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Notation 

If (E,4 ~) is a measurable space, b(4 ~ denotes the space of bounded real 8 
measurable functions. 

Let (s2, F, P) be a complete probability space. It will generally be endowed 
with P-complete and right-continuous filtrations ~ -=  ( 4 ,  t > 0) or fr t > 0). 

.N(~-) (resp: (9(~)) is the predictable (resp: optional) a-field on ~2xIR+ 
associated with ~.  

�9 To a real valued, measurable process X on (f2, F), we associate the natural 
filtration ~-x, once P-completed and made right continuous. 

. We do not distinguish between two measurable processes that differ only on 
a P-evanescent set. 

We use the notations of Dellacherie [2] for projections relative to a 
filtration: for instance, if there is no possible confusion about the filtration or 
the probability with respect to which such projections are taken, we denote by 
1X(resp: 3X) the optional (resp:predictable) projection of X; if A is an increas- 
ing process, A 3 is the dual predictable projection of A. If the filtration ~ (or the 
probability P, or both) needs to be made precise, we write for instance: I~X, 
3oWX; 1P/~X, 3V/~X; A e3. 

If X is a Y-semi-martingale, ,~. ~ H dX is the stochastic integral of H relative 
to X, via the filtration ~ If this integral does not depend on ~, we may suppress 
the letter 

If cg is a class of processes, we note cg~ and ~1oo consists of 
all processes C such that there is a sequence T o of stopping times, increasing P 
a.e. to o% and Cr~=C.Ar ,  (if C~(gloo we also write: C is locally in cg). 

-~ioo (or: ~,oc (P,~ is the space of P-local martingales relative to ~,  and 
~ 2  (or: M/2(P, ~))  the subspace of square integrable (P, ~-) martingales, H 1 (or: 
H~(P,~)) the space of martingales X such that X* =sup JXtl~L'. Let us recall 
([10]) that ~1oc =Hl'oo- t>0 
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Finally, increasing processes and stochastic integrals are always supposed to 
vanish at the origin. 

O. Outline 

The original aim of this work is to generalize a result of Communications theory 
known as the theorem of separation of detection and filtering, and to set out 
minimal assumptions under which a recursive filtering formula can be obtained. 
This project has presented several natural questions on stochastic calculus. As a 
result the present article is constructed as follows: 

In Section 1, we consider the unique solution D(q~) of Dol6ans-Dade's 
equation ([3]): 

D(~)= l + ~ D(q))_ q)dX 

when X is a (P, ~-) martingale and c p ~ ( Y ) .  Moreover, we suppose that D(~p) is 
a non-negative uniformly integrable martingale so that we can define a new 
probability Q by: dQ=D((p)o0 dP. Under certain conditions, mainly: 

a) the existence of (X, X )  P" ~ such that (X,  X )  P" ~ ( y x . )  
b) X has the predictable representation property, e.g.: all (p, gX) local 

martingales can be represented as: a + ~ H dX, with a~lR, H ~ ( ~ x ) ,  

we obtain: 

1P(D(~0)) = D(3~ (*) 

or equivalently: 

*P(D(q))) =- 1 + ~ 1P(D(~o)) 3~ dX, 

all projections being taken with respect to (C = fix.  
This result is a separation result in that we obtain the likelihood ratio of Q 

with respect to P relative to the filtration f i x  of observations (that is to say 
IP(D((p))) in two steps: first, we estimate or "filter" ~o relatively to ~ x  and Q, and 
then we enter the predictable version 3~ in the operator D. For communi- 
cations engineers, (p is the signal and X the observation corrupted additively by 
a noise B defined by: 

X=~cpd<X,X)P'~ +B 

(from Van Schuppen and Wong [-12], B is a (Q, ~ )  local martingale). 
In the course of obtaining (*), some natural questions concerning the 

optional projections of semi-martingales and stochastic integrals arise. They are 
answered in Section 2, using the Hilbert space theory of square integrable 
martingales and stable subspaces. More precisely, for two filtrations ~- and (C 
such that ( cc f f ,  we consider the (C-stable subspace • of square integrable 
martingales with respect to ~ and ~. For M E 5  ~ and HE(9(ff) such that 
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co 

E ~ H 2 d[M, M]= < oo, we have: 
0 

P~ ~(J~.~ H dM)=P~(N. ~ IH dM) (**) 

where P~ is the Hilbert projector on 5f and optional projections are relative to 
N. Moreover, we consider the subset S '  of S ,  consisting of martingales M such 
that their if-predictable increasing process is adapted to N, or, equivalently, 
such that their ~- and N-predictable increasing processes coincide. 

If 5 ~ is a (stable) subspace of ~ ,  and H e ~ ( J )  is such that 
co 

E ~ H i d[M, M]s < oo, we have' 
0 

Pa," ~(S ~ H dM)=J~. J " 3H dm=~. ~ 3H dM. (***) 

The results of Section 1 are a particular case of those of Section 2, if we 
remark that, under the hypothesis of Section 1, for N = y x ,  M =X,  H =D(cp)_ (p, 
we have y = y , = ~ / 2 ( p , N ) ,  and we use the formula: 

~P(D(~p))_ 30(0 = 3P(D(cp)_ q~). (****) 

However, the computational method of Section 1, where predictable and 
optional projections are defined as Radon-Nikodym derivatives, has an inde- 
pendent interest, it may be carried out in situations not covered in the present 
paper, (see [1] for the case of an observation which contains continuous 
martingales and marked point processes; we also have in mind a possible 
extension to the two parameter filtering problem [13], for which projection 
theorems similar to those in Dellacherie [2] are not (yet) available.) 

Section 3 is devoted to the filtering problem. It is a generalization, on one 
hand, of results of Duncan [5], and Zakai [17], where an approach to the 
filtering problem is made via the reference probability method. On the other 
hand, we obtain a unified recursive filtering equation extending Kunita's equa- 
tion to the case where X is only supposed to have the predictable representation 
property (in Kunita [8], or [1], X is a Wiener process, which is well known to 
have this property). 

Section 2 is technically independent of Sections 1 and 3. 

1. Projections of Martingale Exponentials 

1.1. Preliminaries 

If (E, g) is a measurable space, and # a positive finite measure on (E, g), the 

conditional expectation #(h].~)= (~-~1))(hIN) is well defined and known, for h 

in LI(E,g,#) or L2(E,C,#), and N any sub-a-field of & I f#  is positive, and Na- 
finite (e.g.: there exists an increasing sequence (B,,), B,~N, such that: E =  ~)B,, 

n 
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and #(B,)<oe for every n), and if h~Ll(E,g,~t), the formulas 1 ,ng(h l2 )= l ,~  
~t,(hlB) where #,(A)=y(Ac~Bn)(AE# ), are consistent and define (#(hl~). A 
similar argument allows us to define #(h[~) if h is 2-10cally in LX(E,g,g), e.g.: 
there exists B~EN, increasing to E, such that 1Bh~LI(E,#,#) for every n. If 
hsL2(E,g,~t), ~(hl~) is simply defined as the L2-projection of h on L2(E,N,/~). 
This extends as well if h is N locally in L2(E, g, #). 

We shall apply the above remarks in the following setting: (Y2,F,P) is a 
probability space, with ~ - = ( ~ ,  t>0)  a filtration of sub a-fields of F, satisfying 
the usual conditions. Let X be an element of 2 ~loc(P, 3~), with the associated 
increasing ~--predictable process (X, X)  (=  (X, X)  P" ~). We suppose that the 
following hypothesis is verified: 

(X, X)  is g x  predictable. (H.1) 

Remarks. 1. E. Lenglart has pointed out to us that (H.1) implies: 

X ~ JdY2~ (P, ~-x). 

