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Introduction

The classical paper by Rényi [9] on ergodic properties of transformations
associated with f~expansions has given a great impetus to the investigation of
various algorithms by which a sequence of integers, termed as the digits of x, is
attached to any x in the unit interval. Most of these algorithms are stationary,
i.e. each digit a,(x) is determined, independently of n, by making use of a system
with fixed components. The recent monograph [11] by Schweiger is aimed at
presenting such stationary algorithms from a unified point of view. As for the
non-stationary algorithms, only two types have been considered. One of them,
constructed with the help of a sequence of functions f,, was introduced by
Krabill and Reichaw [6] in order to generalize f-expansions of real numbers.
The other one is defined in terms of a sequence (v, y,) of pairs of functions, and
forms the core of the work [3] by Galambos. However, as already remarked in
[13], this last algorithm may be described as well by a suitable sequence of
piecewise linear functions in place of a sequence of pairs of functions.

The present paper deals essentially with an algorithm of the type considered
in [6]. In Section1 we rigorously define this algorithm, and give a detailed
description of the set of all realizable sequences of digits. On account of this
description, in Section 2 we indicate necessary and sufficient conditions under
which there exists a probability 2 on the Borel subsets of [0, 1) that makes the
digits independent random variables with prescribed distributions. The central
part of the paper is Section 3. Here, we present dichotomy properties for the
probability measures constructed in Section 2 which proceed from the zero-one
law. In Section 4, under some necessary and sufficient condition, we find a way
of reducing our algorithm to that leading to f-expansions. This enables us to
precise Theorem 4 of the preceding section.

Finally, it should be pointed out that, in order to simplify the exposition, we
deal only with sequences of increasing functions f,. However, the techniques
developed in this paper enable one to obtain the correspondents of all results
below when working with appropriate sequences of decreasing functions.

0044-3719/78/0045/0337/$03.20



338 A. Spataru
1. (f15 fs..-)-expansions of Numbers in [0,1)

1.1. Assume that we are given a sequence T,, 0<T, =<0, nz1, and a sequence
f,» n=1, of continuous functions on [0, o) such that f, is increasing on [0, T), f,
maps [0, T,) onto [0,1), and f,(1)=1, t>T,. For 1,20, n= 1, we use the following
notation throughout the paper. Whatever k=1, set x, ,(t)=/,(t,), and define
inductively

Xpne1lo byt o o) =l X i 1o -0 Bes)), 21
For any k=0 and n=1, put

xk+1,n(tk+1a rees tk+n) :3—Ck+1,n(tk+1’ A tk-i-n—l’ tk+n+ 1)'
Then, the monotony of f,, n= 1, implies that

BeatnCorss s ) EX0 ot Cats oo Lo ermst)

Sttt ) S Xt wlogts oo L)
k=0, nzx1,

and so there exist

Xpo1(rsns teazs )= UM Xy g ((Gyts s L)
n— oo

Xt (tests tgezs )= MM Ky g 1By ooty k20,

n— o

Moreover, on account of the continuity of f,, n=1, we get

X1t by as -2

=Xttt oo terne o oo T Xion 1 Chsnsts lsns 2o )

k=0, nx1, (1
and

S (AU AP

:>—Ck+1,n(tk+1’ Tt tk+n—1> tk+n+xk+n+1(tk+n+1, Uk bn+ 20 )),

k=0, nx>1. 2)
We also set
Xt s t) =X (s oo n )y Xl oo 1) =X 4t s 8)s

nz1,

Xty by ) =X (b tgser)s  X(tyslas ) =X4(E1,tp, -00).
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1.2. Using the above sequences of functions, we can associate with any xe[0, 1)
a sequence a,(x), n= 1, of non-negative integers, termed as the digits of x, and a
sequence 7,(x), n= 0, of numbers in [0, 1), termed as the remainders of x, defined
recursively by way of the algorithm

ro(x)=x
) =fa,(x)+r,(x), n=l A3)

For any n=1, a,(x) and r,(x) depend only on f,....f,. When we wish to
emphasize this functional dependence, we write them in the form a,(f;, ..., f,;x)
and 7,(f;, ..., f,; X). The equations

rk—f—n(fi, "'7~/}€+n; X

Falfisrs s Joqns Blfis o fis X)) k21, nzd, (4)
and
Ui nlSts s S vns %)
=0, (fisrsoSirns nlfis o fis X)), kz 1L nzl, &)

which proceed from (3), are of prime importance in proving Theorem 4 below.

Now, whatever n= 1, denote I, as the set of the non-negative integers which
are strictly less than T . Obviously, a,el,, n=1, and therefore we can define the
mapping a from [0,1) into [] 1, by

a(x)=(a,(x),a,(x),...), xe[0,1).

