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Summary. Let P be the transition operator for a discrete time Markov chain 
on a space S. The object of the paper is to study the class of random measures 
on S which have the property that M P = M  in distribution. These will be 
called random invariant measures for P. In particular, it is shown that MP 
= M  in distribution implies M P = M  a.s. for various classes of chains, 
including aperiodic Harris recurrent chains and aperiodic irreducible random 
walks. Some of this is done by exploiting the relationship between random 
invariant measures and entrance laws. These results are then applied to study 
the invariant probability measures for particle systems in which particles 
move independently in discrete time according to P. Finally, it is conjectured 
that every Markov chain which has a random invariant measure also has a 
deterministic invariant measure. 

1. Introduction 

One of the main problems in the theory of interacting particle systems is to 
determine the structure of the set of invariant measures for the process. The 
solution to this problem is now well understood in certain contexts, but in most 
cases, very little is known about it. [8] contains a survey of results and open 
problems in this area, and a list of references. One interesting example of a 
process for which little is known concerning the set of invariant measures is 
Spitzer's zero range interaction process 1-12]. Spitzer gives a class of measures 
which are invariant for it, but it is not known in general whether these exhaust 
the class of all invariant measures. 

Since many interacting particle systems are obtained by superimposing some 
type of interaction on an independent particle system, it seems reasonable to 
study the invariant measures for the basic independent system without in- 
teractions, even though the techniques will of course not carry over to the 
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interacting case. The fact that independent systems often have invariant mea- 
sures which are Poisson point processes has been known for a long time [4]. We 
are interested in finding all the invariant measures for the system, and in 
particular, in determining conditions under which all extremal invariant mea- 
sures are Poisson. It turns out that under a weak assumption, this problem 
reduces quickly to a question involving only the underlying one particle Markov 
chain, and most of this paper will be devoted to that question. I am grateful to 
Claude Kipnis for pointing out that even in the independent case, the structure 
of the set of invariant measures for an infinite particle system had not been 
adequately treated. 

Let S be a locally compact, second countable Hausdorff space, and let 
P(x, dy) be the transition probabilities for a discrete time Markov chain on S. 
Thus we assume that for each x~S, P(x, .) is a Borel probability measure on S, 
and that for each Borel set E cS ,  P( . ,  E) is a Borel measurable function of x. Let 
{t/,} be the discrete time particle system on S determined by the requirement 
that particles move independently on S at integer times according to the 
transition law P(x, dy). t/n is regarded as a random integer valued measure on S, 
so we let t/,(E) denote the number of particles in E at time n. Let d / /be  the set of 
integer valued measures t / on  S which are finite on compact subsets of S. ~ is 
endowed with the smallest a-algebra with respect to which t/(A) is a measurable 
function of t/ for each Borel set A c S .  This is the same as the Borel a-algebra 
corresponding to the vague topology on J/l. Of course, t/0~d// does not nec- 
essarily imply that t / , e ~  a.s. for each n. Still, we will say that a probability 
measure # on Jr invariant for {t/,} provided that 

#(A) = S P'l-t/1 cA] #(d~) 

for all measurable subsets A of J / .  
If m is a measure on S which is finite on compact sets, let #m be the Poisson 

probability measure on d/t with mean m, which is determined by 

#,,{t/(Ei)=k i for l _< i<n}=  l~ e-m(e~ 
i=1 ki! 

for disjoint sets E i with m(Ei)< oo for each i. Unless otherwise stated, M will 
always denote a random measure on S which satisfies 

M(C)<oo a.s. for each compact C c S .  (1.1) 

For such an M, define the mixed Poisson probability measure #M on Jr 
governed by M by 

#M(A) = ~ #re(A) P{ M ~ din}. 

Of course, gM depends only on the distribution of M. 
In Section 4, the following result will be proved, together with applications 

obtained by combining it with the theorems in Sections 2 and 3. Let Pn(x, dy) be 
the n'th iterate of P(x, dy), and let J be the set of all measures m on S which are 
finite on compact sets and satisfy mP=m.  
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Theorem 1.2. (a) #M is invariant for {q,} if and only if M P = M  in distribution. 
Suppose now that for every compact set C cS ,  

lira sup P"(x, C)= 0. (1.3) 
n ~  oD x E S  

Then 

(b) every invariant probability measure on ~g for {q,} is of the form #M for 
some M, and 

(c) the extremal invariant probability measures on all/for {t/,} are exactly 
{#m: mE J }  if and only if M P = M  in distribution implies M P = M  a.s. 

Parts (b) and (c) of the above theorem are false without assumption (1.3). 
They fail, for example, for any positive recurrent chain, since then there are 
extremal invariant probability measures for {q,} which concentrate on {q:t/(S) 
= k}. Another example is given by the uniform motion process on the integers, 
since then the pointmass on the configuration which has one particle on each 
site is invariant. 

It should be noticed that Theorem 1.2 often allows one to determine the 
invariant measures for an independent particle system even if the motion of the 
particles is in continuous time and is non-Markovian. To see this, suppose that 
{XX(t), x~S} is a collection of stochastic processes on S with Xx(O)=x, and let t/t 
be the corresponding independent particle system. Then one can apply the 
above theorem to the discrete time Markovian system with transition probabili- 
ties P(x, dy)=P[XX(t)~dy] for some fixed t >0. 

Theorem 1.2 suggests the following problems for the Markov chain P, which 
are of interest even when condition (1.3) is not satisfied: 

(a) What are all the random measures M on S for which M P = M  in 
distribution? 