Indeed, let S m be a sequence of ~-x stopping times increasing P a.e. to oo, 
such that (X,X).~sm is bounded. Existence of such a sequence follows from 
(H.1). By Doob's inequality ([111, VI, 1), we get: 

E [sup X2^ s j  < 4E [(X, X)s J 
t 

and this terminates the proof. 

2. (H.1) is automatically verified if X is continuous, since then: 

( X, X)t= P. lim ~ (X,+ ~ - X,) 2 

where z, is a sequence of refining subdivisions of [0, tl, the mesh of which 
decreases to 0. The validity of H.1 will be more thoroughly investigated in 
Subsection 2.3. �9 

Let cpa~(~) be such that: 

E ~ q~2d(X, X)~ < oo, (H.2) 
0 

and define L as the unique ([31) solution of: 

t 

L,= l + S q  dXs (1.1) 
0 

From [31, it is known that: 

(i ' L~=exp q~sdXs-�89 ~-2 d ' X  ,XC)s (l +~osAXs)eXp(-%AX~) 
0 

From (H.2), Laj~2c(P, ~), but we shall need the additional assumptions: 

L~dd2(P ,~)  and: q o A X + I > 0  (H.3) 
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L is now a non-negative martingale, with mean 1, so that we can define a 
probability Q on (g2, F) by: 

dQ = L oo dP. (1.2) 

Moreover, it follows from Van Schuppen-Wong [12] that: 

M = X -  S god(X, X )  ~ o o  (Q, ~ )  (1.3) 

We now make use of the first part of the preliminaries with E=O x IR+, 
=F |  d#(s, co)=d(X,X)~(co)dP(co), and N=~(~-x) .  We first remark 
that L go belongs to L 2 (E, #, #) since 

e ~ (Ls_ gos) 2 d (x ,  x)~ = ~ ( L ~  - 1) 2 < oo. 
0 

To show that go is N-locally in LI(E,#,pa)(#Q=d(X,X)dQ),  we use the 
stopping times S m of Remark 1: 

r e ~ Igosld(X,X)s=Ep Loo ~ Igosld(X,X)s 
0 0 

and 

/Sm 2 Sm 

We shall note #(LgolN)=3V(L_go) and #e(golN)=3ego, thereby indicating 
the obvious links with Dellacherie's predictable projections. 

Remark. In [1] and [21], such a definition of the predictable projection is used. 
It is interesting to show how these previous predictable projections are exten- 
sions of Dellacherie's. Suppose for simplicity that X~d/12(P,~). If we use the 
notations of [2] for (P,~X)-projections, we have, from the predictable section 
theorem: V H~b(F | NOR+)), 13HI ~ 31H I and (3H)2 ~ 3(H2) outside a P evanes- 
cent set; thus, the application H ~ 3 H  defined on b(F| extends un- 
iquely in a linear contraction from U(2)(F| N(IR+),/~) to Ll(2)(~(@x), #). 

1.2. The Separation Theorem 

The following representation hypothesis is crucial for our purpose: 

{ } L2(~X,P)= a+ ~ HsdXsla~IR, HE~(o~x); E v ~ Hs2d(X,X)s<OO 
0 0 

(H.4) 

This representation property is the subject of [14, 15 and 7 (see in particular 
Theorem 1.5)]; when it is verified, we say that X has the predictable repre- 
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sentation property. Let us point out that (H.4) immediately implies a repre- 
sentation of square integrable martingales as stochastic integrals. Moreover, we 
know from [15 and 7] that (H.4) also implies the following representation of 
local martingales: 

Proposition 1. (H.4) is equivalent to: every local (p,~X) martingale M can be 
written as: 

t 

Mt=a+SHsdX  
0 

(i ; with aeN+,  and H ~ ( ~  x) such that H~2 d[X,X]s is (p,~-x) locally inte- 
grable. 

We now state the main result of this section. All notions involved in the next 
theorem are relative to the filtration ~x .  

Theorem 1. Let 1eL be a right continuous version of the (p, gX) martingale 

~ _ ~ x  H.1, H.2, Ev(  ).Then, under H.3, H.4: 

1PL = 1 + ~ 3P(L_ (p) dX (1.4) 

= 1 + (1%)_ dX (1.5) 

(equivalently: lVD(q))=D(3Qp)) 

Moreover, 2 = X -  ~ 3Qcp d ( X, X}  E J/~Io o (Q, ~x)  

Remarks. 1. The notations of Theorem 1 are consistent since lVL is indeed the 
optional projection of L onto ~ x  in the sense of [2]. 

2. In the next section, formula (1.4) will appear as a particular case of a 
general projection formula of stochastic integrals. 

3. From [-24] (Theorem 3.1), we know that the hypothesis (H.4) implies: 

L2(NX, Q)={ i  Hsd2~lHe~(NX),E i H~ d ( 2 , 2 } e ' ~ x <  oo } (H.?) 

This result will only be used in the sequel as a remark concerning the 
Equation (3.7) (Theorem 4); it appears in Kunita [183, when X is continuous, 
and is also known when X = N - A  is the martingale process obtained from the 
point process N t with stochastic intensity A t. 

Proof of Theorem 1. From the end of Subsection 1.1, the two sides of (1.4) are 
well defined. In order to prove this formula, it is sufficient to verify: 

t 

for all square integrable (P, o ~x) martingales V, with V o =0. By H.4, V can be 
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written as S H dX, with HE.~(~x). Therefore: 

Ep [~ eL t Vt]= Ev[L t Vt] 

andthislastexpressionisequaltoEv[(l+i3V(L_q))dX)V~] thusproving(1.4). 
o 

Again using the @x stopping times S m of the remark in Subsection 1.1, we 
can suppose ( X , X )  bounded. 

Then, 3V(L_~o) and (1eL) 3Q~o belong to LI(d(X,X)dP) as we show, for 
example, for the second term: 

Ep [i iPLs_'3Qq~sld(S,X)s] 

= Ee [ lVLoo i [3Qq) s' d ( X, X)s ] 

-=No_ 13Qqo,ld(X,X), <=EQ ~ 3eJ~olsd(X,X)s 
o 

=Ee ~ Iq)[ d(X,X)s < o9 
o 

from the end of Subsection 1.1. 
To show that 3P(L ~0)=(1PL)_ 3Q(p, d(X,X)dP a.e. and thus obtain (1.5), it 

is now sufficient to verify that: 

Ev [i 3V(L_ CP)s Hs d ( X, X}s] = Ev [i ( 'VL)s_ 3(2q~sHs d ( X, X)s] 

for every bounded, N(~x )  measurable process H. 
The right-hand side is equal to: 

Ep f l~L ~ i 3Q(PsHsd ( X, X}~ ] 

= EQ [i 3Q~OsH~d(X,X)s] =Eo, [i qOsHsd(X,X)s ] 
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which, in turn, is equal to: 

co 

E, ~ L~_ q)sHsd(X,X)~=G,~ 3P(L qo)~Hsd(X,X)~. �9 
0 0 

Examples. i) If X is a continuous martingale of ~oo (P, ~-), we have: 

L=exp i cp dX-�89 q)Z d(X,X). 
0 0 

Theorem 1 reads: 

