Changes of Filtrations and of Probability Measures

Pierre Brémaud ${ }^{1}$ and Marc Yor ${ }^{2}$
${ }^{1}$ IRIA/Laboria, Domaine de Voluceau, 78150 -Le Chesnay, (France)
${ }^{2}$ Laboratoire de Probabilités associé au C.N.R.S. n° 224, Université Pierre et Marie Curier, 75230 Paris Cedex 05, (France)

Notation

If (E, \mathscr{E}) is a measurable space, $b(\mathscr{E})$ denotes the space of bounded real \mathscr{E} measurable functions.

Let (Ω, F, P) be a complete probability space. It will generally be endowed with P-complete and right-continuous filtrations $\mathscr{F}=\left(\mathscr{F}_{t}, t \geqq 0\right)$ or $\mathscr{G}=\left(\mathscr{G}_{t}, t \geqq 0\right)$.

- $\mathscr{P}(\mathscr{F})($ resp: $\mathcal{O}(\mathscr{F}))$ is the predictable (resp: optional) σ-field on $\Omega \times \mathbb{R}_{+}$ associated with \mathscr{F}.
- To a real valued, measurable process X on (Ω, F), we associate the natural filtration \mathscr{F}^{X}, once P-completed and made right continuous.
- We do not distinguish between two measurable processes that differ only on a P-evanescent set.

We use the notations of Dellacherie [2] for projections relative to a filtration: for instance, if there is no possible confusion about the filtration or the probability with respect to which such projections are taken, we denote by ${ }^{1} X$ (resp: ${ }^{3} X$) the optional (resp: predictable) projection of X; if A is an increasing process, A^{3} is the dual predictable projection of A. If the filtration \mathscr{F} (or the probability P, or both) needs to be made precise, we write for instance: ${ }^{1 \mathscr{F}} X$, ${ }^{3 \mathscr{F}} X ;{ }^{1 P / \mathscr{F}} X,{ }^{3 P / \mathscr{F}} X ; A^{P 3}$.

If X is a \mathscr{F}-semi-martingale, $\mathscr{F} \cdot \int H d X$ is the stochastic integral of H relative to X, via the filtration \mathscr{F}. If this integral does not depend on \mathscr{F}, we may suppress the letter $\mathscr{\mathscr { F }}$.

If \mathscr{C} is a class of processes, we note $\mathscr{C}^{0}=\left\{C \in \mathscr{C} \mid C_{0}=0\right\}$ and $\mathscr{C}_{\text {loc }}$ consists of all processes C such that there is a sequence T_{n} of stopping times, increasing P a.e. to ∞, and $C^{T_{n}}=C_{. \wedge r_{n}}$ (if $C \in \mathscr{C}_{\text {loc }}$ we also write: C is locally in \mathscr{C}).
$\mathscr{M}_{\text {loc }}$ (or: $\left.\mathscr{H}_{\text {loc }}(P, \mathscr{F})\right)$ is the space of P-local martingales relative to \mathscr{F}, and \mathscr{M}^{2} (or: $\mathscr{M}^{2}(P, \mathscr{F})$) the subspace of square integrable (P, \mathscr{F}) martingales, H^{1} (or: $\left.H^{1}(P, \mathscr{F})\right)$ the space of martingales X such that $X_{\infty}^{*}=\sup _{t \geqq 0}\left|X_{t}\right| \in L^{1}$. Let us recall
$([10])$ that $\mathscr{M}=H^{1}$. ([10]) that $\mathscr{M}_{\mathrm{loc}}=H_{\mathrm{loc}}^{1}$.

Finally, increasing processes and stochastic integrals are always supposed to vanish at the origin.

