(x),  1 < n < m -  1, am<am(X)) 

m--1 ) 

Interestingly enough, if 2 is purely non-atomic, and 2_t_m, where m denotes the 
Lebesgue measure on N, then (16) may provide examples of continuous, 
increasing, singular functions. (For f , = f ,  n > l ,  it is shown in [14] that F is 
increasing if and only if all p~ are positive.) For instance, in case T, = 2, n > 1, 
and f , ( t ) = t / 2 ,  0__<t<2, n > l ,  Salem [-10] derived the F in (16), by geo- 
metrical arguments, under the assumption p~>0, i=0,1,  n > l ,  and 

2 max p~' < oe. Among Salem's functions one finds the first directly 
m ~ l  -- i=0,1  

constructed, continuous, strictly monotonic, singular functions. 

3. Properties of the Probability ), 

3.l. In this section we present some properties of a given, but otherwise 
arbitrary, probability 2 on -~ which makes the a n independent and distributed 
according to (13). Except for the "only if" part of Theorem5 below, these 
properties are consequences of the zero-one law for independent random 
variables. First, we consider the following easy result. 
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Theorem 3. 2 is either purely atomic or purely non-atomic; 2 is purely non-atomic 

if and only if ~ max p~' = 0. 
n>=l i e l n  

Proof  If )~ is not purely non-atomic, then there exists xe[0,1) such that 
2({x})>0. Therefore, by the zero-one law, 2(l iminf(an=a,(x))  )= 1. As liminf(a n 
=an(x)) is a countable set of points in [0, 1), we see that 2 is purely atomic. The 
second assertion of the theorem follows from the equation 

.~({x})= 1-[ P~".(~), xe[-0,1), 
n>=l 

thus completing the proof, q.e.d. 

Now, we investigate the behaviour of 2 w.r.t.m. For any k ~ l  and in~I n, 
1 <_n<_k, define the measurable transformation ~ ...... ix from I~ I ,  into I~ In by 

n > k  n > l  

Ti ...... i k ( ik+l ' i k+z ' ' " )=( i l ' ' " ' i k ' i k+x ' ik+2 ' ' ' ' ) '  (ik+l,ik+2 . . . .  ) ~ [ I  In. 
n > k  

Whatever B c  F[ I,,  set 
n > l  

Bk=(~k+l,~rk+2 ' ...)-1( ~ Ti~, !..,~k(B)), k > l .  
i l  e I 1 ,  . . . , i k ~ I k  

The next three lemmas are needed for the proof of Theorem4 below. 

Lemma 2. I f  B ~ W and, for  some k >= 1, a ( f  k + 1, fk + 2 ," .  ; ") is injective, then 

a-  l(Bk)= r;  l(rk(a- 1 (B))). (17) 

Proof. We first verify that 

- - l .  
a ( L + . L + 2  . . . .  , U T,7,1 .... ix(B)) 

i l  eli . . . . .  i kEIk  

=rk( f l ,  . . . , f t ;  a -  l ( f , , f 2  . . . .  ;B)). (18) 

Let x belong to the left-hand side of (18). Then there exist i, e I , ,  1 <=n<=k, and 
x ' e a - 1 ( f l ,  f2, ... ;B) such that 

(il, ..., ik, al(fk+ 1 ; X), a2(f  k +1, fk +2 ; x),...) = a ( f ,  f2, "" ; x'). (19) 

By making use of (5) and (19), the injectivity of a(fk+l , fk+z,  ...;.) implies that x 
= rk ( f , . . . , f~ ;x ' ) ,  and so x e r k ( f l , . . . , f k ; a - l ( f ,  f2 , . . . ;B) ) .  The converse in- 
clusion in (18) can be proved in a similar manner. Now, on account of (5), we get 

a -  1 ( f l ,  f 2 , . . .  ; Bk) 
= r - 1  a - i  . k ( f l  . . . .  ,fk; ( fk+~, fk+2, ." ,  U Ti ~, !.., ik(B))), 

i l G l t ,  . . . ,  ikelk 

and (18) terminates the proof, q.e.d. 
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Lemma 3. There exists an increasing sequence of natural numbers k,, n> 1, such 
that a(fk.+l,fk,+2, ... ;-) is injective for each n> 1. 