1eL = exp i 3Q(pdX-�89 i (3~176 a d(X,X} 
0 0 

and 

f~= X -  i 3(2q~ d ( X,X)eJd,oo (Q, ~X). 
0 

The equality (J?, J?) e '~x = ( X ,  X )  proceeds from the quadratic approxima- 
tion of these processes which has already been mentioned several times. Con- 
sequently, if X is a (P,~,~) Wiener process (e.g." (X,X)t=t) it follows from 
Doob's characterization theorem that 2 is a (Q, f ix)  Wiener. 

ii) Let X = N - A  be the compensated martingale of N, a counting process 
whose jumps are totally inaccessible (thus, A is continuous). Then: 

L=exp (--i qosdAs) l-l (l +q)~AN~) 
s < .  

and, from Theorem 1: 

1PL = exp ( -  i 3f2q) s d As) s~<= . ( l + 3aq~s dN~) 

Finally, let us remark, using the end of Theorem 1, that i (1 + 3Q(G) d A s is the 
0 

(Q, ~ )  dual predictable projection of N. �9 

2. Projections of Semi-Martingales 

Let (I2,F,P) be a complete probability space, endowed with a filtration ~- 
= ( 4 ,  t > 0) satisfying the usual conditions. 

In the sequel, we shall need the following extension of the optional pro- 
jections of bounded measurable processes: if X is a ~ ( I R + ) |  measurable 
process, such that: 

V Te~-- (~ E l-]Xrl 1(~ < co)] < o% 

then, there exists a unique optional process Y valued in IR, verifying: for every 
~- stopping time T, E[Xrl(r<co)l~r]= Yr l(r<~), P a.e. and, we shall write: Y 
~ l X .  
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Also, we recall the definition of a quasi-martingale: a process X =(Xt,  t> 0) 
is a ~,~-quasi-martingale if, and only if, it is adapted, right continuous, left-hand 
limited, and such that 

go~(X):-sup~E IE(Xt ,+-Xt ,  l~)l+[Xtn ] <co, 
i_ 

where the supremum is taken over the finite sequences z=(to, t~,..., tn), with 
0 ~ t o < t  I <Z --- <tn< 00, and neN. 

It is well known that X is a quasi-martingale if, and only if, it is the 
difference of two positive, right-continuous, and integrable supermartingales. 

2.1. Canonical Projections of Semi-Martingales 

In this paper, a ~ semi-martingale is a process X = M + A  such that M is a 
uniformly integrable ~ martingale and A a right continuous ~- adapted process 

with bounded integrable variation, i.e.: E S IdAsl < oo. Note that this definition is 
0 

different from Meyer's [10]; in particular, a semi-martingale X - i n  our sense 
- i s  a quasi-martingale, as: 

The following lemma shows the existence and uniqueness of a canonical 
decomposition for our semi-martingale. 

Lemma 1. Let X = M  + A be a ~ semi-martingale. Then, X can be written as: X 
= N + B, where N is a uniformly integrable ~ martingale, and B a ~ predictable 

with bounded integrable variation (e.g.: E ~ XdBs[< oo). Such a decom- 
i 

process 
position is unique. \ o 

Proof: routine. 

The decomposition obtained in the lemma is called the canonical decom- 
position of X. Using the notations of the lemma, we write B = X  3. This is 
consistent with Dellacherie's system of notations, since if X =A, then indeed X 3 
=A 3. 

With the complete probability space (~2,F,P), we also suppose that two 
filtrations ~ - - ( f f t ,  t>0)  and N=(Nt, t>0)  are given. They satisfy the usual 
conditions, as well as: 

Vt>0,  Nt-----~, and v t f f t=F .  

All projections considered in this subsection will be relative to N, and this 
will no longer be mentioned. 

Proposition 2. The optional projection ~X of a ~-quasi-martingale is a (g quasi- 
martingale. 
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Moreover, we have the inequality: 

Ve(~ X) <= Vow(X) (2.1) 

Proof Let 0=<t o < t  1 < ... < t ,<  Go. 

The inequality (2.1) is a consequence of: 

n--1 

-n-- 1 ] 

-i=0 

It remains to show that if X is a ~-quasi-martingale, 1X is right- 
continuous, with left-hand limits. By difference, we may suppose that X is a 
positive, integrable, right-continuous (and thus, left-hand limited) ~-super-  
martingale. For every n~N, X A n  has the same properties: therefore, its N- 
optional projection ~(X A n) -which  is a N-supermartingale is also right con- 
tinuous (I-21, T 20, p. 101). Finally, by the optional section theorem, the sequence 
(I(X/x n), nsN) is increasing, and its limit is 1X. From (Ell], T16, p. 135), 1X is 
therefore a right-continuous N-supermartingale. �9 

We are now interested in the N-optional projection of a ~ semi-martingale; 
the proof of the next proposi t ion-which is a reforment of proposition 2 - i s  
straightforward. 

Proposition 3. 7he optional projection tX of a ~-semi-martingale is a N-semi- 
martingale. Moreover, if X = N  + B is the canonical ~ decomposition of X, we 
have: 

(IX)3 =B 3. (2.2) 

Here is an immediate consequence of Proposition 3: let X be a ~'-semi- 
martingale, with ~-canonical  decomposition X = N + B .  If, moreover, X is N- 
adapted, then it is a N-semi-martingale with N-canonical decomposition X = {N 
+(B-B3)}+B 3. The aim of the end of Section 2 is to study the optional 
projections of J~-semi-martingales defined by stochastic integrals, for instance: 
U = ~ S H dX, with H a ~-predictable (or optional) process, when X is a N- 
semi-martingale, as well as a Y one. More precisely, we want to compare 1U 
and N. S(1 or 3H)dX ' in order to extend to semi-martingales the following result: 

ifAisaN-predictableprocesswithintegrableboundedvariation(EildAs[<oo ) 

and H a bounded F |  measurable process (for instance, a bounded 
predictable process), then (~HdA)3=~gHdA, and so, from proposition 1, we 
get: [1(~ H dA)] 3 = S 3H dA. 
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2.2. The Spaces ~q~, ~' ,  and the Associated Hilbert Projections 
of Stochastic Integrals 

The space 5r consisting of the square integrable martingales M (e.g.: 
E ( M ~ ) < ~ ,  with Mo=0,  which are simultaneously i f  and q-martingales is 
particularly relevant to the previously presented projection problem. 

M belonging to L.~, we examine how the different increasing processes 
associated with M, via i f  or q, and in general via a filtration with respect to 
which M is a martingale, depend, or do not depend on such a filtration. 

- First, [M, M] is independent of i f  or q, since 

[M, M]~ = P. lira ~ (Mr,+, - Mt,) 2, 

where z, is a sequence of refining subdivisions of [0, t], the mesh of which 
decreases to 0. Let now MeSr be written as M=MC+Md=f4c+f4  d, where M c 
+ M  a (resp: ~c+/~d)  is its i f  (resp: if) decomposition as a sum of a continuous 
and a "purely discontinuous" (e.g.: compensated sum of jumps) martingale. 
Then, the increasing processes ( M  c, M c) (relative to i f )  and (Me, _/Q~) (relative to 
q) are equal, as both are the continuous part of I-M, M]. 

- On the contrary, ( M , M )  may depend on the filtration, and we shall 
write: ( (M,M))=(M,M)  ~ and ( M , M ) = ( M , M )  ~. As in Subsection 2.1, all 
projections are now taken with respect to the smaller filtration q. 