If necessary, we specify the dependence of a(x) on the underlying sequence
Jisf2, ... by writing it as a(f,,f,, ...; x). If a is injective, then any xe[0, 1) may be
recovered from the sequence of its digits. More exactly, in this case we have the
representation (see Corollary 3 below)

x=lim x,(a,(x), ..., a,(x))= lim X, (a,(x), ..., a,(x)), x€[0,1), (6)
which is called the (f,, 5, ...)-expansion of x. (For f,=f, n= 1, we get the classical
Jf-expansion of x.) A sufficient condition ensuring the injectivity of a is as
follows. There exist ,, n=1, such that [] y,=0, and

nz1
L) ==yt —1), 0=r<t. (7)

This can be shown, by using Proposition 1 below, through repeated application
of (1), (2) and (7). However, nothing as strong as this condition is needed to
guarantee the injectivity of a.

Finally, let us indicate that, whatever (i, i,,...)e [ | I,, we put

n21

A iy i)={x1a,(0)=i,,...,a,x)=i}, n=1,
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and
Aiys 15, . )={x: a;(x)=11,a,(X) =iy, ...}.

1.3. In what follows, we describe the set of all realizable sequences of digits with
respect to (w.r.t.) the algorithm (3), i.e. the image a([0, 1)) of [0, 1) under a. This
description is essentially contained in the conditions of Theorem 2 below. We
begin with the following result.

Proposition 1. For (iy,i,,...) || I,, we have

nzl

[xGy,0s,.),X0,05,..0]) i (q,15,...)eW

A(il’iz’"'):{[g(il,iz,...),i(il,iz,...)) if (iy,15,..)¢W, ®
where
W={(iy, iz .. )€ || L:X(ip1p, .. ) <X, (igs..., i) n21}.1

nz1

Proof. If a,(x)=i, nz1, then iteration of (3) yields that x=x,(i,...,i, ;,i,
+r,(x)), n=1, and thus, by the monotony of f, and the inequalities 0<r, (x)<1,
nz1, we get

X0 i) EX<X, (g, .., 0,0, nxl. 9
Therefore, we always have
Xliysigy o) SXSX(ips gy ). (10)

Now, if (i},i,,...)¢W, then there exists k=1 such that X(i;,1,,...)=%(iy, .., 1))
and so, in view of (9), the last inequality of (10) is strengthened.

Conversely, if x belongs to the right-hand side of (8), then (9) holds on account
of the definition of W, In particular, for n=1, we get f,(i,) Sx < fi(i;+1), and
thus a,(x)=i,. Now, if a,(x)=i,, 1 Sn<m, then x=Xx,,(is, ..., 1,_y,i,+7,(x) and,
by virtue of (9), it follows that f,, (i, 1) S7.(6) <f,, 1(i,  +1). Consequently,
4y 41(X)=1,,,1, and thus we have proved inductively that a,(x)=i,, n=1, q.e.d.

The following corollaries are easy to verify.

Corollary 1. We have
a([0, ) =WU{(i,iy,...) W x(iy,ig...)<X(iyi...)},

where W =([] I,)—

nzl
Corollary 2. If a is injective, then a([0, 1))=W.
Corollary 3. a is injective if and only if (6) holds.

Sometimes, we will write W, ,,  to emphasize that W depends on f,f,,....
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Now, for each k=1, we introduce a sequence j, ,, = 1, defined recursively by
Jen=supfiel, 11 X i to - odin_1,1) <1} and jy , ., =00 in case j; ,= 0. Fur-
ther, for any k=1, let

A={ll lpy, - ) n Lybg g =Jew P21, 0 by s =i
nzk
1Engm, and iy, >jj iy for some mz1}.

In order to characterize the set W', we need the next lemma.
Lemma 1. Let (i iy, q,...)e[] 1, Then X (i ix,y,...)=1 if and only if

nzk
(i b qs -+ JEA.

Proof. If iy, 1=jn. n=1, then X (i,....0,, 1)=1, n=1, and hence
Xlis iyt s -..)=1. Whereas, in case i,_,_;=j,,, 1=n<m, and i, ,>j, .., for
some m = 1, we can write, using (2),

55k(ika ik+19 "')=5k,m+1(jk,1= "'3jk,m7 ik+m +Xk+m+1(ik+m+1=ik+m+27 ))

and so X,(i,i5,...)=1.
Conversely, assume that there exists »= 1 such that i, ;=j, ,, 1=n<r, and
Iy +r— 1 <Ji., Then, by (2), we have

Xl Bt 15 ---)Zlck,r(ik, URTPTY TS FSNNIIET o AN ( A SRR )
=X, Uk 10 oodi e 1o ke T 1<,
and the proof is complete, g.e.d.