0. Outline

The original aim of this work is to generalize a result of Communications theory known as the theorem of separation of detection and filtering, and to set out minimal assumptions under which a recursive filtering formula can be obtained. This project has presented several natural questions on stochastic calculus. As a result the present article is constructed as follows:

In Section 1, we consider the unique solution $D(\varphi)$ of Doléans-Dade's equation ([3]):

$$
D(\varphi)=1+\int D(\varphi)_{-} \varphi d X
$$

when X is a (P, \mathscr{F}) martingale and $\varphi \in \mathscr{P}(\mathscr{F})$. Moreover, we suppose that $D(\varphi)$ is a non-negative uniformly integrable martingale so that we can define a new probability Q by: $d Q=D(\varphi)_{\infty} d P$. Under certain conditions, mainly:
a) the existence of $\langle X, X\rangle^{P, \mathscr{F}}$ such that $\langle X, X\rangle^{P, \mathscr{F}} \in \mathscr{P}\left(\mathscr{F}^{X}\right)$
b) X has the predictable representation property, e.g.: all $\left(P, \mathscr{F}^{X}\right)$ local martingales can be represented as: $a+\int H d X$, with $a \in \mathbb{R}, H \in \mathscr{P}\left(\mathscr{F}^{X}\right)$,
we obtain:

$$
\begin{equation*}
{ }^{1 P}(D(\varphi))=D\left({ }^{3 Q} \varphi\right) \tag{*}
\end{equation*}
$$

or equivalently:

$$
{ }^{1 P}(D(\varphi))=1+\int^{1 P}(D(\varphi))_{-}^{3 Q} \varphi d X
$$

all projections being taken with respect to $\mathscr{G}=\mathscr{F}^{X}$.
This result is a separation result in that we obtain the likelihood ratio of Q with respect to P relative to the filtration \mathscr{F}^{X} of observations (that is to say $\left.{ }^{1 P}(D(\varphi))\right)$ in two steps: first, we estimate or "filter" φ relatively to \mathscr{F}^{X} and Q, and then we enter the predictable version ${ }^{3 Q} \varphi$ in the operator D. For communications engineers, φ is the signal and X the observation corrupted additively by a noise B defined by:

$$
X=\int \varphi d\langle X, X\rangle^{P, \mathscr{F}}+B
$$

(from Van Schuppen and Wong [12], B is a (Q, \mathscr{F}) local martingale).
In the course of obtaining (*), some natural questions concerning the optional projections of semi-martingales and stochastic integrals arise. They are answered in Section 2, using the Hilbert space theory of square integrable martingales and stable subspaces. More precisely, for two filtrations \mathscr{F} and \mathscr{G} such that $\mathscr{G} \subset \mathscr{F}$, we consider the \mathscr{G}-stable subspace \mathscr{L} of square integrable martingales with respect to \mathscr{F} and \mathscr{G}. For $M \in \mathscr{L}$, and $H \in \mathcal{O}(\mathscr{F})$ such that

$$
\begin{align*}
& E \int_{0}^{\infty} H_{\mathrm{s}}^{2} d[M, M]_{s}<\infty, \text { we have: } \\
& P_{\mathscr{L}}{ }^{1}\left(\mathscr{F} \cdot \int H d M\right)=P_{\mathscr{L}}\left(\mathscr{G} \cdot \int^{1} H d M\right) \tag{**}
\end{align*}
$$

where $P_{\mathscr{L}}$ is the Hilbert projector on \mathscr{L} and optional projections are relative to \mathscr{G}. Moreover, we consider the subset \mathscr{L}^{\prime} of \mathscr{L}, consisting of martingales M such that their \mathscr{F}-predictable increasing process is adapted to \mathscr{G}, or, equivalently, such that their \mathscr{F} and \mathscr{G}-predictable increasing processes coincide.

If \mathscr{L}^{\prime} is a (stable) subspace of \mathscr{L}, and $H \in \mathscr{P}(\mathscr{F})$ is such that $E \int_{0}^{\infty} H_{s}^{2} d[M, M]_{s}<\infty$, we have:

$$
\begin{equation*}
P_{\mathscr{L}^{\prime}}{ }^{1}\left(\mathscr{F} \int H d M\right)=\mathscr{F} \cdot \int{ }^{3} H d M=\mathscr{G} \cdot \int{ }^{3} H d M . \tag{***}
\end{equation*}
$$

The results of Section 1 are a particular case of those of Section 2, if we remark that, under the hypothesis of Section 1 , for $\mathscr{G}=\mathscr{F}^{X}, M=X, H=D(\varphi)_{-} \varphi$, we have $\mathscr{L}=\mathscr{L}^{\prime}=\mathscr{M}^{2}(P, \mathscr{G})$, and we use the formula:

$$
\begin{equation*}
{ }^{1 P}(D(\varphi))_{-}{ }^{3 \varrho} \varphi={ }^{3 P}\left(D(\varphi)_{-} \varphi\right) . \tag{****}
\end{equation*}
$$

However, the computational method of Section 1, where predictable and optional projections are defined as Radon-Nikodym derivatives, has an independent interest, it may be carried out in situations not covered in the present paper, (see [1] for the case of an observation which contains continuous martingales and marked point processes; we also have in mind a possible extension to the two parameter filtering problem [13], for which projection theorems similar to those in Dellacherie [2] are not (yet) available.)