Next lemma ensures that no confusion is possible when one deals with 
stochastic integration of q-predictable processes (which are also if-predictable): 

L e m m a  2. Let M ~ ~ 
(a) Then, ((M, M)) 3 = (M, M) 

o3 

(b) Let H ~ ( q )  such that E~H?d(M,M)s<OS.  Then, ~ H d M  is well 
defined and: o 

~ ~ H dM=q.  ~ H dM. (2.3) 

Proof (a) is a consequence of the following equalities: for s < t, 

E [ ( (M,  M))~ - ( (M, M))~ J q~]  = E [ M  ff - Mff I q~3 = E [ ( M ,  M ) ,  - ( M ,  M ) ,  ]q~] 

Now, from (a), we obtain the equality: 

E H2d((M,M))s =E H2d(M,M)~ <o% (2.4) 

and therefore, i f .~HdM and ~. ~HdM are defined. Moreover, if H is an 
elementary process of ~(q), H = ~ H t ,  1]~,t~+~] satisfying the integrability con- 
dition, the equality (2.3) is immediate. Using the isometry formula (2.4), (2.3) 

extends to all H c ~ ( q )  such that E ~ H~ d(M, M)s < oo. �9 
o 
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In fact, we have just proved that &a is a N-stable subspace of J~2(N), as 
defined by Kunita-Watanabe in [19], i.e.: S is a closed subspace of Jg2(N), 
stable by integration of N-predictable integrands H with respect to M ~  

oond tion: = 

The set 2,f' of martingales M ~ S  such that ((M, M)) is N-predictable plays a 
fundamental part in the projection problem. The following lemma gives a better 
understanding of ~ ' :  

Lemma 3. I f  Me2 ' ,  the following assertions are equivalent: 

1) M~ ~97' 

2) ( (M,M) )=(M,M)  

3) M 2 -  (M, M) is a ~-~-martingale. 

Proof 1) ~ 2): ( ( M , M ) ~ - ( M , M )  is a N-predictable martingale, with bounded 
variation, which is null at 0, and so identically null. 2) ~ 1) or 3) is obvious. 

The proof of: 3) ~ 2) is similar to that of 1) ~ 2). �9 

There is no guarantee in general that 5~' be a vector space. However, let us 
study this case. 

Lemma 4. The following assertions are equivalent: 
1) ~q~' is a vector space. 
2) VM6& a', VN~Sa', ( (M,N) )=(M,N)  
3) VM~s ~ VN~Sf' ,  M N - ( M , N )  is a ~--martingale. 

I f  either one of the above assumptions is satisfied, 5f' is a N stable subspace of 
~2(N). 

Proof 1) ,*~ 2) is an immediate consequence of the identity: 

((M + N , M  + N))=((M,N)) + 2 ((M,N)) + ((N,N)) 

and the analogous one for ( M + N , M + N ) .  The proof of 2) ,,~ 3) is the same as 
in Lemma 3. 

Suppose now that ~ '  is a vector space. It is closed in J/2(N), as if M(")~2 '', 
M (n) , M, then (M("),M(n))t converges to (M,M)~ in L ~ uniformly in t. 

~ 2  (~) 
~X3 

Moreover, if H ~ ( N )  and m ~ '  are such that E ~ H~ 2 d ( m , M ) s <  ~ ,  then U 
0 

= ~ H d M = N .  ~ H d M ~  and ((U, U))=~H2d((M,M~)=~H2d(M,M~ 
=(U,U~ thus showing: U~SU. ~ '  is therefore a N stable subspace of 
~2(N). �9 

At this point, we may ask the question: is ~ '  a strict subset of ~o? It is not 
so easy to find a quite general counterexample. However, here is one: let T be a 
~-predictable stopping time and H~LZ(o~r)GL2(~_).  The process M defined 
by Mt=Hl(r<_o is a square integrable ~-martingale.  We have: ((M,M)) t 
= E [ H 2 1 ~ r _ ]  l(r__<~). Take N = ~  M. In general, ((M,M)) is not N-predictable, as 
the following particular case shows: suppose ~ = ~0 for every t < 1, and ~ = 
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for every t > l ;  take T = I ,  HeL2(~)@L2(o~o). Then, ((M,M))~2~(Y M) if, and 
only if E[H2I~o]~a(H) and it is now easy to give an explicit counterexample: 
let (1R 2,~(1R2)) be given with the probability P = ~ |  v, # and v already being 
probabilities on (JR, 2(1R)), having finite second moments, and such that ~ydv(y) 
=0. X and Y denote the coordinate variables on IR2(X(x,y)=x, Y(x,y)=y), ~0 
=a{X}  V ~ ,  ~ =a{X, Y} V~A@ where @ is the class of P negligible sets o f R  2. 
Then, H=XYeL2(~)@L2(ffo) , and E[H2lffoJ=X2 E(y2)(~a{H} V~p for "gen- 
eral" # and v. 

Let us now slightly change our point of view. The filtration Y being fixed, it 
is natural to consider the square-integrable f f  martingales M which belong to 
5~ fr (using an obvious notation) for all fr such that ~-~t_= fr ~ 

In other words, we consider the class 

j = {M6d//2(~)/((M, M)) S~(ffM)} 

(the letter J is used for intrinsic). Here are two remarkable sub-classes of J :  
- the square integrable continuous ~-martingales:  indeed, for such M's, 

((M, M)) is adapted to ~ M  (from the second remark in Subsection 1.1), and 
continuous; therefore, it is in N(~M). 

- -  the compensated sums of ~- totally inaccessible stopping times. Let (T,) 
be a sequence of o~ totally inaccessible stopping times, which are 
strictly ordered, e.g." T,< T,+~P a.e. and increasing P a.e. to infinity. Let M be 
defined by M , = ~  I(T,=<0--A t, where A t is the ~- dual predictable projection of 

n 

l(r.~t). A is continuous; therefore, the T,'s are the successive jumping times of 
t l  

M, and so, are ffM stopping times. This implies that A is ~-M adapted, and so, 
Ae~(ff~t) .  Moreover, ((M, M))=A,  so that" M E J .  

2.3. fq Projections of ~ Stochastic Integrals 

In the present subsection, we consider measurable integrands (not necessarily 
optional). This provides a natural setting for our results, although the extension 
of stochastic integration to optional integrands, made by P.A. Meyer in [10], is 
maximal in the following sense: indeed, let M~Jr , ~ )  and H be a 

co 

F |  measurable process such that E~H2d[M,M]s<oo; then if 
0 

~HdM is defined by the same method as P.A. Meyer's in [10J, it is shown in 
[16] (Proposition 1, page 483) that ~ . ~ H d M = S ~ I H d M  (1H is here the 
L2((9(~-), d[M, M] dP) projection of H (see Subsection 1.1). 

Proposition 4. Let M ~ f ,  and H be a F |  measurable process such that 
oo 

E ~ H2 d[M, M]s < ~. 
0 

Then, pl(ff. ~ H dM)= P~(~. ~ H dM)= P~(~. ~ in  dM) where ('~ 1H is here the 
L2((9(~), diM, M~ dP) projection of H. 

(1) See the last remark of Subsection 1.1. 
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Proof. The last equality comes from ~. ~HdM=~. ~ 1HdM. Let N be another 
martingale of ~.  Then: 

O(3 

0 

=E [1(.~ ~ H dM)~ Noo] 
= E E{Pso 1(~. ~ H dM)} oo N J .  