Theorem 1. We have
W,:kul {(ila iZa )E n In: (ik’ ik+15 )EAk} (11)
Z nz1

Proof. Let (iy,i,,..)eW' If X(i;,i,,...)=1, then (i,,i,,...) belongs to the right-
hand side of (11) by Lemmal. Whereas, in case X(i,,i,,...)<l, choose k=
min{n: x(i;,i,,...)=X,(i,...,1,)}. Then, by making use of (2), we see that

B4 Xy, (s iy 0 )<T, 1=nzk.
Consequently, by the strict monotony of f, on [0, T)), 1 £n <k, and the equation
lck(ilﬁ"'9ik-17ik+xk+1(ik+1=ik+2:"'))zlck(ila"'aikal’ik+1)ﬂ

it follows that X, , (i, 1.4, 5, ...)=1. Therefore, (i,,i,,...) belongs to the right-
hand side of (11) on account of Lemma 1.

Conversely, let (i,,i,,...) belong to the right-hand side of (11). Then, by
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Lemma 1, there exists k=1 such that X,(i,,i,,,,...)=1. If k=1, then X(i;,i,,...)
=X,(y,...,i)=1, nz1, while in case k>1, X(i,i5,...)=%X,_ (1, ..., 1_1) by (2).
Hence (i;,1,,...)e W', q.ed.

1.4. Notes. When a is injective, Corollary 2 and Theorem 1 give a complete
description of the set of realizable sequences of digits.

As for certain general algorithms, several authors acknowledge that the
problem of characterizing the realizable sequences of digits is important but still
open. In connection with this, see Problem 2 in [3], p.128, and [11], p.3.
Besides our present contribution, this problem was solved in a few special cases
only. Namely, Parry [8] specified the set of realizable sequences of digits in
f-expansions, and Spataru [14] characterized the same set in the more general
case of f-expansions. A detailed description of this set with respect to
(@, f)-expansions is also given in [13].

2. Stochastic Independence of the Digits

2.1. Throughout the rests of this paper, we work with a fixed sequence of
functions f,,n =1, such that the mapping a is injective. Then, Corollary 3 ensures
that the o-algebra generated by the digits a,,n>1, coincides with the ¢-algebra
# of Borel subsets of [0,1). Now, for each n=1, consider a probability
distribution p"=(p}),,; on I,. We next indicate necessary and sufficient con-
ditions under which there exists a probability 4 on # making the digits
independent random variables such that, for any n>1, the distribution of a,
under A is p". These conditions are based on the description of W' given in
Theorem 1.

Theorem 2. If

[Tp=1=0, kx1, and (H p’}:,;"l) Yoopttm=0, k=1, m>1, (12)
n=1

nz1l > i m+ 1

then there exists a probability /. on % making the a, independent random variables
with

Ma,=i)=p", iel, nxl. (13)

Conversely, if A is a probability on # under which the digits a, are independent
and distributed according to (13) for some p", n= 1, then (12) holds.

Proof. We present a construction of 4 under (12) which is adequate for our
further purposes. Let ([] I,,#,P) be the product probability space formed

nz1
from the probability spaces (I, #(I,),p"), n=1. Then, on account of (11) and (12),
it follows that P(W)=1. Denote £} the o-algebra of subsets of W that belong to
A, and let Py, be the restriction of P to . Since, by Corollary 2, a maps [0, 1)
onto W, there exists a unique probability 2 on @~ !(#%) such that La~*=P,, on
Ay . Further, as
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a,=m,ca, nx1, (14)
where, for each nel, n, stands for the projection of [] I, onto I,, we see that
nz1
a Y Ay)=2, and
(Aa~H)(A)=P(4), Aex. (15)

Now, the independence of a, under 4 follows, on account of (14) and (15), from
the independence of =, under P. Finally, (13) holds by (14) and (15).

Conversely, if 4 is as stated in the second part of the theorem, then the left-
hand sides of (12) always represent the probability of appropriate empty sets,
and the theorem is proved, q.e.d.