(b) Under what assumptions on P is it the case that MP = M  in distribution 
implies M P = M  a.s., i.e., M 6 J  a.s.? 

In Section 2, we will prove that for aperiodic Harris recurrent chains, MP = M in 
distribution implies MP = M  a.s. In this case, P has a unique (up to constant 
multiples) o--finite invariant measure, so that the answers to (a) and (b) are 
complete. 

The transient case is more complex, and will be studied in Section 3. Only 
partial answers to these questions will be obtained. One of the interesting results 
is that there is a close relationship between the solutions to M P = M  in 
distribution and the entrance laws for P. An entrance law for P is a collection 
{~,, - oo < n <  oo} of measures on S such that Tc,(C) < oc for all compact sets C 
and ~z,P=~r,+ ~ for each n. As an example of this relationship, suppose P has an 
entrance law {~,} which satisfies 

~z,(C) < oo (1.4) 
n = - - o o  

for each compact set C, and let { IV. , -  o o < n <  oo} be any positive stationary 
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process with finite mean. Then M =  ~ We zt, is a solution of MP=M in 
distribution. To see this, write ,=-oo 

MP=~ Weu, P = ~  W,u,+ , = Z  W,-l u,, 
n tJ n 

which has the same distribution as M, since {W,} is stationary. If {W,} is an 
independent and identically distributed nonconstant sequence, for example, then 
M will not satisfy M P  = M  a.s. An irreducible, aperiodic chain for which there 
exists an entrance law satisfying (1.4) is given by: 

S=integers,  P(x,x+l)=l if x < 0 ,  P(x,x+l)=c~ if x>O,P(x,x-1)=l-a if 
x>__l, and P ( 0 , x ) = ( 1 - ~ ) 2  x if x < - 1 ,  where l < c ~ < l .  An entrance law which 
satisfies (1.4) is given by: ~ ,=po in tmass  on n for n__<0, and 7z,=~z0P" for n>0 .  
Similarly, if {~,} is an entrance law which satisfies 7r,,+e=Tr, for some d and all n, 

d 
a solution to M P  = M in distribution can be obtained by letting M = ~ rc k Wk, 

k = l  

where l/Vk>0 and the distribution of (W 1 . . . . .  We) is invariant under cyclic 
permutations. Many periodic chains have periodic entrance laws. 

A more complete relationship to entrance laws is given by the fact that there 
is a natural one-to-one correspondence between (the distribution of) solutions to 
M P  = M in distribution and (the distribution of) stationary processes of entrance 
laws. By a stationary process of entrance laws, we mean a sequence (/7,, 
- o o < n < o o }  of random measures on S which satisfies /7 , (C)<oo a.s. for 
compact  sets C c S, 

(a) I1,P=/7,+ 1 a.s. for each n, and 
(b) {/Tn, - oo < n < ~ } and {/7, + 1, - oo < n < oo } have the same distribution. 

Therefore, if one knows enough about the structure of the set of entrance laws, 
one can determine all the solutions to MP = M in distribution. For example, it 
will be proved in Section 3 that if every extremal entrance law is of the form 

~, = ?" rc o (1.5) 

for some 2>0 ,  then MP=M in distribution implies MP=M a.s. As an 
application, we will show that if S is an Abelian group and P is the transition 
law for an irreducible aperiodic random walk, then MP=M in distribution 
implies MP=M a.s. In Section4, this will be combined with Theorem 1.2 to 
show that in this case, the extremal invariant probability measures on • for 
{t/,} are exactly {/~,,: m~J} .  

In general, not much appears to be known about the structure of the set of 
entrance laws, except that when properly normalized, it is a Choquet simplex 
[5]. Cox [2] has studied entrance laws which satisfy rc,(S)= 1, and has given 
conditions under which there exist such entrance laws which are not stationary 
distributions. In our context, however, one must deal with infinite entrance laws 
as well. One interesting problem is to determine reasonable conditions on P 
under which all extremal entrance laws satisfy (1.5). Of course this is a natural 
extension of Cox's problem, since whenever {~n} is an entrance law which 
satisfies (1.5) and n.(S)< o% it follows that 2 =  1 and hence n. is a stationary 
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measure. A somewhat related question is whether it is possible for an extremal 
entrance law to satisfy both sup rcn(C ) = oe and sup ten(C)= oe for some compact  
C o S .  n>=o ~<_o 

Finally, we will state a specific unsolved problem relating to random 
invariant measures: 

Conjecture 1.6. I f  there exists a nonzero solution of M P = M  in distribution, then 
J contains a nonzero measure. 

Of course, if M P = M  in distribution and E M ( C ) <  ~ for all compact  sets C, 
then m = E M e J .  When M has infinite mean, however, the problem of using M 
to construct an element of J is open. An example which bears on this point is 
given in Section3. Of course, by part  (a) of Theorem 1.2, in order to prove 
Conjecture 1.6, it suffices to show that if {r/n} has a nontrivial invariant 
probabili ty measure on d//, then J contains a nonzero measure. 

2. Recurrent Chains 

Throughout  this section, we will assume that P is Harris recurrent. For  the 
definition and properties of Harris recurrent chains, see [11]. P has a unique (up 
to constant multiples) a-finite invariant measure, which will be denoted by m. In 
studying the random invariant measures for P, we will need to consider 
separately the cases in which M is singular with respect to m a.s. and in which M 
is absolutely continuous with respect to m a.s. We begin with the singular case. 

Lemma 2.1. Suppose M is a random measure on S such that M P - - M  in 
distribution and M is singular with respect to m a.s. Then M = 0  a.s. 