On the other hand, we have: 
~3 

E ~Hsd[M, N]s=E[(~.  yHdM)o~Noo ] 
0 

= E  [{P~e (~. ~ H dM)} oo Noel. 

As the equality EE{Psol(~ SH dM)}oo Noo] =E[{P~e(~. ~H dM)}o ~ N~] takes 
place for every N s 2', we obtain: 

Pso l(J ~. yHdM)=P~e(~, yHdM). 

Let us remark that no hypothesis on the N-martingales, or even on the space 
~ ,  has been made in Proposition4, but the result does not give an explicit 
formula. 

However, we now give a sufficient condition to obtain such a formula: 

Corollary. Let the hypotheses of Proposition 4 be verified. Note U = ~(~ ~ H dM) 
and V=N. ~IHdM. 

If  E(U2)=E(V2), U belongs to ~ iff V belongs to S ,  and then U=V. 

Proof. From Proposition 4, we have: Pae(U)=P~(V). Then, U belongs to ~ iff U 
= P~(V). 

Writing V=P~(V)+Pse~(V), we get: 

E(V 2) = E [(P~ (V)) 2] + E(P~I (V))2). 

If U=P~e(V), the hypothesis E(U2)=E(V2), implies then: 

P~I(V)=0, and so V=P~e(V)=U. 

Conversely, if V belongs to ~ ,  we have: V=P~(U), and the equality: 

E [U~] = E [P~(U)~] + E [P~_(U)~] 

then gives P~e~(U)=0, and U=Pse(U)= V. 

Remark. If M is quasi-left continuous (for if, and then for if), He(r and Us 
2 ~, the inequality E(V 2) <E(U 2) is always verified. 

Indeed, we have: 
oo 

1 2 E(V~)=E~( U)s dEM, M]~ 
0 

oo 

<__E ~ U2~ dEM, M]~ =E(U2). 
0 
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Let us now study the particular case when M ~ ,  and H = I(AM= o)- Then, we 
have: 

U = ~,~ ~ H d M  = M c/~ and V= (C. ~ H dM = M c/~ 

and the equality E(U~)=E(V~) (=E([M,  M]~)) from the beginning of Sub- 
section 2.3. 

Then, from the corollary, if M c / ~ J 2 ( ( C )  (or: MC/~J /F( f f ) )  we have: M r 
= M~/~. �9 

When looking at projections on 5r (when 5 ~ is a stable subspace), we get 
the following theorem, the proof of which is similar to that of Proposition 4. 

Theorem 2. Suppose that L.~' is a vector space. Then, it is a (C stable subspace of 
/ u  "2 (p, (c). 

Let M~SP', and H be a ~ predictable process such that 
oo 

E ~ H ~ d (( M, M )), < oo . 
0 

Then, 

pao, 1(~  ~ H d M ) =  ~ 3H dM. 

We now look at the dual situation, i.e.: we study the processes of the form 

H~ dM~ , where H is (C predictable, and M is a ~-martingale.  

Proposition 5. Let M ~ z ( ~ , ~ ) ,  and H be a bounded (C-predictable process. Then: 

PLe 1(~. ~H dM)= ~H dP~(IM). 

Proof 5e being a (c-stable space, we only have to show the equality: 

EE(N ~ H dM)~ Zoo] = E  [(~. ~ H d 'M)~  Zoo], (2.5t 

for every martingale ZESf. 
By a density argument, we may suppose that H can be written as: 

r l--1 

H = ~ Ht~ l~t~, t, + ~1, where 0__< t o < t 1 < . . .  < t, < o% 
i = 0  

and H~ Eb((ct~ ), for every i n n - 1 .  
The right member of (2.5) is then equal to: 

E [ ~  Ht~(1Mt~+ ~ - 1Mt~ ) Zoo] = E [ ( N  ~ H dM)oo Zoo], 
i 

and therefore, (2.5) is proved. �9 

The corollary of Proposition 4 and its proof are still valid if one takes ~// 
= ~(,,~. ~H dM) and V = ~ H  d~M, with the hypotheses in force in Proposition 5. 
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2.4. A Simplifying Hypothesis 

Let us now express our previous results under the following fundamental 
hypothesis: 

(24 '~) Every square integrable if-martingale is a ~-martingale. 

We first remark, by density arguments, that ( ~ )  holds if, and only if, every 
bounded q-martingale (resp: every ~q local martingale) is a o~-martingale, (resp. 
a ~ local martingale). 

Hypothesis ( ~ )  implies that ff has a nice structure, relatively to ~ ,  as is 
s h o w n - a m o n g  other proper t ies-  in the following theorem: 

Theorem 3. Let ff = (~t, t > O) be a sub-filtration of ~-= (~t, t > O) e.g. for every t, 

The following assertions are equivalent: 

(1) Hypothesis (2,~) is verified. 
(2) For every t, o~ and ff oo are conditionally independent with respect to fir. 
(3) For every t, fit is the (F,P) complete a-field generated by the variables 

(4) For every process A, @(]R+)| measurable with bounded integrable 
variation, the equality A ~3 =A ~3 holds. 
(5) For every Xe~/ '2(~) ,  and every deterministic bounded function h, the 
equality: 1(S h dX)= ~ h d t X  holds. 

Moreover, if one of the properties (1)...(5) is verified, the equality N t 
=o~c~ff~ holds, for every t > O. 

Remark. In [23] (Lemma 4), Sekiguchi already remarked that hypothesis (Jr ~) 
implies: V t>0,  fft=~c~fqoo. 

Moreover, in Theorem 1 of the same paper, the equivalences of (1) and of 
different assertions similar to (3) are shown, for if, the filtration generated by the 
continuous ~-martingales. 

Proof of Theorem 3. It is easily seen that ( ~ )  is verified iff: 

Yt>0,  V xegl ( f f~) ,  E[XI~t]=-E[XI~ , , ]  

which is an expression-among m a n y - o f  (2). Thus, the equivalence between (1) 
and (2) is obtained. 

Let us now remark that (2) implies: f f t = ~ c ~ o ~ ,  for every t>0.  Indeed, we 
o ~  C only have to show ~' tc~ff~-Nt.  But if Ae~t t~ff~ ,  we have from (2): 

IA=E[1AI~oo]=E[1Alqflt] P a.e., and thus, A~ff t. 

(2)~(3): ~t is the (F, P) complete o--field generated by the variables E[Xl f f t ]  
(X~L2(Noo)). But, from (2), E[XI~qt] = E [ X I ~ ]  and so, we have (3). 

(3)~(2): If G~L2(N~), one has: E[GI~t]  = E [ E ( G I ~ ) I ~ , ]  =E[GI  o~], from the 
definition of ~qt. 
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(2)~(4): If A is a N(IR+) |  measurable process, with integrable bounded 
variation, the following equality follows from (2): V(s,t), such that 0 < s < t :  
E[At-AsrH~] = E [ A t - A s I ~ ] .  This may also be written as: 

E[A~ 3 -A~31Hs]  =EEA~ 3 - A~3 ] J'~]. 

Again using (2), we obtain: 

EEAt~3 ,3  -A, I~]=EEA:3-A2 3l~s]. 

Thus, A ~3 - A  ~3 is a Y-predictable martingale, null at t=0 ,  and with bounded 
variation: therefore, it is null for all t, and A s~3 = A  ~3. 