Proof We choose the sequence k,, n > 1, as follows. Set k~ 
=min{k:  Yk(0, ..., 0) < 1}, and put k,+ 1 =rain{k: ~k(0, ..., 0) <~k,(0, ..., 0)}, n > 1. 
Then, whatever n > 1, we have 

~r,k._ r +,(0, ..., 0) <fr(1), l < r < k , ,  fk.(1)< 1. (20) 

By making use of (20), and by repeated application of (4), we obtain 

rk.(fl . . . .  ,L~ Ak~ 0)) 

=rk. ( f l , . . . , fk . ;  [0, Xk,(0 . . . .  ,0)))=[0,1), n > l .  (21) 

Now, assume that 

a(fk. + 1, fkn+2 ... .  ; Y0 = a(fk~ fk,+ 2,-" ; Y2)" (22) 

In view of (21), yi=rk,(fl, "",fk.; Xl), where x~eAk.(O . . . .  ,0), i=  1, 2. Substituting 
y~ in (22), and using (5), we see that 

(ak.+ 1(Xl), ak,+z(Xl), . . . )= (ak.+ 1(X2), ak,+ 2(x2), ...), 

and thus a(xl)=a(x2). Since a is injective, we get x 1 =x2 ,and  so Yl =Y2, q.e.d. 

Lemma 4. Assume that, for each n>  1, f,({t < T,:f2(t)= oe}) and {t< T~:f~'(t)=0} 
are sets of Lebesgue measure zero. Then 

m(r; *(A)) = 0, m(rk(A)) =0, k>  1, 

whenever A e ~  is such that re(A)=0. 

Proof As f ,  is increasing on [0, T,), it follows by a standard argument (use, e.g., 
Exercise 17.25 in [4], p. 269) that m(f,({t<T,:f2(t)=oo}))=O if and only if 
m(s  for any Borel set C of Lebesgue measure zero, and {t< T,:f'(t)=O} 
is of Lebesgue measure zero if and only iff,-~(A) has Lebesgue measure zero for 
any AeN with re(A)=0. Further, the lemma is established by induction, using 
(4) and the following equations, valid for any A e ~ ,  

r71(f,;  A) = U s +A)c~[0, T,)), n > l ,  
ieIn 

and 

r~(f~;A)= ~ (f-l(Ac~[f,(i) , f ,(i+l)))-{i}).  n=>l, q.e.d. 
iEln 

Theorem 4. Assume that, whatever n>=l, f,,,({t<T,: f2(t)= oo}) and {t<T~:f2(t) 
=0} have Lebesgue measure zero. Then either 2• or 2 ~m. 

Proof By (15) and the equality a - ~ ( ~ ) = N ,  it suffices to show that P is either 
singular or absolutely continuous w.r.t, the probability m a-  ~ on S .  If it is not 
true that P r  -1, then there exists B ~ S  w such that (ma-~)(B)=O and 
P(B) > 0. Since, for any k => 1, B k belongs to the a-algebra generated by ~z,, n > k, 
and BCBkcBk+~, we see that Bu(  ~ Bk, ) is a set of the tail a-algebra of the 

n>l  
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process n,, n >  1, where k , , n >  1, is the sequence which have been chosen in 
Lemma 3. Hence, P(Bu(  U Bk,)) = t. On the other hand, by virtue of Lemmas 2 

n > l  
and 4, we may write 

(ma a)(B•( U Bk.))<(ma-X)(B) + ~ m(a-l(Bk.)) 
n >  l n >  l 

= ~ m(rLl(rk,(a - I(B))))=0. 
n > l  

Therefore, it follows that P_l_ma-1, q.e.d. 

We now give a simple necessary and sufficient condition for any probability 
#, which makes the a, independent random variables, to be such that either/2_1_2 
or #.~ 2. To do this, we use the following lemma. 