Section 3 is devoted to the filtering problem. It is a generalization, on one hand, of results of Duncan [5], and Zakaï [17], where an approach to the filtering problem is made via the reference probability method. On the other hand, we obtain a unified recursive filtering equation extending Kunita's equation to the case where X is only supposed to have the predictable representation property (in Kunita [8], or [1], X is a Wiener process, which is well known to have this property).

Section 2 is technically independent of Sections 1 and 3.

1. Projections of Martingale Exponentials

1.1. Preliminaries

If (E, \mathscr{E}) is a measurable space, and μ a positive finite measure on (E, \mathscr{E}), the conditional expectation $\mu(h \mid \mathscr{B})=\left(\frac{\mu}{\mu(1)}\right)(h \mid \mathscr{B})$ is well defined and known, for h in $L^{1}(E, \mathscr{E}, \mu)$ or $L^{2}(E, \mathscr{E}, \mu)$, and \mathscr{B} any sub- σ-field of \mathscr{E}. If μ is positive, and $\mathscr{B} \sigma$ finite (e.g.: there exists an increasing sequence (B_{n}) , $B_{n} \in \mathscr{B}$, such that: $E=\bigcup_{n} B_{n}$
and $\mu\left(B_{n}\right)<\infty$ for every n), and if $h \in L^{1}(E, \mathscr{E}, \mu)$, the formulas $1_{B_{n}} \mu(h \mid \mathscr{B})=1_{B_{n}}$ $\mu_{n}(h \mid B)$ where $\mu_{n}(A)=\mu\left(A \cap B_{n}\right)(A \in \mathscr{E})$, are consistent and define $(\mu(h \mid \mathscr{B})$. A similar argument allows us to define $\mu(h \mid \mathscr{B})$ if h is \mathscr{B}-locally in $L^{1}(E, \mathscr{E}, \mu)$, e.g.: there exists $B_{n} \in \mathscr{B}$, increasing to E, such that $1_{B_{n}} h \in L^{1}(E, \mathscr{E}, \mu)$ for every n. If $h \in L^{2}(E, \mathscr{E}, \mu), \mu(h \mid \mathscr{B})$ is simply defined as the L^{2}-projection of h on $L^{2}(E, \mathscr{B}, \mu)$. This extends as well if h is \mathscr{B} locally in $L^{2}(E, \mathscr{E}, \mu)$.

We shall apply the above remarks in the following setting: (Ω, F, P) is a probability space, with $\mathscr{F}=\left(\mathscr{F}_{t}, t \geqq 0\right)$ a filtration of sub σ-fields of F, satisfying the usual conditions. Let X be an element of $\mathscr{M}_{\text {loc }}^{2}(P, \mathscr{F})$, with the associated increasing \mathscr{F}-predictable process $\langle X, X\rangle\left(=\langle X, X\rangle^{P, \mathscr{F}}\right)$. We suppose that the following hypothesis is verified:

$$
\begin{equation*}
\langle X, X\rangle \quad \text { is } \mathscr{F}^{X} \text { predictable. } \tag{H.1}
\end{equation*}
$$