(4)~(2): If X e b ( H . ) ,  and t>0 ,  let us note: A,=XI(,<=u ). Then, we have: 

(g3 _ E [ X I H t _ ]  A u - -  l(t<u) , 

Au g3 =EEX I N _ ]  l(,<u). 

Therefore, if (4) is true, we have for every t: 

gFglo%_]=g[gl~,_] P a.e. 

Replacing t by (t + h), and letting h decrease to 0, we obtain (2). 

(2)<=>(5): By a density argument, we may only make use of the functions h(u) 
= 1~,, ~l(U)(selR+). 

If X e j # 2 ( ~ ) ,  the equality: 

E[Xo~ - X ~  I(~] = 1Xoo - 1 X  s 

is equivalent to: 

E [X s J H ~] = E [Xs I G] 

and this verified for all X~./d2(~, ~)  iff (2) is true. �9 

The different equivalences obtained in Theorem 3 obviously imply many 
consequences, of which we shall only give a few important ones: if (Jr) is 
verified, 

(c.1) T is a H-stopping time iff it is a if-stopping time, which is also Hoo 
measurable; moreover, E~e'~=E~'~E~e~ (e.g.: ~T and Hoo are inde- 
pendent, conditionally to H r = fiT C~ H,).  

(C.2) H is a H-optional (resp: predictable) process iff it is a Y optional (resp: 
predictable) one, such that, for all t, H t is Hoo measurable. Moreover, if H is 
bounded, and ~-optional ,  its H-optional projection cannot be distinguished 
from its "optional" projection on the constant filtration (H~) (we may also 
replace optional by predictable). 

(c.3) This last result may be extended as follows: let M=(M,,t>=O) be a 
uniformly integrable .,~-martingale. Then, for every random variable S: O-~ IR+, 
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N~-measurable, one has" 

1M s =E[Ms[N J (2.6) 

and 

1M s_ =ElM s_ ]N~] (if P(S > 0) = 1) 

These formulas are obvious, from (2), when S takes a countable number of values, 
and then, formulas (2.6) follow from the right-continuity (resp' left,continuity) of 
M and 1M (resp: M and 1M ). 

(c.4) 5r176 This is proved as follows: if Med//2(P,~), then A 
= [M, M] is an increasing process satisfying the conditions listed in the asser- 
tion (4) of Theorem 3. Thus, A~3=(M,M), and A~3=((M,M)) are equal, 
therefore, M belongs to ~ ' .  

Remark. Incidentally, using this last consequence of hypothesis (~) ,  it is easy to 
show that in subsection 1, under the representation property (H.4), hypothesis 
(H.1) is equivalent to the apparently (but not really) weaker hypothesis (H.1)': 
X e Jr (P, ~x).  

We now compare the ~ and ~ stochastic integrations of ~ optional 
processes relatively to .Me~joc (P, ~), and we show that (2/f)allows.us to extend 
the result of Lemma 2 from ~ predictable to ~ optional processes. 

Proposition 6. Let (~)  be verified. 

If  He(9(N) and Me~ioo(P,N ) are such that H2 d[M,M]~ is ~ locally 
integrable, then: -o 

 SHdM= . S IdM. 
o9 

Proof. 1) Let us remark that the space W(P,~)={Medg(P,~)/E ~ [dMsl < 0o} is 
o 

dense in: H 1' d(p, ~ ) =  H 1 (p, ~)c~ d{d(P, ~). This is a consequence of the density 
of j{2,d(p,N) in HJ'd(P,~) and of the orthogonal decomposition of a mar- 
tingale belonging to ~ 2 ,  e(p, ~) as a (generally infinite) sum of discontinuous 
martingales, having only one jump. 

2) If Heb(C(~)), and MeW(P,~), we get: 

t t / �9 \ ~ 3  

0 0 t 

([16], Proposition 3), where i Hs dMs is a Stieltjes integral. The same equality is 
0 

true, when ~- is replaced by N. So, from Theorem 3, (4), we obtain: ~ S H d M  
=~. ~HdM. 

3) We still suppose Heb((9(N)), but M is now a ff (and i f )  local martingale, 
which we can suppose to be in Hz(P,~q). Let M=Mo+M~+M e be the N 
decomposition of M as a sum of a N continuous local martingale and a purely 
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discontinuous one. Then, since the set {H @ 3~H} is a denumberable union of N- 
stopping time graphs ([2], page 101, T 19), we have: N. ~ H d M C = N ~ H d M  c. So, 
we only have to take MeHI'e(P,N) in the following. The applications M---, { (2  
or ~q). ~ H dM} ~ are continuous from H 1 (P, ~) to L ~ (~,~, P) (and their norms are 
smaller than or equal to c JlHNco, where c is a universal constant appearing in 
Davis' inequality [10]). From 1) and 2), these applications are equal on W(P, (Y), 
which is dense in HI'e(P,(r and so, are equal on all of HI 'e(P,~) .  Then, if 
H~b((9(N)), and M is a ~q local martingale, we have: Y .~HdM=~.  ~HdM. 

4) If M~d[loo(P,(r the equality ~ H d M = ~ .  ~HdM now extends (by 

density and continuity) to all H e(9(~) such that Hs 2 d EM, M]= is g-locally 
integrable. [] 

We now give the simplified form under which our results in Propositions 4, 5 
and Theorem 2, appear, when the hypothesis (W) is verified. 

Proposition 7. Let (2/f) be true and M be a ~ local martingale. 
1) I f  H is a F |  measurable (or ~ optional) process such that, either 

E 7 Hff d [M, M]= < o% or H is bounded, then: 
0 

I(~. ~HdM) =~. ~ 1HdM=~.  ~ lI-IdM 

2) Under one of the following hypotheses: 
(i) M is locally square integrable 2, and H is a Y-predictable process such that 

E T H2 d (M,M)s  < OQ 
o 

(ii) H is a • predictable bounded process, then: 

~(N [ H dM)=~ 3tI dM. 

Proof. The equalities, under square integrability conditions, come directly from 
Proposition 4 and Theorem 2, as the hypothesis ( ~ )  implies ~q~=S '=  
~ 2 ( p ,  N) (consequence (c.4) of Theorem 3). 

If H is bounded, the previous equalities extend to all N local martingales M, 
as /H2(P,  (~) is dense in Hi(p, (~), and the applications 

M - - ~ I ( ~ H d M ) ~  (or: {~ .~HdM}co ,  or: {y3HdM}co) 

are continuous from HI(P,.~) to LI(~o~,P). �9 

Proposition 8. Let (2/f) be verified and M be a square integrable ~-martingale. I f  
co 

H is a (Y predictable process such that E ~ Hf dIM, M]=< o% then the integral 

(7 ) o E HfdE~M,~M]= is also finite, and the equality ~ ( ~ H d M ) = ~ H d ~ M  

holds. 

From the remark made in Subsection 1.1, there is no need to specify whether it is with respect to 
~- or ~. 
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Proof. First, remark that I(M2)-(JM)2 is a i-submartingale. Indeed, for all 
couples (s, t) such that 0 < s < t, one has: 

1 M  2 1 M 21~ El( ) , - (  )~ s] 
= E  [(1M,-  1Ms)2 Its] 
=E[(E(M,- Msli~o))zlis] 
< E [(M~ - Ms)21 i , ]  

<=E[M{_M~It3=EEI(M2) I - (Ms)lt~] 

Now, from the inequality: 

E 1 2 1 2 2 2 [ (M),  - (  M)s Its] <=ELM, - M  s If~s], 

it follows that: 

E [[1M, IM]t-[JM, 1M]slts] <=E[[M,M],-[M,M]~Its] 

This implies that for every t predictable process H, one has: 

The equality I(o~.SHdM)=SHdlM now comes from Proposition 5, using 
the density of bounded if-predictable processes in L2(~(t), d[M, M]s dP). �9 

We now give two simple examples where ( ~ )  is verified (see Sekiguchi [23] 
for another): 

- the simplest of all is most certainly given by the filtrations f~t = ~tA r, with 
T a ~-stopping time; 

- let ~- (resp: f~) be the usually completed filtration of a n-dimensional 
Brownian motion (Bt, t > 0) (resp: of R t = IBtl). 