Lemma 5. Whatever k> 1, we have jk,.>O for infinitely many n. 

Proof. Assume, on the contrary, that there exist k > 1 and r > 1 such that Jk,. ~- O, 
n > r. Then we have Jk,. < 0% 1 <= n <__ r, and 

Xk(Jk, 1 . . . .  ,Jk, r, O, 0,...) = 1. 

Therefore, by (2) and the inequality Xk, r(jk, 1,...,jk, r)<l, it follows that 
ffk+r(0, 0, . . . )>0. In view of (2), this leads to ~(0, 0 . . . .  ) >0,  thus contradicting the 
injectivity of a, q.e.d. 

Theorem 5. The cumulative distribution Junction F(x)=2([O,x)), x~(0,1), is in- 
creasing if and only if either/2s or /242 for any probability/2 on ~ which makes 
the a, independent. 

n n Proof. Assume that F is increasing, and for each n > l ,  denote q -(ql)~x.  the 
distribution of a, under /2. Then q" ~p" for all n > 1. Indeed, whenever q~' > 0, 
choose i x ~I1, ..., i n_ 1 ~I,_ 1 such that 

0 < q l . . .  , -1  , _  �9 �9 qi,-~ qi - /2(A,( tD"' ,  tn- 1, i)). 

Hence An(il, ..., i n_ ~,i)@fJ, and the strict monotony of F implies that 

p/t , -1  , _  2(An(il, �9 i)) > 0. �9 "Pi. apt-- " " ' I n - - 1 '  

Consequently, P7 > 0..Now, let Q be the product probability on ~ formed from 
qn, n > 1. (Hence, (/2 a -1) (A)= Q(A), A s~(.)  Then, by a theorem of Kakutani (see, 
e.g., [-41, p. 453), it follows that either Q_I_P or Q ~ P .  Therefore, e i ther /212 or 
/2 ~ 2. (By the same theorem, the former case holds if and only if 

n n 1/2  0 ) I ~ ( 2  (Piqi) ~= �9 
n > 1 k l e i n  ] 

Conversely, assume that F is not increasing on (0, 1). Then we shall construct 
a probability /2 on ~ which makes the a, independent, and neither /2_1_2 nor 
/2,~2. As F is not increasing, the set {(n, i): n>  1, i~In, p~'=0} is not empty. Two 
cases occur: either (i) there exist m>  1 and l ~ [  m such that p ~ = 0  and ~, p~>0,  or 

i > l  
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else (ii) p~>0  for all n > l .  If (i) holds, then choose in,In, l<_n<_m, such that 
P~'n > 0, 1 < n < m, and i m > 1. Further, for each n > 1, define a probability distribu- 

" - 1  1< m _  m=1/2, and put q"=p" for tion q" on I ,  as follows. Set q~,-  , n <m, q~m-q~ 
n > m. Since the sequence p", n _> 1, satisfies (12), notice that, whenever r = 1, , m, we 
cannot have L,, = ir+, 2, 1 < n --<m-- r, and • 1 < I. Consequently, (12) is also 
satisfied by q,, n > l .  On the other hand, if (ii) holds, then choose r e > l ,  i ,~I,,  
1 <_n<<_m, and l~I~ such that pi"~ >0, 1 <n<m, p ~ = 0  and A~(i 1 .... ,im_~,l)q=fJ. By 
virtue of Lemma5, we can take s , = m i n { r >  l : jm_,+l , ,+r>0} ,  1 <_n<_m. Let s 
= max s,. For  n > 1, define a probability distribution q" on I,. Namely, let q~",, 