2.2. Notes. The cumulative distribution function F(x)= ([0, x)) is given by

m— 1
Flx)= Y] (H p:"(x))s;",,,(x,, xe(0, 1), (16)

mz1 ‘\n=1

where sj=1— p, iel,, nz 1. Indeed, by making use of Corollary3 and the
Iz

independence of a, under 4, we have (with x,=0)

F(x)=lim A([0, x,(a,(x), ..., a,(x)))

r

= lim Z Al (@, (x),...,a,_(x), x.(@(x),....a,_{(x),a,(x))

¥—oo m=

= Ma,=a,x),1=n<m—1,a,<a,(x)

m=1

m— 1
= 3 (11 #h) ¥iir 3012

mz1 \n=1

Interestingly enough, if 4 is purely non-atomic, and A1m, where m denotes the
Lebesgue measure on %, then (16) may provide examples of continuous,
increasing, singular functions. (For f,=f, nz1, it is shown in [14] that F is
increasing if and only if all p} are positive.) For instance, in case 7,=2, n=1,
and f(t)=t/2, 0=t=<2, nzl, Salem [10] derived the F in (16), by geo-
metrical arguments, under the assumption p!>0, i=0,1, n=1, and

m
> (H max p?) <00, Among Salem’s functions one finds the first directly
m21 \=1i=0,1

constructed, continuous, strictly monotonic, singular functions.

3. Properties of the Probability i

3.1. In this section we present some properties of a given, but otherwise
arbitrary, probability 4 on # which makes the a, independent and distributed
according to (13). Except for the “only if” part of Theorem5 below, these
properties are consequences of the zero-one law for independent random
variables. First, we consider the following easy result.
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Theorem 3. A is either purely atomic or purely non-atomic; A is purely non-atomic

if and only if [] maxp}=0.

nz1 ieln

Proof. If A is not purely non-atomic, then there exists xe[0,1) such that
A({x})>0. Therefore, by the zero-one law, A(liminf(a,=a,(x)))=1. As liminf(a,
=a,(x)) is a countable set of points in [0, 1), we see that A is purely atomic. The
second assertion of the theorem follows from the equation

/’{({X})= Ul pzn(x)’ XG[O, 1)’

thus completing the proof, q.e.d.

Now, we investigate the behaviour of 4 w.rt. m. For any k=1 and il

e

n>k nz1

Til,...,ik(ik+1ﬂik+2= )=y, oo b B 10 ey 25 eh (ik+1,ik+2, ...)E H I,
n>k

Whatever B< [] I, set

n=1

Bkz(nk+17nk+2="')~l( U sz_.l“,ik(B))’ k%l

i1el1, ..., ixely
The next three lemmas are needed for the proof of Theorem4 below.

Lemma 2. If Bc W and, for some k=1, a(fi . 1,fi 42, ..-;") IS injective, then
a~'(By=ry H(r(a” 1(B))). 17
Proof. We first verify that

a fervferzs U T L(B)

itelts..., irely

=rfi, - fisa Sy, fas--s B)) (18)

Let x belong to the left-hand side of (18). Then there exist i,el,, 1 £n=<k, and
x'ea~(f}, f5,...; B) such that

(ila [RRE] ikaal(fk-}—l; X), a2(j}c+1’f}c+2; X), "'):a(f19f27 9 xl)' (19)

By making use of (5) and (19), the injectivity of a(f, 1, fi4 2, .--;-) implies that x
=r(f1,.s fi; X), and so xerdfi,..., fisa fi, 2.3 B). The converse in-
clusion in (18) can be proved in a similar manner. Now, on account of (5), we get

a_l(flafZN'-;Bk)
=rk_1(f13""fk;a_l(ﬁc+19ﬁc+2a"'; U E;.l..,ik(B)))a

igells .. ixelk

and (18) terminates the proof, q.e.d.
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Lemma 3. There exists an increasing sequence of natural numbers k,,n=1, such
that a(fy ,1» fr,42---3-) is injective for each n=1.

Proof. We choose the sequence k,nz=l, as follows. Set k;
=min{k: X,(0,...,0)<1}, and put k, , =min{k: X,(0,...,00<%, (0,...,0)}, n= 1.
Then, whatever n> 1, we have

X 10, 0)< (1), 1=r<k,, f ()<L (20)

By making use of (20), and by repeated application of (4), we obtain
"o, (155 fis 45,0, ..., 0)

=1, (/1. 1, [0,%.0,...,00)=[0,1), nz=L (21)
Now, assume that
a(fkn+17fkn+27 s J’1)=a(fkn+1’fkn+2a s Va) (22)

In view of (21), y;=r, (f1,-.-. &, X;), Where x;€4, (0,...,0), i=1,2. Substituting
y; in (22), and usmg (5), we see that

(akn+1(x1)’ ak,.+2(x1)’ "'):(akn+1(x2)= akn+2(x2), v h
and thus a(x;)=a(x,). Since a is injective, we get x; =x,,and so y, =y,, q.e.d.