Remarks. 1. E. Lenglart has pointed out to us that (H.1) implies:

$$
X \in \mathscr{M}_{\mathrm{loc}}^{2}\left(P, \mathscr{F}^{X}\right) .
$$

Indeed, let S_{m} be a sequence of \mathscr{F}^{X} stopping times increasing P a.e. to ∞, such that $\langle X, X\rangle_{, \wedge S_{m}}$ is bounded. Existence of such a sequence follows from (H.1). By Doob's inequality ([11], VI, 1), we get:

$$
E\left[\sup _{t} X_{t \wedge S_{m}}^{2}\right] \leqq 4 E\left[\langle X, X\rangle_{S_{m}}\right]
$$

and this terminates the proof.
2. (H.1) is automatically verified if X is continuous, since then:

$$
\langle X, X\rangle_{t}=P_{(n \rightarrow \infty)} \lim _{\tau_{n}} \sum_{\tau_{n}}\left(X_{i_{i+1}}-X_{t_{i}}\right)^{2}
$$

where τ_{n} is a sequence of refining subdivisions of $[0, t]$, the mesh of which decreases to 0 . The validity of H. 1 will be more thoroughly investigated in Subsection 2.3.

Let $\varphi \in \mathscr{P}(\mathscr{F})$ be such that:

$$
\begin{equation*}
E \int_{0}^{\infty} \varphi_{s}^{2} d\langle X, X\rangle_{s}<\infty \tag{H.2}
\end{equation*}
$$

and define L as the unique ([3]) solution of:

$$
\begin{equation*}
L_{t}=1+\int_{0}^{t} L_{s-} \varphi_{s} d X_{s} \tag{1.1}
\end{equation*}
$$

From [3], it is known that:

$$
L_{t}=\exp \left(\int_{0}^{t} \varphi_{s} d X_{s}-\frac{1}{2} \int_{0}^{t} \varphi_{s}^{2} d\left\langle X^{c}, X^{c}\right\rangle_{s}\right) \prod_{s \leqq t}\left(1+\varphi_{s} \Delta X_{s}\right) \exp \left(-\varphi_{s} \Delta X_{s}\right)
$$

From (H.2), $L \in \mathscr{M}_{\text {loc }}^{2}(P, \mathscr{F})$, but we shall need the additional assumptions:

$$
\begin{equation*}
L \in \mathscr{M}^{2}(P, \mathscr{F}) \text { and: } \varphi \Delta X+1 \geqq 0 \tag{H.3}
\end{equation*}
$$

L is now a non-negative martingale, with mean 1 , so that we can define a probability Q on (Ω, F) by:

$$
\begin{equation*}
d Q=L_{\infty} d P \tag{1.2}
\end{equation*}
$$

Moreover, it follows from Van Schuppen-Wong [12] that:

$$
\begin{equation*}
M=X-\int \varphi d\langle X, X\rangle \in \mathscr{A}_{\mathrm{loc}}(Q, \mathscr{F}) \tag{1.3}
\end{equation*}
$$

We now make use of the first part of the preliminaries with $E=\Omega \times \mathbb{R}_{+}, \mathscr{E}$ $=F \otimes \mathscr{B}\left(\mathbb{R}_{+}\right), d \mu(s, \omega)=d\langle X, X\rangle_{s}(\omega) d P(\omega)$, and $\mathscr{B}=\mathscr{P}\left(\mathscr{F}^{X}\right)$. We first remark that $L_{-} \varphi$ belongs to $L^{2}(E, \mathscr{E}, \mu)$ since

$$
E \int_{0}^{\infty}\left(L_{s-} \varphi_{s}\right)^{2} d\langle X, X\rangle_{s}=E\left(L_{\infty}-1\right)^{2}<\infty
$$

To show that φ is \mathscr{B}-locally in $L^{1}\left(E, \mathscr{E}, \mu^{\varrho}\right)\left(\mu^{Q}=d\langle X, X\rangle d Q\right)$, we use the stopping times S_{m} of Remark 1:

$$
\begin{aligned}
E_{Q} \int_{0}^{S_{m}}\left|\varphi_{s}\right| d\langle X, X\rangle_{s} & =E_{P}\left[L_{\infty} \int_{0}^{s_{m}}\left|\varphi_{s}\right| d\langle X, X\rangle_{s}\right] \\
& \leqq\left(E_{P}\left(L_{\infty}^{2}\right)\right)^{\frac{1}{2}}\left\{E_{P}\left(\int_{0}^{s_{m}}\left|\varphi_{s}\right| d\langle X, X\rangle_{s}\right)^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

and

$$
E_{P}\left(\int_{0}^{S_{m}}\left|\varphi_{s}\right| d\langle X, X\rangle_{s}\right)^{2} \leqq E_{P}\left[\left(\int_{0}^{S_{m}}\left(\varphi_{s}\right)^{2} d\langle X, X\rangle_{s}\right)\langle X, X\rangle_{s_{m}}\right]<\infty
$$

We shall note $\mu\left(L_{-} \varphi \mid \mathscr{B}\right)={ }^{3 P}\left(L_{-} \varphi\right)$ and $\mu^{Q}(\varphi \mid \mathscr{B})={ }^{3 Q} \varphi$, thereby indicating the obvious links with Dellacherie's predictable projections.