Proof. By iterating, MP" = M in distribution for all n > 1. This, together with the 
singularity of M, implies that M P  n is singular with respect to m a.s. for each 
n=>l. Therefore there is a subset f2 0 of the probability space on which M is 
defined such that O o has probabili ty one and M P  n is singular with respect to m 

for all n > l  and all co~f20. Since P is Harris recurrent, ~ Pn(x,A)=oo for all 
xES  if re(A)>0 (page 75 of [11]). Therefore ,=1 

MP"(A)=~M(dx)  ~ P " ( x , A ) = ~  (2.2) 
n = l  n = l  

for all A such that m(A)>O and all co such that M is not  the zero measure. 
Suppose now that M(S)>0  with positive probability, and choose co~f2 o so that 
M(S) > 0 for that co. For this co, MP" is singular with respect to m for all n > 1, so 
there exists a Borel set A so that MPn(A)=O for all n > l  and re(A)>0. This 
contradicts (2.2), so we conclude that M = 0 a.s. 

Lemma 2.3. Suppose M(co, dx) is a random measure on S. Then there exists a 
jointly measurable function F(co, x) and a random measure Ma(co, dx) on S such 
that 

M(CO, dx) = F(co, x) m(dx) + M 1 (co, dx) 

and Ml(co, dx) is singular with respect to m a.s. 
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Proof. The proof of Lemma5.3 of Chapter I of [11] can be used to obtain this 
result in case M(a~, S) is bounded in ~o. To extend this to the general case, note 
that by (1.1), there exists a strictly positive Borel function h on S for which Z(co) 
=~ h(x) M(co, dx)< oo a.s. Let 

S 

M,(c~,dx)=SM(to, dx) if n<=Z(w)<n+ 1 
otherwise. 

Then j'h(x)M,(to, dx)<=n+l, so that by the earlier case, there exist jointly 
S 

measurable functions F,(to, x) and random measures M~(co, dx) which are si- 
ngular with respect to m a.s. so that 

h(x) M,(to, dx) = F,(co, x) m(dx) + M~(a, dx). 

The required F and M 1 are then given by F(t0, x)= h-l(x)F,(co, x) and Ml(a~, dx) 
=h-l(x)Ma,(a),dx), where for each to, n is chosen so that n<=Z(a~)<n+l. 

The proof of the next lemma is most transparent in case S is countable, so 
we will carry it out under that assumption before treating the general case. We 
will say that MP =< M in distribution if there exists a random measure N so that 
M P + N = M  in distribution. For the definition and discussion of periodicities 
for Harris recurrent chains, the reader is referred to the first part of Chapter 6 of 
Ell]. 

Lemma 2.4. Suppose that P is aperiodic. I f  M is a random measure on S such that 
MP < M in distribution and M is absolutely continuous with respect to m a.s., then 
MP = M a.s. 

Proof. The countable case. We assume here that S is countable and P is an 
irreducible, aperiodic, recurrent Markov chain on S. Let q0 be a bounded, 
increasing, strictly concave continuous function on [0, oe). By Jensen's inequality 
and the fact that mP"=m, 

[MP"(y)] [M(x)] re(x) P"(x, y) (2.5) 

for every y~S and positive integer n. Since MP'(y)< M(y) in distribution and ~o 
is increasing, 

E [MPn(y)] [M(y)] 
=< tin(y) j 

Together with (2.5), this implies that Eq~ [M(y)_] Lm(y) J re(y) is an excessive measure for 

P". But P" is irreducible and recurrent, since P is irreducible, recurrent and 

[M(y)] is independent of y by Proposition2.10 of aperiodic. Therefore Eq~l_m(y) j 

Chapter 3 of [111, so equality holds a.s. in (2.5) since both sides have the same 
expected value. Since ~o is strictly concave, this implies that for each yeS, 
M(x)/m(x) is independent of x a.s. for all x .for which P"(x,y)>O. By the 
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aperiodicity and irreducibility of P, for any yeS, the sets {x: P"(x,y)>O for all 
n > N} increase to S. Hence M(x)/m(x) is independent of x a.s., which gives the 
desired result. 

Proof. The general case. Since raP=m, m(E)=0 implies that P(x,E)=O for a.e. x 
with respect to m. Therefore 

7<m  implies 7P<rn, (2.6) 

and hence MP" is absolutely continuous with respect to m a.s. By Lemma2.3, 
there exist jointly measurable functions F,(co, x) such that MP"(co, dx) 
=F,(co, x)m(dx) a.s. We will usually suppress the dependence of these quantities 
on co. By the definition of MP", for each Borel set A c S, 

F,(x) m(dx) = ~ Fo(x ) m(dx) P"(x, A) a.s., (2.7) 
A 

where the exceptional set does not depend on A. For fixed u>0,  define (pl(t) 
= t, q~z(t)=u, and ~o(t)=min{cpl(t), ~o2(t)}. Note that q) is bounded, increasing, 
and concave on [0, oc). Given any Borel set A cS  for which re(A)< 0% define 
random sets A~={yeA:F,(y)<u} and AZ={yeA'F,(y)>u}. By (2.7) and mP 
=m, since ~01 and (P2 are linear, 

~. ~o i [F.(y)] m(dy) - -  ~ ~o i [ F o ( x ) ]  m(dx) P"(x, Ai.) 