i ~ n  -<m 

. . . . .  = 1/2, " - < m + s, and set q" = p" for n > m + s. As =1, I N n < m ,  qim-ql q 0 - 1 ,  m<n 
A,~(il .... , ira- 1, l) +fJ, we see that, for any r = 1 . . . . .  m, we cannot have Jr,, = it+,_ 1, 
l<_n<_m-r, a n d j  . . . . .  +1</.  But, i f jr , ,=ir+n_Z, l<_n<_m-r, a n d j  . . . . .  +1=1 
for some r~{1 .. . .  ,m}, then there is k, m - r + l < k < m + s - r + l ,  such that 
0<jr,k, Therefore, since p" ,n> l ,  satisfies (12), we make sure the sequence q", 
n > l ,  does so too. In both cases, denote Q as the product probability on d4# 
formed from q", n >  1. Then, according to Theorem 3, the probability p on N, 
which is associated with Q by (#a-I) (A)=Q(A),  A ~ ,  makes the a, inde- 

pendent random variables. Now, notice that on F[ I n the product probability 
n = l  

formed from q", 1 _< n < m, is neither singular nor absolutely continuous w.r.t, the 
product probability formed from p", 1 -< n-< m. Hence, since on 1-1 I ,  the product 

n > m  

probability formed from qn, n>m,  is absolutely continuous w.r.t, the product 
probability formed from p", n>m, it follows that neither Q •  nor Q ~ P .  
Consequently, neither #L2 nor # 4 2 ,  q.e.d. 

3.2. Notes. Theorem 3 extends similar results due to Chatterji [1] and [2], and to 
Sp/ttaru [14]. However, these results are not specific within the framework of 
number expansion theory, where they appeared, but originate from the general 
fact that the restriction of a probability to the o--algebra generated by a 
countable family of discrete random variables is either purely atomic or purely 
non-atomic whenever the family variables are independent under this probabili- 
ty. 

From Lemma 3 it follows actually that a(f ,+l, f ,+2, . . . ; . )  is injective for all 
n > l .  Indeed, if a(fk+l,fk+2,. . . ;-  ) is injective, then a(fk,fk+l,fk+ a . . . .  ;.) is in- 
jective by (5), and by the injectivity of rl(fk;- ) on each of the sets (a~(fk;.)=i), 
i~I k. 

Theorem 4 is illuminating for revealing the general condition which guaran- 
tees the validity of certain very special results. Namely, in the D-adic expansion 
case, i.e. when T ,=D > 1, n > l ,  where D is integral, andf,(t)=t/D, 0 < t  <D, n >  1, 
Chatterji [1] proved that either 2Kin or 2 ~ m .  (Without being aware of 
Chatterji's work, Marsaglia [7] obtained the same result, but by using a different 
approach.) Chatterji [2] also showed that for the continued fraction expansion 
case, i.e. for f,(t) = l/t, t > 1, n > 1, any probability making the digits independent 
random variables is singular w.r.t, the Lebesgue measure. Along the same line, 
in the Ltiroth expansion case, i.e. when, for each n >  1, the graph of f ,  is the 
polygon joining in order the points (i, 1/i), i_> 1, Jakubec [5] proved that any 
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probability making the digits independent is either singular or absolutely 
continuous w.r.t, the Lebesgue measure. It should be noted that for these special 
cases, the condition of Theorem 4, or the corresponding one for decreasing 2 f , ,  
n > 1, is trivially verified since the sets of Lebesgue measure thereof are in fact 
empty sets. Theorem 4 provides us with a large class of (fl ,  f2, ...)-expansions 
producing stochastically independent digits only under "pure"  probability mea- 
sures. This raises the question as to whether there exist (f l , fz , . . . ) -expansions 
whose digits may be independent under a probability which is neither singular 
nor absolutely continuous w.r.t, the Lebesgue measure, Theorem2 in [12] 
answers this question affirmatively. 

By the first argument in the proof of Lemma4, and by Theorem 18.25 in [4], 
p. 288, it follows that the condition of Theorem 4 is equivalent to the assumption 
that, whatever n>  1, fn is absolutely continuous, and f , -1  is absolutely con- 
tinuous on each [0, c], c < 1. In the next section we shall see that this condition 
is only sufficient for the conclusion of Theorem 4 to hold. 