Remark. In [1] and [21], such a definition of the predictable projection is used. It is interesting to show how these previous predictable projections are extensions of Dellacherie's. Suppose for simplicity that $X \in \mathscr{M}^{2}(P, \mathscr{F})$. If we use the notations of [2] for (P, \mathscr{F}^{X})-projections, we have, from the predictable section theorem: $\forall H \in b\left(F \otimes \mathscr{P}\left(\mathbb{R}_{+}\right)\right),\left.\right|^{3} H\left|\leqq{ }^{3}\right| H \mid$ and $\left({ }^{3} H\right)^{2} \leqq{ }^{3}\left(H^{2}\right)$ outside a P evanescent set; thus, the application $H \rightarrow{ }^{3} H$ defined on $b\left(F \otimes \mathscr{B}\left(\mathbb{R}_{+}\right)\right)$extends uniquely in a linear contraction from $L^{1(2)}\left(F \otimes \mathscr{B}\left(\mathbb{R}_{+}\right), \mu\right)$ to $L^{1(2)}\left(\mathscr{P}\left(\mathscr{F}^{X}\right), \mu\right)$.

1.2. The Separation Theorem

The following representation hypothesis is crucial for our purpose:

$$
\begin{equation*}
L^{2}\left(\mathscr{F}_{\infty}^{X}, P\right)=\left\{a+\int_{0}^{\infty} H_{s} d X_{s} \mid a \in \mathbb{R}, H \in \mathscr{P}\left(\mathscr{F}^{X}\right) ; E_{P} \int_{0}^{\infty} H_{s}^{2} d\langle X, X\rangle_{s}<\infty\right\} \tag{H.4}
\end{equation*}
$$

This representation property is the subject of [14, 15 and 7 (see in particular Theorem 1.5)]; when it is verified, we say that X has the predictable repre-
sentation property. Let us point out that (H.4) immediately implies a representation of square integrable martingales as stochastic integrals. Moreover, we know from [15 and 7] that (H.4) also implies the following representation of local martingales:
Proposition 1. (H.4) is equivalent to: every local (P, \mathscr{F}^{X}) martingale M can be written as:

$$
M_{t}=a+\int_{0}^{t} H_{s} d X_{s}
$$

with $a \in \mathbb{R}_{+}$, and $H \in \mathscr{P}\left(\mathscr{F}^{X}\right)$ such that $\left(\int_{0}^{0} H_{s}^{2} d[X, X]_{s}\right)^{\frac{1}{2}}$ is $\left(P, \mathscr{F}^{X}\right)$ locally integrable.

We now state the main result of this section. All notions involved in the next theorem are relative to the filtration \mathscr{F}^{X}.
Theorem 1. Let ${ }^{1 P} L$ be a right continuous version of the $\left(P, \mathscr{F}{ }^{X}\right)$ martingale $E_{P}\left(\left.\frac{d Q}{d P} \right\rvert\, \mathscr{F}_{t}^{X}\right)$. Then, under H.1, H.2, H.3, H.4:

$$
\begin{align*}
{ }^{1 P} L & =1+\int{ }^{3 P}\left(L_{-} \varphi\right) d X \tag{1.4}\\
& =1+\int\left({ }^{1 P} L\right)_{-}{ }^{3 Q} \varphi d X \tag{1.5}
\end{align*}
$$