for each i=  1, 2. Therefore since A is the disjoint union of An* and A#, 

~o [f , (y)]  m(dy) - S ~o [Fo(x)] m(dx) P"(x, A) 
A 

2 

= Y~ S {~o, [Fo(X)] - q, [F0(x)] } m(dx) P"(x, AI,)_-> 0. (2.8) 
i = 1  

Since MP"< M in distribution and (p is increasing, 

(p [F,(y)] m(dy) < ~ (p [Fo(y)] m(dy) 
A A 

in distribution, so that ~Ecp[F,(y)] m(dy) < ~ E~o[Fo(y)] m(dy). By taking expect- 
A A 

ed values in (2.8), it then follows that the measure Ecp[Fo(y)] m(dy) is excessive 
for P". Since P is aperiodic, P" is Harris recurrent for each n > 1. Therefore by 
Proposition2.10 of Chapter 3 of [1l] ,  Ecp[Fo(y)] is constant a.e. with respect to 
m. It follows that the expected value of the left side of (2.8) is zero, so 

I {~o,[Fo(X)] ~o[Fo(x) ] }  " ' - m(dx) P (x,A,) =0  a.s. 

for i=  1, 2. Therefore for a.e. co, and for each n > 1, 

Fo(x)<u for a.e. x with respect to m(dx)P"(x,A~), 

and (2.9) 

Fo(x)>u for a.e. x with respect to m(dx)P"(x, A2,). 
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Fix an co for which (2.9) holds for all n > 1 and all rational u. We will show that 
for such an co, Fo(x) is constant a.e. with respect to m. By Lemmal .1  and 
Proposition 1.2 of Chapter 6 of [11], there exists a set C c S  with 0 < re (C)<  oe 
such that for every x s S  there exists an n(x) so that n>n(x),  B c  C and re(B)>0 
imply P"(x, B)> 0. Suppose that Fo(x ) is not constant a.e. with respect to m. Then 
there is a rational u and a k > l  so that m{x:Fo(x)<u, n (x )<k}>O and 
m{x : Fo(x ) > u, n(x) __< k} > 0. Let B = {y~ C : Fk(y ) --__ u}. If re(B) > 0, then Pk(X, B) > 0 
for all x such that n(x)<k. Therefore by (2.9), Fo(x)<_u a.e. with respect to m on 
the set {x: n(x) <= k}, which is a contradiction. A similar contradiction is obtained 
if m ( C \ B ) > O .  Therefore with probability one, Fo(x ) is independent of x a.e. 
with respect to m, which proves the lemma. 

Theorem 2.10. Suppose that P is aperiodic. I f  M is a random measure on S such 
that M P  = M in distribution then M P  = M a.s. 

Proof. By Lemma 2.3, there exist random measures M 1 and M 2 so that M = M1 
+ M  2, M i is absolutely continuous with respect to m a.s., and M 2 is singular 
with respect to m a.s. Let M P  = ~ r  +2~/2 be the corresponding decomposition of 
MP. Then 

M I P + M 2 P = f 4 1  +.~r 2. (2.11) 

M 1 P ~ m a.s. by (2.6), so the uniqueness of the Lebesgue decomposition gives 

M 1 P < M  i a.s. (2.12) 

Since M P  = M in distribution, it follows that 

)f/1 = M i  in distribution. (2.13) 

Thus M 1P__<M 1 in distribution by (2.12). Lemma2.4  then gives M~ P = M  1 a.s. 
This, together with (2.12) and (2.13) imply that M I = ] ~  1 = M I P  a.s., so that 
M 2 P = M  2 by (2.11). Since M 2 =hT/2 in distribution, it follows from Lemma2.1 
that M 2 = 0  a.s. Thus M = M  1 a.s., and finally M P = M  a.s. 

The requirement  that M(C)< oe a.s. for compact  C c S in our definition of a 
random measure was made primarily because of the connection with inde- 
pendent particle systems which is studied in Section4. Since the invariant 
measure for a Harris recurrent chain is merely a-finite, and is not necessarily 
finite on compact sets, it would be more natural in this section to assume 
instead that there is a sequence S,'[S such that m(S,)< oe and M(S,)< oe a.s. for 
each n. The results of this section carry through under this assumption with.no 
change. The conclusion of Theorem 2.10 could then be restated in the following 
way: all solutions of M P = M  in distribution are given by M(dx)=Wm(dx) ,  
where W is a nonnegative random variable. 

3. Entrance Laws 

We will begin by exhibiting the relationship between the random invariant 
measures for P and the stationary processes of entrance laws which are defined 
in the introduction. 
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Lemma 3.1. I f  {H,, - oo < n <  oo} is a stationary process of entrance laws for P, 
then H o satisfies H o P = H o in distribution. Conversely, if M is a random measure 
on S which satisfies M P = M  in distribution, then there exists a stationary process 
of entrance laws {H,, - oo < n <  oo} such that M = H  o in distribution. 

Proof. The first statement is immediate. For  the converse, suppose that M P  = M 
in distribution, and let H , = M P "  for n>0 .  Then { H . , 0 < n <  oo} is a one sided 
stationary process of entrance laws. The space of all Radon measures on S with 
the topology of vague convergence is a Polish space (Theorem A7.7 of [6]), so 
the Kolmogorov  extension theorem (Corollary on page83 of [10]) may be 
applied to extend { H , , 0 < n <  ~ }  to a two sided stationary process. Since II ,  P 
= H , +  1 a.s. for n>0 ,  the same will be true for all n for the extended process, and 
therefore this is a stationary process of entrance laws. 