Lemma 4. Assume that, for each n21, f,({t<T,: f/(t)=00}) and {t<T,: f,(t}=0}
are sets of Lebesgue measure zero. Then

m(ri (A)=0, m(r(4)=0, kzl,
whenever A€ is such that m(A)=0.

Proof. As f, is increasing on [0, 7,), it follows by a standard argument (use, e.g.,
Exercise 17.25 in [4], p.269) that m(f,({t<T,: f/(t)=00}))=0 if and only if
m(f,(C))=0 for any Borel set C of Lebesgue measure zero, and {t<T,: f,/(t)=0}
is of Lebesgue measure zero if and only if f,~ *(4) has Lebesgue measure zero for
any Ae# with m(A)=0. Further, the lemma is established by induction, using
(4) and the following equations, valid for any Ae4,

D A= Uf(({l}+A)ﬂ[0 1)), nzxl,
and
fnaA)—U Lo HANLLG, LG+H)) = (). =1, ged.

Theorem 4. Assume that, whatever n=1, f,({t<T,: f/(t)=00}) and {t<T,.f(¢)
=0} have Lebesgue measure zero. Then either ALm or A <m.

Proof. By (15) and the equality a= (") =43, it suffices to show that P is either

singular or absolutely continuous w.r.t. the probability ma~* on . If it is not

true that P<ma~!, then there exists BeX#, such that (ma=!)(B)=0 and

P(B)> 0. Since, for any k=1, B, belongs to the o-algebra generated by =, n >k,

and BcB, B, ,, we see that Bu(( ) B, ) is a set of the tail o-algebra of the
nz1
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process m,, n=1, where k,,n=1, is the sequence which have been chosen in
Lemma 3. Hence, P(BU( | B, ))=1. On the other hand, by virtue of Lemmas 2

nz1

and 4, we may write
(ma~ ') (Bu( L)l B, )<(ma~")(B)+ ), m(a~'(B))

=3, mlr ry, (a= ' (B)) =0.

nz1
Therefore, it follows that P1ma~*, q.e.d.

We now give a simple necessary and sufficient condition for any probability
u, which makes the a, independent random variables, to be such that either u.l 2
or u<A. To do this, we use the following lemma.

Lemma 5. Whatever k=1, we have j,_,>0 for infinitely many n.

Proof. Assume, on the contrary, that there exist k=1 and r =1 such that j, ,=0,
n>r. Then we have j, ,<co, 1<n=r, and

XUk 155k 0,0, ) =1

Therefore, by (2) and the inequality x; ,(j; 1,.-.>Ji, ) <1, it follows that
X, 1,0,0,...)>0. In view of (2), this leads to x(0,0,...)>0, thus contradicting the
injectivity of @, q.e.d.

Theorem 5. The cumulative distribution function F(x)=A([0,x)), x€(0, 1), is in-
creasing if and only if either u1LA or u< A1 for any probability u on # which makes
the a, independent.

Proof. Assume that F is increasing, and for each nx=1, denote q"=(q});,, the
distribution of a, under u. Then q"<p" for all n=1. Indeed, whenever g}>0,
choose i el,,...,i, ,€l,_, such that

0<q111 q:‘,:_% q:l:u’(An(ll3 >ln,131))

Hence 4,(i,,...,i,_1,0) =%, and the strict monotony of F implies that

Piy o DL P = A (is s b1, ) >0,

Consequently, p?>0. Now, let Q be the product probability on % formed from
q", n=1. (Hence, (ua—*)(4)=Q(A), Ac A ") Then, by a theorem of Kakutani (see,
e.g., [4], p.453), it follows that either QLP or Q <P. Therefore, either u 1A or
u< . (By the same theorem, the former case holds if and only if

H (z (P! q:')W):o.)

Conversely, assume that F is not increasing on (0, 1). Then we shall construct
a probability 4 on # which makes the g, independent, and neither pl4 nor
u<A. As F is not increasing, the set {(n,i): n21, iel,, p} =0} is not empty. Two
cases occur: either (i) there exist m=1 and lel,, such that p{'=0and ) p">0, or

i>l
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else (ii) pf,>0 for all n>1. If (i) holds, then choose i,el,, 1 £n<m, such that
pi >0, 1<n<m, and i, >l Further, for each n=1, define a probability distribu-
tion q" on I, as follows. Set g} =1, 1<n<m, g’ =q;"=1/2, and put q"=p" for
n>m. Since the sequence p”, n 2 1, satisfies (12), notice that, wheneverr=1, ..., m, we
cannot have j, ,=i,., (, 1<n<m—r, andj, ,_,. <l Consequently, (12) is also
satisfied by q,, n=1. On the other hand, if (ii) holds, then choose m=1, i el,,
1=n<m, and lel,, such that p} >0, 1 <n<m, py'=0and 4,(, ...,i,_;,)+@ By
virtue of Lemma 5, we can take s,=min{r2=1:j,_,.,,,, >0}, 1=n=m. Let s
= max s,. For n=1, define a probability distribution q" on I,. Namely, let g