4. Equivalent (fl,  f2,...)'expansions 

4.1. We say that f , ,  n > 1, is equivalent to f,,', n > 1, and write 

( f l , f 2 , . . . ) ~ ( f ; , f ~  . . . .  ), if a ( f l , f 2  . . . .  ; x ) = - a ( f ; , f ~ , . . . ; x )  

for all xe[0,  1). Note that any probability ~ on N which makes the a, inde- 
pendent and distributed according to (13) does so as well w.r.t, the digits a',. In 
what follows, we find the necessary and sufficient condition under which func- 
tion f exists such that ( f l , f 2 ,  . . . ) ~ ( f , f  ...), i.e. the ( f l , f a  . . . .  )-expansion of 
x is equivalent to the f-expansion of x for any xe[0,  1). The way we construct f 
enables us to give an example showing that the condition in Theorem 4 is 
not necessary for the conclusion to hold. 

Theorem 6. ( f l , f 2 ,  . . . ) ~ ( f , f ,  ...) for some function f if and only if jk, n=jk+l, , ,  
n > 1, for each k > 1. 

Proof  Suppose that there exists a function f on [0, oo) such that f is increasing 
on [0, T), where 0 < T < o %  f maps [0, T) onto [0,1), f ( t ) = l  for t>T,  and 
(f l , f2 .. . .  ) ~ ( f , f . . . ) .  For  the constant sequence f f  .... let j , = j l , , = j 2 , =  .... 
n > l .  We shall prove that j k , ,= j , ,  n > l ,  for each k > l .  First, since 
a( f l , f2  , ..., ;.) is assumed injective, Corollary 2 implies that 

WJl,I~ .... = Ws, I,.,." (23) 

Now, if T=  o% then j ,  = o% n > 1, and so WI, I .... coincides with the set of all 
sequences of non-negative integers. Consequently, T k = o% k > 1, and hencejk,, - o% 
n > 1, for any k > 1. If T <  o% then 1 <Jl < T, and thus (0, ..., 0,ix , 0, 0,.. .)~ WI, I ..... 
where here, and in the following similar sequences,j1 (orjk ' 1) is at the k-position. By 

2 We have remarked in the Introduction that each result of this paper has a correspondent when 
appropriate decreasing f,, n > 1, are considered 
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(23) we get j l  < T k, k >  1, whence 1 <J l  <Jk, 1, k >  1. Further ,  using also L e m m a  5, we 
see that  

(0, . . . ,  0,jk, 1,0, 0, . . .)~ w~,,~2 ..... 

and by (23) we find thatjk ' a <J l ,  k > 1. Therefore,jk, s =Jl  for each k > 1. This implies 
also that  Tk< 0% k >  1. Then, whatever  k >  1 and s >  1, we see that  (.) either jk+s,, 
=Jk,s+,, n>=l, or there exists r > l  such that  J~+s,,=Jk.s+,, l < n < r ,  and 

jk+s,r>jk,~+r. Assume now t h a t j k , , = j  . ,  1 <--n<m. From (11), (*) and L e m m a  5, it 
follows that  

(0  . . . .  , O, Jk, 1 , " "  ,Jk, m,Jk, m + S, O, 0 , . . . ) e  W f ~ , f  ..... " 

By virtue of (23) and (5), this amounts  to Jk,m+ ~ <Jm + 1' The  converse inequality 
Jm + s <Jk,~, + S is obta ined similarly. Hence, the "on ly  if" implication is established 
by induction. 

Conversely, assume that  there exist j , ,  n > 1, such that Jk,, =J, ,  n > 1, for each 
k > 1. Then the following alternative holds: either (i)j s -- o% and so T k = oc, k > 1, or 
(ii)j s < o% and thus T k < 0% k > 1. Now, we assume that (ii) occurs, and we construct  
a function f such that  ( f l ,  f2,  . . . )~  (f, f ,- . .) .  (The case when (i) occurs is similar and 
even simpler, so that  we leave it to the reader  to work out the details of the proof.) In 
this case, it will be helpful to keep in mind that, whatever k > 1, we have j l  < T k --<Jl 
+ 1, and hence I k = {0, 1 . . . .  ,Js} = 1  (say). Let  T = j s  +x_(j2,j3, ...). Not ice  that, in 
view of L e m m a  5, Jl < T < J l  + 1. Define a function f from [-0, T) into [0, 1] by 