Suppose l,(x) is a strictly positive Borel function on Z x S, and let g be the 
collection of all entrance laws z = {re,} on S such that 

j l,(x) ~,(dx) = 1. (3.2) 

Then • is a convex set. Let Ce be the extreme points of ~. A general entrance 
_ 1+~2 for entrance laws {~1} and {~}  law 72 = {~z,} is called extremal if ~z,-~z, 

1 and 2 implies that ~, ~n are constant multiples of ~,. Of course 8e is the set of all 
extremal entrance laws which are in ~. Noting that an entrance law is simply a 
stationary measure for the associated space-time process on Z • S, Theorem 12.2 
of [5] can be applied to conclude that for each ~={~ ,}~r  there is a unique 
probabili ty measure v on C~ such that 

~, =~ ~, v(d~). (3.3) 

For  the next result, let {Ck} be a sequence of compact  sets which increase to S. 

Lemma 3.4. Assume that every extremal nonzero entrance law r~= {ft,} is of the 
form ~, = 2" no for some 2 = 2(if)> 0. Let Tc be any entrance law in g, and let v be 
the probability measure on ~ which corresponds to it via (3.3). 

(a) I f v{~:  2(~)> 1} >0,  then lira ~r,(Ck)= oV for some k. 
n ~ o o  

(b) I f  v{'ff:2(~)<l} >O, then lira rc,(Ck)=oo for some k. 
. ~  - -  ~ )  

Proof. The proofs of the two parts are similar, so we will prove only (a). Write 

-n(Ck)-- ~ ~,(ck) v(d~) 
= ~ [2(if)]" ~o(Ck) v(d~). (3.5) 

It  follows from (3.2) and the assumption of the lemma that ~o(S)>0 for all 7~g.  
Therefore lira v{r~: #o(Ck)>0} = 1, and hence under the assumption of (a), there 

k ~ o O  

is a k for which 

v {~: ;~(~) > 1, ~o(C~) > 0} > 0. 

Applying Fatou's  lemma to (3.5) gives lira ~z,(Ck) = oo for that k. 
n ~ o o  
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Theorem 3.6. Assume that every extremal nonzero entrance law n = {n,} is of the 
form n, = )L" n o for some )t---2(n) > 0. Then M P  = M in distribution implies that M P  
= M  a.s. 

Proof. Suppose that M is a random measure on S which satisfies M P  = M  in 
distribution. Without loss of generality, we may assume that M(S)> 0 a.s. Let 
{H,, - oo < n < oo} be the stationary process of entrance laws which is associated 
with M via Lemma 3.1. By (1.1), there is a strictly positive Borel function l(x) on 
S such that S l (x)M(dx)< oo a.s. Therefore S l (x)H,(dx)< oo a.s. for each n, so 

there is a positive sequence {c~,} for which W =  ~ c~, ~ l (x)H,(dx)< oo a.s. Let 
n = - o o  

l , (x)=%l(x),  and consider the corresponding set # of entrance laws. Then 
{ W - 1 I I , , - o o < n < o o } E #  a.s. Let v~ be the probability measure on #e which 
corresponds to it via (3.3). If C c S  is compact, {H,(C)} is a stationary sequence 
of finite random variables, and therefore the probability that lim 11,(C)= oo or 

that lira II,(C) = oo is zero. Hence by Lemma 3.4, for a.e. co, v~ concentrates on 

{TZS#e:2(n)=l}, which is the same as {rCege'rC . is independent of n}. Therefore 
H o = H  1 a.s., and finally M P - - M  a.s. since (11o,111) and (M, MP) have the same 
joint distributions. 

We will next verify the assumption of Theorem 3.6 in several cases. Ted Cox 
showed me the proof  of the first corollary. 

Corollary 3.7. Suppose that P = ~I + fiQ where c~ + B = 1, 0 < c~ < 1, and Q > O. Then 
M P = M  in distribution implies that M P = M  a.s. 

Proof. Suppose {n,} is a nonzero extremal entrance law for P. Then n,+ 1 =rc, P 
= e re, + # re, Q > c~ re,. Let {77,} be the extremal entrance law defined by 77, = n, + 1 
for each n. Then 77, > c~ n,, so that 77, = c~ re, + (77, - e n,) is a representation of 77, as 
a sum of two entrance laws. Since 77, is extremal, it follows that 77, =)~ n, for 
some 2 > 0 and all n. Thus nn = 2" no, and the result follows from Theorem 3.6. 

Corollary 3.8. Suppose S is an Abelian group, and P(x ,E)=P(O,E-x ) .  Assume 
that P(O, dy) is not supported by a translate of a proper closed subgroup of S. Then 
M P  = M in distribution implies M P  = M a.s. 

Proof. Since entrance laws for P are stationary measures for the associated 
space-time chain, and since the space-time chain is a random walk on Z x S, we 
will verify the assumption of Theorem 3.6 by applying Theorem 3 of [1]. In 
order to apply that theorem, it is necessary to verify that the transition measure 
for the space-time chain is not supported by a proper closed subgroup of Z x S. 
To do this, let T be a closed subgroup of Z x S which contains {1} x support 
P(O, dy). Put H = { x e S : ( n , x ) ~ T } .  Then H o is a closed subgroup of S, and 
Hi+~J. Let y be any point in H~. Then H , = { n y + x : x s H o }  for each nsZ ,  so 
that T={(n, n y + x ) : x s H o , n e Z } .  Therefore P(O, dy) is supported by {y 
+x, xeHo},  and hence I t o = S  by assumption, and T = Z  x S. Using the theorem 
of Choquet and Deny [1], it follows that if {n,} is a nonzero extremal entrance 
law for P, then n,(dx) =f(n ,  x) m(dx), where m is Haar  measure on S and f(n,  x) is 
a continuous function on Z x S which satisfies f ( k  + l, x + y) =f (k ,  x) f(l,  y). Put- 
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ting x = y  = 0 in this gives f(k, 0)= 2 k for some 2 > 0, and then putting k = y = 0 
gives f(1, x)=)oil(0, x). Therefore n, = 2"no, so Theorem 3.6 applies. 