(equivalently: ${ }^{1 P} D(\varphi)=D\left({ }^{3 Q} \varphi\right)$)
Moreover, $\tilde{X}=X-\int^{3 Q} \varphi d\langle X, X\rangle \in \mathscr{A}_{\mathrm{loc}}\left(Q, \mathscr{F}^{X}\right)$
Remarks. 1. The notations of Theorem 1 are consistent since ${ }^{1 P} L$ is indeed the optional projection of L onto \mathscr{F}^{X} in the sense of [2].
2. In the next section, formula (1.4) will appear as a particular case of a general projection formula of stochastic integrals.
3. From [24] (Theorem 3.1), we know that the hypothesis (H.4) implies:

$$
\begin{equation*}
L^{2}\left(\mathscr{F}_{\infty}^{X}, Q\right)=\left\{\int_{0}^{\infty} H_{\mathrm{s}} d \tilde{X}_{s} \mid H \in \mathscr{P}\left(\mathscr{F}^{X}\right), E \int_{0}^{\infty} H_{s}^{2} d\langle\tilde{X}, \tilde{X}\rangle^{Q, \mathscr{F}^{X}}<\infty\right\} \tag{H.A}
\end{equation*}
$$

This result will only be used in the sequel as a remark concerning the Equation (3.7) (Theorem 4); it appears in Kunita [18], when X is continuous, and is also known when $X=N-A$ is the martingale process obtained from the point process N_{t} with stochastic intensity A_{t}.

Proof of Theorem 1. From the end of Subsection 1.1, the two sides of (1.4) are well defined. In order to prove this formula, it is sufficient to verify:

$$
E_{P}\left({ }^{1 P} L_{t} V_{t}\right)=E_{P}\left[\left(1+\int_{0}^{t}{ }^{3 P}\left(L_{-} \varphi\right) d X\right) V_{t}\right]
$$

for all square integrable (P, \mathscr{F}^{X}) martingales V, with $V_{0}=0$. By H.4, V can be
written as $\int H d X$, with $H \in \mathscr{P}\left(\mathscr{F}^{X}\right)$. Therefore:

$$
\begin{aligned}
E_{P}\left[1^{1} L_{t} V_{t}\right] & =E_{P}\left[L_{t} V_{t}\right] \\
& =E_{P}\left[\left(\int_{0}^{t} L_{-} \varphi d X\right)\left(\int_{0}^{t} H d X\right)\right] \\
& =E_{P}\left[\int_{0}^{t} H L_{-} \varphi d\langle X, X\rangle\right] \\
& =E_{P}\left[\int_{0}^{t} H^{3 P}\left(L_{-} \varphi\right) d\langle X, X\rangle\right]
\end{aligned}
$$

and this last expression is equal to $E_{P}\left[\left(1+\int_{0}^{t}{ }^{3 P}\left(L_{-} \varphi\right) d X\right) V_{t}\right]$ thus proving (1.4).
Again using the \mathscr{F}^{X} stopping times S_{m} of the remark in Subsection 1.1, we can suppose $\langle X, X\rangle$ bounded.

Then, ${ }^{3 P}\left(L_{-} \varphi\right)$ and $\left({ }^{1 P} L\right)_{-}{ }^{3 Q} \varphi$ belong to $L^{1}(d\langle X, X\rangle d P)$ as we show, for example, for the second term:

$$
\begin{aligned}
& E_{P}\left[\int_{0}^{\infty} 1{ }^{1 P} L_{s-}\left|{ }^{3 Q} \varphi_{s}\right| d\langle X, X\rangle_{s}\right] \\
&=E_{P}\left[{ }^{1 P^{2}} L_{\infty} \int_{0}^{\infty}\left|{ }^{3 Q} \varphi_{s}\right| d\langle X, X\rangle_{s}\right] \\
&=E_{P}\left[L_{\infty} \int_{0}^{\infty}\left|{ }^{3 Q} \varphi_{s}\right| d\langle X, X\rangle_{s}\right] \\
&=E_{Q}\left(\int_{0}^{\infty}| |^{3 Q} \varphi_{s} \mid d\langle X, X\rangle_{s}\right)
\end{aligned} \begin{aligned}
& E_{Q} \int_{0}^{\infty} 3 Q|\varphi|_{s} d\langle X, X\rangle_{s} \\
& \\
& =E_{Q} \int_{0}^{\infty}|\varphi| d\langle X, X\rangle_{s}<\infty
\end{aligned}
$$