f ( i  + x) =_x(i, al(x) ,  a2(x ) . . . .  ), 

where i~I ,  x~[0,  1), and i + x < T .  We next prove that  f is increasing. Consider  
0 < x < x ' < l  and iEI  such that  i + x < Z  i + x ' < T .  Then choose m 
= m i n { n : a , ( x ) 4 : a , ( x ' ) } .  Since am(X)<am(x'  ) and, by ( l l )  and Corol lary2,  
(i, al(x) ,  a2(x ) . . . .  )E W,, we may write 

f ( i  + x) < 2(i, a s (x), a2(x ) . . . .  ) < x,,  +1 (i, a I (x) . . . . .  am(x)) 

<= X--m + 1 (i, a s (x'), . . . ,  am(x')) <=f (i + x'). 

Further ,  a similar argument  shows that, for x ~ [0, 1) and i < J l , f ( i  + x) < f ( i  + 1), and 
s o f b e i n g  increasing is established. Our  next step is to prove t h a t f m a p s  [0, T) onto 
[0, 1). Let  D denote  the set of  all points x, (as(x) ,  . . . ,  a,(x)), x~[0,  1), n >  1. Then 

D ~ f ((I + D) c~ [0, T)). 3 (24) 

Indeed, if x,(i l ,  ..., i,)~ D, then, in view of Corol lary2,  (i~, ..., i,, 0, 0 . . . .  )E W, and 
thus (i2 . . . .  , i n , O , O  . . . .  ) E W  on account  of (11). By Corol lary2,  this amounts  to 
x_,_ 1(i2 . . . . .  i ,)e D. Since 

x, ( is ,  ... , i n )= f ( i  1 + X ,_  1(i2 . . . .  , i,)) (25) 

(with _xo= 0) provided that i I +_x,_ ~(i 2 . . . .  , i , )< T, to complete the proof  of (24) it 
suffices to show that 

In fact, the two sets here are equal, but we only need this inclusion 
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.Xn_I(J2,.,.,jn)<X_(]2,J3 . . . .  ), n > l .  

Assume, on the contrary, that there is m > 1 such that  

X----m- 1(J2, "'" ,Jm)= X(jz,J3, "' ")' (26) 

Taking into account (*), we see that  

Jnq-X---n . . . .  (Jn+l,"',Jm)<Tn-1, l<n<_m, (27) 

(with x ~ .0 =0  ). F rom (1), (26) and (27), it follows that  ~m(J'm+l,Jm+2 . . . .  ) = 0 ,  and 
hence j ,  -- 0, n > m. But this contradicts Lemma 5, and therefore (24) is proved. Now, 
as f is increasing and, by virtue of (6), D is dense in [0, 1), (24) implies that  f maps 
[0, T) onto [0, 1). Finally, let us show that  

a( f l ,  f2, ... ; x )=a ( f , f ,  ... ;x), xe[0,  1). (28) 

In the sequel, a prime attached to a term will indicate that  the term is considered 
w.r.t, the constant sequence of functions f, f, .... First, by making use of (25), it 
follows inductively that  x_,(il, ..., i,) = x' ,( i l , . . . ,  i,) whenever x,( i l  . . . .  , i,) e D. Partic- 
ularly, we have 

x,(j" 1 . . . . .  j,) = x_',(j a . . . . .  j,) < 1, n _>_ 1. 

Consequently, to get (28) we need only prove that 

X',(I'I . . . . .  j ,) = 1, n > 1. (29) 

Clearly, ff 'l(jl)= 1. Now assume that  

X'n(jl, ...,jn)= l, l <_n<_m. (30) 

On account of (*), we see that  either (a) there is se{1, ... ,m} such that  j , = j , + , ,  
l < _ n < m - s + l ,  or else (b) x_m(j2 . . . . .  J m + l + l ) e D .  If (a) holds, then 
2"+ l ( j i  . . . .  , jm+l)= 1 by (30). If (b) occurs, then 

Jl "~- ?~m(l'2, "",Jm+ l)=Jl + Xm(J'2, "",Jm+ l)~ T, 

and again x~,+i(Ji, .-.,Jm+0 = 1. Hence, (29) is obtained by induction, q.e.d. 
Part  i) of the following corollary is immediate;  part ii) necessitates the use of (5). 