As a final application of Theorem 3.6, consider the renewal chain on S 
= {0, 1, 2,...} with transition probabilities P(x, x + 1) = 1 - e (x )  and P(x, 0) =e(x), 
where 0 < e ( x ) < l .  If ~e (x )=oo ,  then the chain is recurrent, and the results of 

x 

Section 2 apply. Therefore, we will assume that ~ e(x) < oo. In this case the chain 
x 

is transient, and it is easy to check that it has no nonzero invariant measure. It is 
therefore clear that there is no nonzero random measure M on S such that MP 
-- M in distribution and EM(x) < oo for each x. It is not so obvious that there is 
no random invariant measure with infinite mean. However, we will deduce this 
from Theorem 3.6. Cox [2] has proved that this chain has no entrance laws {n,} 
for which ~ n , (x)< oo. We will need to consider infinite entrance laws as well. 

x 

Corollary 3.9. There is no nonzero random measure M such that M P = M  in 
distribution for the above chain. 

x - - 1  

Proof. Let u(0)=l  and u(x)= l-[ E l -e (y) ]  for x > l .  Note that u(x)+c>O since 
y = 0  

e(y) < oo. Let {n.} be any entrance law for P and define 7.(x)= n.(x)/u(x). Then 
Y 

7,+ l(x) =~/ , (x-  1) (3.10) 

for x > 1, and 

7'.+ 1(o) = ~ [u(x)- u(x + 1)] ~~ (3.11) 
x = O  

Let v(n)=7~(0). By (3.10), 7,(x)=v(n-x) for xzS  and n~Z. Therefore by (3.11), 

v(n + 1) = ~ [u(x) - u(x + 1)3 v(n -x) .  (3.12) 
x = O  

By the theorem of Choquet and Deny [1], the extremal positive solutions of 
(3,12) are of the form v(n)=e2" for some ~ > 0  and some 2 > 0  for which 

2= ~ [u(x)-u(x+l)]  2 -x. (3.13) 
x = 0  

There is at most one solution of (3.13), and if there is a solution, it is not 1, since 

~ [ u ( x ) - u ( x + l ) ]  = l - c < l .  Therefore either P has no entrance laws, or all 
x = 0  

entrance laws for P are of the form n,(x)=c~2"-Xu(x) where 2 is the solution to 
(3.13). By Theorem 3.6, MP =M in distribution implies that M P = M  a.s. Since P 
has no invariant measure, it follows that there is no nonzero solution of MP = M 
in distribution. 

The above example gives some additional evidence for Conjecture 1.6. A 
related observation, which indicates some of the difficulties involved in proving 
the conjecture is the following: Suppose in the above example, the e(x) are 
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chosen so that ~ [u(x) -u(x  + 1)]~= 1 for some cte(0, 1), and le t {W(x), xeS} be 
x = O  

independent and identically distributed positive random variables with the one- 
sided stable distribution of exponent c~. Then it is not hard to check that M(x) 
= u(x) W(x) satisfies MP(x)=  M(x) in distribution for each x, although of course 
the joint distributions are not the same. Thus while proving the conjecture in the 
trivial case when M has finite mean requires only MP(x)= M(x) in distribution 
for each x, proving it when M has infinite mean will require that the joint 
distributions be equal as well. 

One case in which the conjecture can be easily verified is that in which the 
random measure M satisfies M(S)< oo a.s. In this case, when M(dx) is con- 
ditioned on {M(S)< ~} for some large e, one obtains a new random invariant 
measure M for which M(S)<~ a.s. The mean is then finite, so one can let m 
= EM. Of course if the chain is irreducible, it then follows that it is positive 
recurrent since re(S) < 0% so the results of Section 2 apply to give all solutions of 
MP = M in distribution. 

We will next give a general sufficient condition under which all random 
invariant measures M for P with finite mean satisfy MP-= M a.s. Note that each 
element m of J can be thought of as an entrance law by letting n,(dx)= m(dx) for 
each n. However, it is not necessarily the case that every extremal element of J 
is an extremal entrance law. 

Theorem 3.14. Suppose that 

every extremal element of J is an extremal entrance law. (3.15) 

I f  M is a random measure on S such that EM(C)< oo for all compact C c S ,  and 
MP = M in distribution, then MP = M a.s. 

Proof. Assume that M ~ 0  a.s. Let { / 7 , , -  ~ < n <  oo} be the stationary process 
of entrance laws which is associated with M via Lemma3.1, and let m = E M  
=E/7, for each n. Writing the expectation as an integral over the probability 
space on which {/7,} is defined, exhibits m as an average of the entrance laws 
{/7,}. Let l(x) be a strictly positive function on S for which f l(x) m(dx) = 1, let % 

c / 5  

be positive numbers such that ~ % = 1, and put l,(x)= % l(x). Then 
. = - - o 0  

i E % I l(x)/7,(dx) = I l(x) m(dx) = 1, 
. = - - o 0  

so that with probability one, the entrance l aw/7 ,  is a multiple of an entrance 
law in g. By Theoreml2 .2  of [5], both g and {meJ :~ l ( x )m(dx )= l }  are 
Choquet simplexes, so that by (3.15),/7, is independent of n a.s., which gives the 
desired conclusion. 