1<n=m
=1, 1<n<m, qr =qr'=1/2, qo=1, m<n=m+s, and set q"=p" for n>m+s. As
A it sim 1, )EW we see that, for any r=1,...,m, we cannot have j, ,=i, ., 1,
1<n<m-r, and j,, .., <l But, if j, ,=i, ., 4, 1Sn<m—r, and j, ,_, . =!
for some re{l,...,m}, then there is k, m—r+1<kEm+s—r+1, such that
0<}, . Therefore, since p",n=1, satisfies (12), we make sure the sequence q°,
n=1, does so too. In both cases, denote Q as the product probability on %
formed from q", n=1. Then, according to Theorem 3, the probability y on 4,
which is associated with Q by (ua~')(4)=Q(4), AeX’, makes the a, inde-

m

pendent random variables. Now, notice that on [] I, the product probability
n=1
formed from q", 1 £n<m, is neither singular nor absolutely continuous w.r.t. the

product probability formed from p", 1 <n<m. Hence, since on [] I, the product
n>m

probability formed from ¢, n>m, is absolutely continuous w.r.t. the product
probability formed from p", n>m, it follows that neither QLP nor Q<P.
Consequently, neither u1 A nor u<4, q.ed.

3.2. Notes. Theorem 3 extends similar results due to Chatterji [1] and [2], and to
Spétaru [14]. However, these results are not specific within the framework of
number expansion theory, where they appeared, but originate from the general
fact that the restriction of a probability to the o-algebra generated by a
countable family of discrete random variables is either purely atomic or purely
non-atomic whenever the family variables are independent under this probabili-
ty.

From Lemma 3 it follows actually that a(f, ., f,.,,..-;-) is injective for all
nz1. Indeed, if a(f, ., fis2,..-3-) is injective, then a(fy, fi (> feizr---3) IS In-
jective by (5), and by the injectivity of r (f,;-) on each of the sets (a,(f;-)=1),
iel,.

Theorem 4 is illuminating for revealing the general condition which guaran-
tees the validity of certain very special results. Namely, in the D-adic expansion
case, i.e. when T,=D >1, nz1, where D is integral, and f,(tf)=t/D, 0=t <D, nz=1,
Chatterji [1] proved that either Alm or A<m. (Without being aware of
Chatterji’s work, Marsaglia [7] obtained the same result,but by using a different
approach.) Chatterji [2] also showed that for the continued fraction expansion
case, ie. for f{t)=1/t, t=1, n=1, any probability making the digits independent
random variables is singular w.r.t. the Lebesgue measure. Along the same line,
in the Liiroth expansion case, i.e. when, for each n=1, the graph of f, is the
polygon joining in order the points (i, 1/i), i=1, Jakubec [5] proved that any
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probability making the digits independent is either singular or absolutely
continuous w.r.t. the Lebesgue measure. It should be noted that for these special
cases, the condition of Theorem4, or the corresponding one for decreasing? f,,
n=1, is trivially verified since the sets of Lebesgue measure thereof are in fact
empty sets. Theorem4 provides us with a large class of (f}, f,,...)-expansions
producing stochastically independent digits only under “pure” probability mea-
sures. This raises the question as to whether there exist (f}, f5,...)-expansions
whose digits may be independent under a probability which is neither singular
nor absolutely continuous w.r.t. the Lebesgue measure. Theorem?2 in [12]
answers this question affirmatively.

By the first argument in the proof of Lemma4, and by Theorem 18.25 in [4],
p. 288, it follows that the condition of Theorem 4 is equivalent to the assumption
that, whatever n>1, f, is absolutely continuous, and f,~! is absolutely con-
tinuous on each [0,c], c<1. In the next section we shall see that this condition
is only sufficient for the conclusion of Theorem4 to hold.

4. Equivalent (f, f,,...)-expansions

4.1. We say that f,n=1, is equivalent to f,, n=1, and write

(flﬂfz"")"’(fl,’lea"-)a lf a(flifZa-'-;x)za(f{afév"';x)

for all xe[0,1). Note that any probability 4 on # which makes the g, inde-
pendent and distributed according to (13) does so as well w.r.t. the digits a,. In
what follows, we find the necessary and sufficient condition under which func-
tion f exists such that (f, f,,...)~(f,f, ...), ie. the (f}, f;, ...)-expansion of
x is equivalent to the f-expansion of x for any x€[0, 1). The way we construct f
enables us to give an example showing that the condition in Theorem 4 is
not necessary for the conclusion to hold.