Corollary 4. i) I f  jk , ,=Jk+l, , ,  n >  1;for each k > m ,  then 

( f l ,  "" , fm,  f~+i , fm+ 2 . . . .  ) ~ ( f i ,  " " , f , , , f  f, "") 

for  some function f 
ii) lfrm([O, 1))=[0, 1) and 

(f i ,  ..., f~, fm+ i, f~ + 2 . . . .  ) ~ (f l ,  ..., f~, f, f, .--) 

for some f, then jk,,=Jk + l,,, n>  1,for all k > m. 
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Example 1. Let D > 1 be integral, and assume f g, h are increasing functions on 
[0,D) mapping [0,D) onto [0, 1), where f( t)=t/O, O<=t<D, and g(i+x)=(i/D) 
+h-l(x)/D 2, i = 0  . . . . .  D - l ,  xe[0,1).  Further, consider M a subset of natural 
numbers such that n + 1r if n~M. Define a sequence of functions fn, n > 1. by f ,  
=g, f , + l = h ,  nEM, and f , = f  for the other indices. Then ( f l , f2,  . . . ) ~ ( f f ,  ...). 
Indeed, whatever k>  1 and ine{O .... ,D--1}, 1 <n<k,  we have 

k 
�9 n _ _  ! �9 x-~(il . . . . .  ik)= ~ tn/D -x_~(t~ .... ,ik). 

Now, by any of our Theorems 4 and 5, or by Corollary 1 in [1], it follows that any 
probability 2 which makes the a' n independent random variables is such that either 
2_l_m or 2 ~m, and hence any probability 2 making the a n independent is so too. 
Since we can choose either g or h not to be absolutely continuous, we see that the 
condition of Theorem 4 is not necessary for the conclusion of it to hold. However, 
forf ,  = f  n > 1, whether or not this condition is necessary remains an open problem. 

4.2. Notes. The function f arising in Theorem 6 and Corollary 4 is uniquely 
determined. Actually, it can be proved if a(f f , . . . )  is injective, then each of 

( f  f . . . )~ ( f ' , f ' ,  ...) and 

(fl, . . . , f m , f f  . . . )~( f l  ..... fm,f ' , f ' ,  ...) 

implies that f = f ' .  
a( f t , f2 , . . .  ;.) being injective and jk,, , =Jk+  1,n, r l ~  l ,  for each k >  1,do not imply 

that Tk= Tk+t, k > l ,  as it might seem likely. To show this, let c(>0 satisfy the 
equation c~ + c~2= 1, and consider a sequence of functions fn, n > 1, such that f,(t) 
= e  t, 0 < t <  1 + e, n>2 ,  T z = 1 + c~,f2(1) + e, T t = 1 +f2(1), and (7) holds forf~ and f2 
with some finite 71 and 72. Then a(ft, f2 .... ;.) is injective, and we see that jk ' 2,-1 
= l , j k , 2 , = 0 ,  n > l  for any k > l .  Nevertheless, TI ~ T k = l + e ,  k > l .  

If one removes the assumption rm([0, 1))=[0, 1), then the conclusion of 
Corollary 4 ii) does not generally hold. This is shown by the following example. 
Choose a sequence fn, n > 1, such that f , ( t )=  t/2, O<t <2, n >2, T 2 > 2, fz ( t )=  t/2, 
0 < t < 1, and fl(t)  = 2t, 0 < t < 1/2. Further, take f(t) = t/2, 0 < t < 2. Then 

rx([0, 1))= [0, 1/2), (f~, f2, f3 .. . .  ) ~ ( f ~ , f f  ...), 

but J2, 1 >Jk, a = 1, k > 2. 
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