We conjecture that Theorem3.14 is true without the assumption that 
EM(C) < oo for compact C. Removing that condition, however, seems to involve 
the same difficulties as the proof of Conjecture 1.6. We further conjecture that 
(3.15) is both a necessary and a sufficient condition for M P = M  in distribution 
to imply MP = M a.s. 
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4. Independent Particle Systems 

This section is devoted to the relationship between the r andom invariant  
measures for P and the invariant  probabil i ty  measures for {t/n}. We will use the 
following two identities, which are valid for nonnegat ive Borel functions f on S. 
They  are proved first for simple functions f and then the  general case is 
obta ined by passing to the limit using the mono tone  and dominated  con- 
vergence theorems. For  (4.2), see for example page 8 of [,61. 

E" exp [ - ~ f ( x )  rl,,(dx)] = exp {~ log [~ e - ~(Y) P"(x, dy)] t/(dx)} (4.1) 

exp [ - ~ f ( x )  t/(dx)] #~(dt/) = E exp [, - ~ (1 - e-f(~)) M(dx)].  (4.2) 

The following result is Corol lary  3.2 of  [61. Lemma4 .4  has appeared el- 
sewhere (see Satz 5.4.4 of [,161, for example), but  we include a p roof  for the sake 
of completeness. 

Lemma 4.3. I f  M 1 and M 2 a r e  random measures on S, then #M~ = # ~  if and only if 
M 1 = M 2 in distribution. 

Lemma 4.4. I f  tlo has distribution #~t, then tl I has distribution #~tv. 

Proof.  Suppose qo has distr ibution #M, let f be a nonnegat ive Borel function on 
S, and let 

g(x) = - log ~ e -  I(y) P(x, dy) >= O. 

Then 

E uM exp [, - 5 f ( x )  tl 1 (dx)] = 5 E" {exp [, - 5 f ( x )  tl 1 (dx)] } #M(d~/) 

= S exp [ -  l g(x)  (dx)3 
= E exp [ - 5 (1 - e -  g(~)) m(dx)] ,  

where the last two equalities follow from (4.1) and (4.2) respectively. On the 
other  hand, by (4.2) and Fubini 's  theorem, 

exp [ - 5 f ( x )  ~/(dx)] #~tv(dtl) = E exp [- - f(1 - e-f( ' ) )  MP(dy)]  

= E exp [, - ~ (1 - e -  f(Y)) M(dx)  P(x, dy)] 

= E exp [, - ~ (1 - e-#(x)) M(dx)].  

Therefore  

E uM exp [ - ~ f ( x )  tll (dx)] = ~ exp [ - f f ( x )  rl(dx)] #Mv(drl) 

for all f > 0 ,  and hence ql has distribution #~xv by Theorem 3.1 of [61. 

Corollary 4.5. #M is invariant for {r/,} if and only if M P = M  in distribution. 

The following theorem may be known, but  I have not  been able to find an 
explicit s ta tement  of it in the literature. Of course, both the result and its p roof  
are very close to the classical theorem which states that the only possible limit 
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distributions for the partial  sums from infinitesimal tr iangular arrays of inde- 
pendent  Bernoulli  r andom variables are the Poisson distributions. Assump- 
t ion 4.7 is the infinitesimal condition. 

Theorem 4.6. Suppose 

lim sup P'(x; C) = 0  (4.7) 
l a ~  cO x E S  

for every compact CcS .  Then every invariant probability measure on J / f o r  {t/~} 
is of the form #~ for some random measure M on S. 

Proof. S u p p o s e #  is an invariant  probabil i ty measure on J/ / /for {r/,}. Let  f be a 
nonnegat ive continuous function on S with compact  support,  and let 

g.(x) = - log ~ e- S(Y) P'(x, dy) > O. 

By (4.1) and the invariance of #, 

exp [ - ~ f(x) r/(dx)] #(dr/) = ~ E" {exp [ - ~ f(x) r/,(dx)] I #(dr/) 

= f exp { - ~ g,(x) r/(dx)} #(dr/). 

By (4.7) and the fact that  f has compact  support,  ~ e-Ye)P'(x, dy )~  1 as n--,oo 
uniformly in x. Therefore  there are e, ~ 0 so that  

(1 - e,) ~ [1 - e -  s e ) j  P"(x, dy) < g , (x )  < (1 + e,) ~ [1 - e -  s(')] P ' ( x ,  dy). 

Thinking of (J#, #) as a probabil i ty space, we may define a sequence M.  of 
r andom measures on S by 

M,(d y) = ~ P'(x, d y) r/(dx). 