Theorem 6. (fy, f5,...)~(f, ,...) for some function f if and only if j, ,=ji 1 m
n=1, for each k= 1.

Proof. Suppose that there exists a function f on [0, o) such that f is increasing
on [0,T), where 0<T=c0, f maps [0,7) onto [0,1), f(t)=1 for t>T, and
(fi.f2, .- )~(f.f,...). For the constant sequence f.f,..., let j,=j, ,=j, ,=...,
nzl. We shall prove that j, ,=j,, n=1, for each kx=1. First, since
a(fi,fs,.--»;-) is assumed injective, Corollary 2 implies that

w.

fl,fzs--.:W

Tt (23)

Now, if T=oco, then j,=o0, n21, and so W, , coincides with the set of all
sequences of non-negative integers. Consequently, T, = o0, k= 1, and hence ji, , = oo,
nz1, for any k= 1. If T<oo, then 1 £j, <T, and thus (0, ...,0,/,,0,0,...)eW, .,
where here, and in the following similar sequences, j, (or j, ;) is at the k-position. By

2 We have remarked in the Introduction that each result of this paper has a correspondent when
appropriate decreasing f,, n=1, are considered
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(23) we get j, <T;, k=1, whence 1 £j, <j, ,, k= 1. Further, using also Lemma 5, we
see that

(O, ---a05jk,190>0: "')EWfl,fz,...a

and by (23) we find that j, ; <j;, k= 1. Therefore, j, | =j, for each k= 1. This implies
also that T, < oo, k= 1. Then, whatever k>1 and s= 1, we see that (x) either j,_ ,
=j.ssn» =1, or there exists r=1 such that j,. . ,=j  ,,, 1Sn<r, and
Jkvs.r s +r Assume now that j, =j,, 1Sn<m. From (11), (x) and LemmaJ, it
follows that

O, .0 1T 0.0, )W,

By virtue of (23) and (5), this amounts to j; ,, .1 <j, .. The converse inequality
Jms1 SJk.me1 1s obtained similarly. Hence, the “only if” implication is established
by induction.

Conversely, assume that there exist j,, n=1, such that j, ,=j,, n=1, for each
k= 1. Then the following alternative holds: either (i) j, = o0, and so T, =00, k=1, or
(i1)j, < o0, and thus T, < co0, k= 1. Now, we assume that (ii) occurs, and we construct
a function f'such that (f,, f5,...)~(f. f, ...). (The case when (i) occurs is similar and
even simpler, so that we leave it to the reader to work out the details of the proof.) In
this case, it will be helpful to keep in mind that, whatever k=1, we have j, < T, £j,
+1, and hence I,={0,1,...,j,} =1 (say). Let T=j, +x(j,,j3,...). Notice that, in
view of Lemma 5, j, <T<j, + 1. Define a function f from [0, T) into [0, 1] by

Sli+x)=x(i,a,(x), a,(x),...),

where iel, xe[0,1), and i+x<T. We next prove that f is increasing. Consider
0Zx<x'<1l and iel such that i+x<T, i+x'<T Then choose m
=min{n: a,(x)=*a,(x)}. Since a,(x)<a,(x) and, by (11) and Corollary2,
(i,a,(x),a,(x),...)e W, we may write

SE+x)Ex(0,a.(x), ay(x),...) <X, (G, a,(x), ..., a,(X)
=Xy i1 (lag(x), -0, (X)) S S+ X).

Further, a similar argument shows that, for xe[0, 1) and i <j,, f(i+x)<f(i+ 1), and
so f being increasing is established. Our next step is to prove that f maps [0, T) onto
[0,1). Let D denote the set of all points x,(a;(x),...,a,(x)), xe[0,1), n=1. Then

Dcf(I+D)n[0, T).? (24)
Indeed, if x,(i, ...,i,)eD, then, in view of Corollary2, (i,...,7,,0,0,...)e W, and

thus (i,,...,1,,0,0,...)eW on account of (11). By Corollary2, this amounts to
Xn_ 1(ig,...,i)eD. Since

Xn(ilz"'ain):f(il +£n—1(i2""7in)) (25)

(with x,=0) provided that i, +x, ,;(i,,...,i,)<T, to complete the proof of (24) it
suffices to show that

In fact, the two sets here are equal, but we only need this inclusion
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X, 1Uzsesd) <X(zj3s--)y  n>1
Assume, on the contrary, that there is m>1 such that