Then, ( ~ )  is verified, which can be seen from either of the following points: 

(i) R~= IBtl is a ~ -Markov  process, which implies property 2) of theorem 3 
and thus (iF). 

More generally let ~ (resp: t )  be the filtration of a Hunt process X, valued 
in a Polish space E (resp: of Y= (p(X), valued in K, another Polish space), where 
~0: E ~ K is continuous, and lets the semi-group (Pt) of X invariant (see [25] for 
more details). This last condition implies that Y is a ~ -Markov  process, e.g. for 
every t_>0, the future of Y and the past of X at time t are independent, 
conditionally to Y,. From this, it follows easily that assertion (2) of Theorem 3, 
and therefore (~,W) are verified. 

(ii) From [25], t t is equal to the usually completed filtration of 

Y~ = i sgn (Bs) dB~ (if n = 1) 
o 

= } ~, B~ dBi~ (if n > 1) 
0 i = 1  Rs 
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Y is a standard real Brownian motion, which implies that every N-martingale is 
a stochastic integral for Y, and so, a if-martingale. 

Apart from using the equivalences of Theorem 3, a practical means of 
verifying hypothesis (Jr) consists in establishing that the space of square 
integrable N-martingales is generated (as a stable space) by a finite (or infinite) 
family of martingales M which are also f f  martingales. (for instance see point 
(ii) of the last example). 

Thus we are naturally concerned with the characterization of martingales 
which have the predictable representation property (see the outline, subsection 
1.2, and [14, 15, 7]). As the reader may have noticed, this question is underlying 
the whole present work. But, it is important here to know whether this 
representation property is relative to 2 or ~f. The following proposition fully 
answers this question: 

Proposition 9. Let X be a o~- and H-local martingale such that every ~ local 
martingale M can be represented as: 

M = a + ~ S H d X  (a~lR, He~(~) ) .  

Then the two following assertions are equivalent: 

a) every ~ local martingale N can be represented as: 

N = b + ~. ~ K dX (b e IR, K ~ ~(~)) 

b) all ~ local martingales are ~ local martingales. 

Proof a) ~ b) is obvious, as ~. ~ K dX = ~. ~ K dX for all N predictable processes 
such that (~ K~ d IX, X]s) �89 is N locally integrable (this is a slight generalization of 

o 
Lemma 2). 

b) ~ a) From Proposition 1, it is sufficient to show that every square- 
integrable N martingale N may be represented as: 

N = b + ~ .  ~ K d X  (b~IR, K ~ ( ~ ) ) .  

From b), we have: 

Nt=E[N~I ~ ]  =a+~.  SHdX,  

(i ) with a~lR, H ~ ( f f )  such that E d[X,X]= < or. 

By a density argument, we can suppose that H is bounded. Then, from 
Proposition 8, 2), ii), we have: 

g=a+l(~ ,~ .~HdX)=a+~3HdX.  �9 

Remark. Let X be a ~ local martingale, verifying the hypothesis of proposition 
9. This hypothesis is also obviously verified by Y= ~. ~ H dX where H is a ~ 
predictable process, which is null at most on an evanescent set (and is, for 
simplicity, bounded). Then, we can apply Proposition 9 to Y,, with ff = ~ r .  



290 P. Br6maud and M. Yor 

3. On a Filtering Equation 

3.1. Preliminaries 

Going back to and using the notations of section 1, we now consider the 
problem of calculating Ee[Ul~X], for bounded and ~ measurable random 
variables U. 

For all such U's, 

E~[UI~X] Ep[L, Ul~x] 
- Ep(Lt]o~x) Q a.s. 

(let us remark that the set {o~/Ee(Ltl~x)((~)=O} is negligible for Q, and more 
generally the processes L, L ,  1PL, 1eL are strictly positive outside a Q 
evanescent set) and so, the problem is to express Ep[L~UI~XI or, more 
precisely, Ie(LU) (once again, all projections are relative to the filtration ~,~x, 
and are defined from Dellacherie's book [2], and Section 1 if necessary). 

We work in the following particular situation, already mainly considered in 
[1, 5, 17]: 

In addition to H.1, H.2, H.3, H.4, we suppose: 

= ~ x v  q/, with ~,~x and q/ P independent. (H.5) 

Note that, for any U~b(ql), LtU= U+ i ULs_ q)sdXs is a (P,Y) martingale. 
0 

Moreover, we have: 

Lemma 6. Let U~b(q/). 7hen, 

t 

1P(LU) = E O [U] + S 3e( L- U ~o) dX. (3.1) 
0 

The proof is obtained by putting together the proof of Theorem 1 and the 
additional equalities (deduced from H.5)" 

~G-X Ee(UI~" t )=Ep(U)=Ep(L o U)=EQ(U). 

3.2. The Fundamental Filtering Equation 

Let us specialize the above situation by assuming: 

There is a Fellerian Markov process Z, valued in E (polish space, with Borel 
a-field d ~ such that q./= ~z .  (H.6) 

Let us recall that therefore the semi-group Pt(x, dy) on (E, o ~) attached to Z 
verifies: 

V f~Cb(E), (t,x)---~P~(x,f) is bicontinuous. 
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There is a bounded, ~ ( y x ) |  g measurable function (H.7) 

r (s, co, z)-+r z ) such that ~Os(O~)=Os(CO, Zs(CO)) 

Taking U=g(Zt,) ,  with g6b(g), we deduce from (3.1): 

tl 

E p [L,, g (Z,,)I Y,#] = E e [g (Z,,)] + j" 3P(L_ g (Z,,) ~, (Z)) dX (3.2) 
0 

Using mainly (H.5) and (H.6), we obtain the" 

Theorem 4. Let g~b(G), and t I >0. 
Under the hypotheses (H.1)... (H.7), we have: 

tl 
EI~[L,~ g(Zt , ) l~  x] =EQ[g(Z,,)] + S dXs 3P(Ls- Os(Zs)P,,-sg(Zs)) �9 (3.3) 

0 

Proof Let ~ be the right continuous P complete filtration obtained from ~t ~ 
= ~ x  v ~ z .  Then: 

3P(L_ g(Z,,) ~(Z))= 3P(~e/~(L g(Zr O(Z))) 

= 3~ (L  r  'p/~ ~r(z,,)) 
= 3P(L,- et(Zt)8, ,g(Z,)) 

(in the second equality, we consider g(Z,,) as a stochastic process, which is 
constant in t~R+; moreover, the time set here is [0, t~]). Now, (3.3) follows from 
(3.2). �9 

We shall now obtain a generalization of Kunita's recursive filtering equation 
[8], the generalization being that we only work with a local martingale X 
having the predictable representation property described in Subsection 1.2, 
instead of taking a Wiener process for X (also, see [1]). 