Since # is invariant and concentrates on ~ ,  r / , (C)<oo a.s. for a.e, r/o with 
respect to # and for every compact  set CcS .  Noting that M,(C) 
=~P"(x, C) r/(dx)= E~ r/,( C), it follows that  M, satisfies (1.1), since for each r/, 
r/,(C) is a sum of independent  Bernoulli  r andom variables. Therefore  

exp [ - ~ f(x) r/(dx)] #(dr/) = lim E exp { - ~ [1 - e -f(y)] i ,(dy)}.  (4.8) 
t l ~ o O  

Making the t ransformat ion h(y)= 1- -e  -f(y), we obtain 

exp [~ log l-1 - h(x)J r/(dx)J #(dr/) = lim E exp { - ~ h(y) i , (dy)}  
n ~ c o  

for all cont inuous functions h with compact  support  which satisfy 0 <  h <  1. 
Replacing h by e h yields 

~ exp[~ log[1 - e  h(x)J r/(dx)] #(dr/) = lira Eexp[-8~h(y)M,(dy)] (4.9) 

for all nonnegat ive continuous functions h with compact  support  and sufficiently 
small e > 0. Since # concentrates on ~r the left side of (4.9) tends to one as e ~ 0. 
Therefore,  by the convergence theorem for Laplace transforms, ~h(y)M,(dy) 
converges in distribution as n ~ o o  for each such function h By Lemma5.1  of 
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[6], it follows that there is a random measure M such that ~h(y)M,(dy) 
converges in distribution to ~h(y)M(dy) for each such h. Taking limits in (4.8) 
gives 

exp [ - ~ f ( x )  ~/(dx)] #(dtl) = E exp { - ~ [1 - e- f(Y~] M(dy)}, 

and therefore #=#M by (4.2) and Theorem 3.1 of [6]. 

Corollary 4.10. Assume that P satisfies (4.7). Then the invariant probability 
measures on Jd for {t/,} are given exactly by the class { # M : M P = M  in distri- 
bution}. Therefore the extremal invariant probability measures on JOg for {t/n} are 
exactly {Pro :me J }  /f and only if M P  = M  in distribution implies M P  = M  a.s. 

As was pointed out in the introduction, condition (4.7) is not always satisfied, 
and is required for the conclusions of Theorem 4.6 and Corollary 4.10 to hold. It 
does appear, however, to be a rather weak assumption. We will now verify it for 
some of the chains considered in Sections 2 and 3, so that those results can be 
combined with Corollary4.10 to find all the invariant probability measures on 
JC[ for {t/,} in these cases. 

One situation in which (4.7) is easy to verify is that in which S is countably 
infinite, and P(x, y) is symmetric and irreducible, since then 

[sup P"(x, y)]  2 < ~ [ p . ( x ,  y)]  z = p2.(y,  y) ~ 0 
x x 

for each yeS. Thus if in addition, P is aperiodic and recurrent, it follows from 
Theorem2.10 and Corollary4.10 that the extremal invariant probability mea- 
sures on J/" for {t/,} are exactly {#cm, c > 0} where m is the counting measure on 
S. 

Theorem 4.11. Suppose S is a noncompact Abelian group, and P(x, E)= P(0, E -  x). 
Assume that P(O, dy) is not supported by a translate of a proper closed subgroup of 
S. Then the extremal invariant probability measures on dg for {t/,} are exactly 
{#m : mcor 

Proof. Let C be a compact subset of S, and Ps(x, dy) be the transition probabili- 
ties for the symmetrized random walk: Ps(0, dy) is the convolution of P(0, dy) and 
P(O, -dy ) .  Then 

sup [P"(x, C)] 2 < P:(O, C - C). 
x 

By the assumption, Ps(0, dy) is not supported by a compact subgroup of S, and 
therefore lim P~"(0, C - C ) = 0 .  This last fact follows, for example, from Corol- 

t t ~ o O  

lary 1 and Proposition2 of [14]. Hence (4.7) holds, and Corollaries 3.8 and 4.10 
give the desired conclusion. 

J is known completely in the situation covered by Theorem 4.11 ([1]), so in 
this case, the invariant probability measures on ~/H for {t/,,} are completely 
determined. In particular, it should be noted there are often invariant probabili- 
ty measures for {t/~} which are not translation invariant. This should be kept in 
mind in comparing Theorem4.11 with other results in this situation ([3,9, 13]) 
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which essentially consider only invariant probability measures which are trans- 
lation invariant. 

The next result deals with a case which is very natural from the point of view 
of infinite interacting particle systems. In that context, the basic one-particle 
motion is often a continuous time Markov chain X t in which the parameters of 
the exponential holding times are uniformly bounded on S. The P(x, dy) which 
would occur when our results are applied in that context is then Px[Xtedy] for 
some fixed t. Thus, for example, Theorem4.12 solves the problem of finding all 
the invariant probability measures for Spitzer's zero range interaction process 
1-12] in case his speed function ck(x ) is identically one, which corresponds to the 
absence of interaction. 

Theorem 4.12. Suppose that (a) P=~I  +~Q where ~+/~=1, 0<c~<l ,  and Q>O, 
(b) P has the Feller property in the sense that P f  is continuous whenever f is 
continuous with compact support, and (c) P has no finite invariant measure. Then 
the extremal invariant probability measures on Jg for {r/,} are exactly {/~m :m~J}.  

Proof. Let m,(dy) be the pointmass at x,, where {xn} is any sequence of points in 
S. Then 

n n 

k=o\ / 

and 

mn Pn+ j,~t k 

so that mnP"-m,P n+l ~ 0  in total variation. Therefore by (b), mP<=m for any 
vague limit m of a subsequence {m,~}. Since m is a finite measure, it follows that 
raP=m, and hence by (c) that m=O. Thus mnPn~O vaguely, so that 
P"(x, ,C)~O for each compact C~S.  This gives (4.7), so that the desired 
conclusion follows from Corollaries 3.7 and 4.10. 

Finally, combining Theorem2.10 and Corollary4.10 gives the following 
result. 

Theorem 4.13. Suppose P is an aperiodic Harris recurrent chain which satisfies 
(4.7). Then the extremal invariant probability measures on ~ for {r/n } are exactly 
{/~m :m~J}.  
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