Xy 102 s dd =20 2,35 ) (26)
Taking into account (*), we see that

Jot Xwmelns s osdmd <Thoy,  1<ns=m, 27)

(with x,, ,=0). From (1), (26) and (27), it follows that x,,(j,,; 1>/ms2s ---) =0, and
hence j, =0, n>m. But this contradicts Lemma 5, and therefore (24) is proved. Now,
as f is increasing and, by virtue of (6), D is dense in [0, 1), (24) implies that f maps
[0, T) onto [0,1). Finally, let us show that

a(fis fos -3 x)=al(ff,...;x), xe[0,1). (28)

In the sequel, a prime attached to a term will indicate that the term is considered
w.r.t. the constant sequence of functions f; f,.... First, by making use of (25), it
follows inductively that x (i, ..., i) =x,(@,, ..., i,) whenever x,(i,, ..., 1,)e D. Partic-
ularly, we have

X5 ad) =X 15 0d) <1, nZL
Consequently, to get (28) we need only prove that

XU i)=1, nzl (29)
Clearly, X' (j,)=1. Now assume that

XU sdp=1 1=n=m. (30)

On account of (x), we see that either (a) there is sé{l, ...,m} such that j,=j._ .,
1€nsm—s+1, or else (b) X,z .crJmer1+1eD. If (a) holds, then
X r1U1s oo sJme1) =1 by (30). If (b) occurs, then

jl +>E;n(.]29 ""jm—i—l):jl—i_)zm(jZa "'7jm+1)§’1:

and again X, ((j,....jm+1)= 1. Hence, (29) is obtained by induction, q.e.d.
Part i) of the following corollary is immediate; part ii) necessitates the use of (5).

Corollary 4. 1) If i, ,=ji, 1., 21, for each k>m, then
(GEFRTENY Sy ST APT Ld ¥ SERERNY A A A

Jor some function f.
i) If r,([0,1)=[0,1) and

(oo os S Smato Smrzr - 3~ U1s s fs 5 1 020)

for some f, then j, ,=j, i ., n21, for all k>m.
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Example 1. Let D>1 be integral, and assume f, g, s are increasing functions on
[0, D) mapping [0,D) onto [0,1), where f(t)=¢/D, 0Lt <D, and g(i+x)=(i/D)
+h~'(x)/D?, i=0,...,D—1, xe[0,1). Further, consider M a subset of natural
numbers such that n+ 1¢M if ne M. Define a sequence of functions f,, n=1. by f,
=g, fu.1=h, neM, and f,=f for the other indices. Then (f}, f,,...)~(f, f,...).
Indeed, whatever k=1 and i,€{0,...,D—1}, 1<n=<k, we have

k
Xe(igsoos )= Z i/Dt=x.(i,,..., 1)
n=1

Now, by any of our Theorems 4 and 5, or by Corollary 1 in [1], it follows that any
probability 4 which makes the a, independent random variables is such that either
ALlm or A<m, and hence any probability 4 making the a, independent is so too.
Since we can choose either g or & not to be absolutely continuous, we see that the
condition of Theorem 4 is not necessary for the conclusion of it to hold. However,
for f,=f,n= 1, whether or not this condition is necessary remains an open problem.

4.2. Notes. The function f arising in Theorem 6 and Corollary 4 is uniquely
determined. Actually, it can be proved if a(f,f,...) is injective, then each of

(fif..)~(f"f"...) and

(fl’"'!fm’f;f;"')~(f17""fm’f,=f/!"')

implies that f=f".

a(fy, f,...;*) being injective and j, ,=j; ., ., n=1, for each k= 1,do not imply
that T,=T,.,, k=1, as it might seem likely. To show this, let a>0 satisfy the
equation a+0o?=1, and consider a sequence of functions f,, n=1, such that f,(t)
=at,0=t<l+an>2,T,=1+0a f,(1)*a T, =14 f,(1),and (7) holds for f, and f,
with some finite y, and y,. Then a(f}, f,, ...;-) is injective, and we see that j, ,,_,
=1, j;.,,=0,n=1 for any k=1. Nevertheless, Ty +T, =1+, k> 1.

If one removes the assumption r,([0,1))=[0,1), then the conclusion of
Corollary 4 ii) does not generally hold. This is shown by the following example.
Choose a sequence f,, n=>1, such that f,(t)=1t/2, 0t <2, n>2, T,>2, f,(t)=t/2,
0=t<1, and f,(t)=2¢, 0=t <1/2. Further, take f(t)=1/2, 0<t<2. Then

r([0,)=[0,1/2),  (fi, fo. fas - )~ £ fso0),
butj,  >j =1, k>2.
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