From now on, the time set is [0, t~], for a fixed t~ >0. 
We need more notations: - for g~b(~), we set gt, =EQ[g(Zt,)] 

_ pt, g is the process: (t,o))~Pt,_tg(Z~(co)) 

- we still write r for the process: (t, co)--~O(t, co, Zt(co)) 

- if H is a bounded measurable process, we note lq = 3ell 
t 

- Finally, let Ut=gt~ +~ 3P(L_ OU~g)sdXs and Vt= leL t. 
o 

Before writing the filtering equation, we .need to identify some projections. 

Lemma 7. I f  g~b(g), we have under (H.1)... (H.7)" 

U 
V =  1Q(g(Zta)): IQ(pt, g) ( 3 . 4 )  

and 

u -  
- P g .  

V -  
(3.5) 
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Proof. From (H.6), if go-Cb(E), the process P~ is right continuous, and so, has a 
right continuous ~ x  optional projection. So, to show (3.4) for such a g, it is 
sufficient to show it for every t, and the result will follow by right continuity. By 
the monotone class theorem, (3.4) will then be valid for every geb(g) so, we now 
look at E e [Ptl-t g(Zt) l ~  x] which is equal (Subsection (3.1)) to: 

Ep [L t Pt,-t g (Zt)] ~x] Ee [Lt Ep [g (Zt,)t f~t] I'~ x] 
Ep [L  t 1~ x] E e [L  t I~ x] 

(the filtration ff has already been used in Theorem 3). 
The last expression is obviously equal to: 

Ep [L  t g (Ztl)] ~x] 
~p(L,l~ x) 

which is EQ(g(Z,)]o~t x) thereby proving the right hand side of (3.4). 
Moreover, 

Ep[L tg (Z t , ) l ~  x] Ee[L t~g(Zt , ) l~  x] 
Ep [L t ] ~.~x] = Ep [L t [~x]  4- A (3.6) 

with 

A-- Ev[(Lt'-Lt)g(Zt~)l~x] 
Ep[L,I~ x] 

L is a ~ martingale, which implies, as g(Zt,)eb(~o) , that g(Ztl)L is also a 
martingale. Then, 

A= Ev[Ee[(Lt'-Lt)g(Zt')l~ 
Ep[L,]~ x] 

So, from (3.6), we get: 

EQ[g(Zt~) l~x] =Ev[~- - !L~lx f f  ] 
pk ,I t ] 

and, from (3.3) (Theorem 3), we get the left hand side of (3.4). Now, (3.5) 
proceeds from (3.4) as the predictable projection of a martingale M is M_.  

For simplicity we now assume: 

X is quasi-left continuous (relatively to ~x) .  (H.8) 

From [15] or [7], we know that (H.8) and the predictable representation 
property assumed for X by (H.4) (Subsection 1.2) imply the existence of a ~-x 
predictable set A (resp: process f )  such that: 

E~ ~ l~d<X~,X~> =E~ ~ l~d<X~,X~> =o 

resp: AX=fI~x.o  

Theorem 5. Let geb(g), and t 1 >0. 
Under the hypotheses (H.1),...,(H.8) and supposing that the processes 

(1 + ~ f ) - 1  is (~x, Q) locally bounded, we have: 
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]o~X Ee [g(Z,,) ~ ,  ] 

tl tl 
=EQ[g(Zt,)]+ [ r  1A+ d){ (3.7) 

0 

with f[ = X - i ~d (X,  X )  C~,oo (Q, f ix) 
0 

Remarks. 1) The appearence of dX in the right-member of (3.7) is a priori 
expected from Remark 3) in Subsection 1.2. 

2) The technical hypothesis made on (1 + ~ f ) -  1 does not seem too stringent, 
as this process is equal to V/V, on AX4=O, and Q almost every trajectory of 
V / V  is bounded on every compact set of IR+. 

Proof of the Theorem. Applying Ito's formula under P, to Ut/Vt', with V '=  (V v e), 
(which is again, from [10], and with the definition there of, a semimartingale), 
we get: 

_ .(t ] t U u~ Uo [dUe Us_ dV;j +~d<(V')c,(V')% 
v; v; +o tv;_ (vz) 2 o, s_, 

(3.8) 

- , , ~ d ( U , (  )>~+ L < ~  , 
o(V)s_ o~s=,s K- (K'- (K'-YJ 

This equality is also valid Q as. Also, from [10] (Chapt. 6), we have' 

(V')t = i l(v~ > ~)dV[. (3.9) 
0 

We note T~=inf{t>0;  Vt<e }. 
As we have already remarked, V and V_ are strictly positive outside a Q 

evanescent set. So, the stopping times T~ increase to ~ ,  Q a.s., as e decreases to 
0. 

Moreover, on {co] T~(c))> q}, we can replace V' by V in Equation (3.8), using 
(3.9), and the local character of stochastic integrals [10]. Finally, Equation (3.8) 
is true under Q, with V replacing V'. 

Let us now recall that from the definition of U, we have: 

dU= V x C x ptg dX P a.s. and Q a.s. 

From Theorem 1, we get: 

d V = V  ~ d X  P a.s. and Q a.s. 

Finally, from Lemma 7: 

u 
- - P g  Q a.s. 

v 

So, after some calculus, the expression of Ut/V ~ becomes: 

Vtt =g-q + ! [~ x Pg - tfi • Pg3 (dX - ~ d ( X  ~, X~)) 
,, ~ t ,  ~s (AXs)  2 

Y~ [r215215 (2 a.s. 
(O<s~<t) 
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Now remembering that AX=flAx.o,  with f~Co(~x), we get: 

- ~ • Pg] (dX-6d<X~,X~>) 

tl  t l  
_ [ O x B g - P g x ~ ]  (d<Xd, Xe'>+AXdX) Q a.s. 

o 

Here, we have used Pratelli-Yoeurp's formula (see [10]): P a.s. and Q a.s., 

t 

Y, (AXs)" - <X '~, Xd>, = IX, X ] , -  <X, X>, = S(aXs) dX, 
O < s < t  0 

In our case, AX dX =flax.o dX =fdX d. 
Again transforming the expression of U]V. we get, under Q: 

< = g , l + ! [ O • 2 1 5  d X C +  d X  ~ 
V~ 

Now, we make use of the ~ x  predictable set A, whose existence was recalled 
before the theorem, by remarking: 

1 
(1A+ 1 1Ac) d<X,X)=d<X,:,X,:)§ Xa ) Q a.s. 

and: 

(1A + ~ ) d X  1 =dXC + l~f~f  dX~ Q a.s. 

Then, (3.7) proceeds from the last expression we obtained for UjV,. 

Remarks. 1) From the end of the proof, Equation (3.7) can also be written as: 

EQ [g(Z.) 1 o% ~] 
, , . . ~ , ,  ^ / ? > f  . 1 -~l 

=EQ[g(Zt')] + Y o [~ x Pg -@ x e g ]  I d X r  ~ (3.7') 

where: 

' i -c_ c c Xt = X t -  x , - x , - S  6d<x,x~>, "~  ~ ,Fd<X",x"> 
0 0 

Moreover, from [7], (Proposition 2.1), J?e belongs to ~oo (Q, ~x).  Therefore, 
2 = X~ + 2( d is the decomposition of 2 in/27~176 (Q, Nx) + jCd (o Nx~ loc \ ~ ,  l"  

2) We refer the reader to [1], when the observation consists of a marked 
point process and a Wiener process plus a drift. 

3) Theorem 5 is an extension of results in [-5] and [17]. 
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