from the end of Subsection 1.1.
To show that ${ }^{3 P}\left(L_{-} \varphi\right)=\left({ }^{1 P} L\right)_{-}{ }^{3 Q} \varphi, d\langle X, X\rangle d P$ a.e. and thus obtain (1.5), it is now sufficient to verify that:

$$
E_{P}\left[\int_{0}^{\infty} 3{ }^{3 P}\left(L_{-} \varphi\right)_{s} H_{s} d\langle X, X\rangle_{s}\right]=E_{P}\left[\int_{0}^{\infty}\left({ }^{1 P} L\right)_{s-}{ }^{3 Q} \varphi_{s} H_{s} d\langle X, X\rangle_{s}\right]
$$

for every bounded, $\mathscr{P}\left(\mathscr{F}^{X}\right)$ measurable process H.
The right-hand side is equal to:

$$
\begin{aligned}
& E_{P}\left[{ }^{1 P} L_{\infty} \int_{0}^{\infty} 3 Q_{s} H_{s} d\langle X, X\rangle_{s}\right] \\
& \quad=E_{Q}\left[\int_{0}^{\infty} 3 Q^{3} \varphi_{s} H_{s} d\langle X, X\rangle_{s}\right]=E_{Q}\left[\int_{0}^{\infty} \varphi_{s} H_{s} d\langle X, X\rangle_{s}\right]
\end{aligned}
$$

which, in turn, is equal to:

$$
E_{P} \int_{0}^{\infty} L_{s-} \varphi_{s} H_{s} d\langle X, X\rangle_{s}=E_{P} \int_{0}^{\infty} 3 P\left(L_{-} \varphi\right)_{s} H_{s} d\langle X, X\rangle_{s}
$$

Examples. i) If X is a continuous martingale of $\mathscr{M}_{\text {loc }}(P, \mathscr{F})$, we have:

$$
L=\exp \int_{0} \varphi d X-\frac{1}{2} \int_{0} \varphi^{2} d\langle X, X\rangle
$$

Theorem 1 reads:

$$
{ }^{1 P} L=\exp \int_{0}^{1}{ }^{3 Q} \varphi d X-\frac{1}{2} \int_{0}^{1}\left({ }^{3 Q} \varphi\right)^{2} d\langle X, X\rangle
$$

and

$$
\tilde{X}=X-\int_{0}^{3 Q} \varphi d\langle X, X\rangle \in \mathscr{M}_{\operatorname{loc}}\left(Q, \mathscr{F}^{X}\right)
$$

The equality $\langle\tilde{X}, \tilde{X}\rangle^{Q, \mathscr{F}^{x}}=\langle X, X\rangle$ proceeds from the quadratic approximation of these processes which has already been mentioned several times. Consequently, if X is a (P, \mathscr{F}) Wiener process (e.g.: $\langle X, X\rangle_{t}=t$) it follows from Doob's characterization theorem that \tilde{X} is a $\left(Q, \mathscr{F}^{X}\right)$ Wiener.
ii) Let $X=N-A$ be the compensated martingale of N, a counting process whose jumps are totally inaccessible (thus, \boldsymbol{A} is continuous). Then:

$$
L=\exp \left(-\int_{0}^{\dot{0}} \varphi_{s} d A_{s}\right) \prod_{s \leqq .}\left(1+\varphi_{s} \Delta N_{s}\right)
$$

and, from Theorem 1:

$$
{ }^{1 P} L=\exp \left(-\int_{0}^{3 Q} \varphi_{s} d A_{s}\right) \prod_{s \leqq}\left(1+{ }^{3 Q} \varphi_{s} \Delta N_{s}\right)
$$

Finally, let us remark, using the end of Theorem 1 , that $\int_{0}\left(1+{ }^{3 Q} \varphi_{s}\right) d A_{s}$ is the (Q, \mathscr{F}) dual predictable projection of N.

2. Projections of Semi-Martingales

Let (Ω, F, P) be a complete probability space, endowed with a filtration \mathscr{F} $=\left(\mathscr{F}_{t}, t \geqq 0\right)$ satisfying the usual conditions.

In the sequel, we shall need the following extension of the optional projections of bounded measurable processes: if X is a $\mathscr{B}\left(\mathbb{R}_{+}\right) \otimes F$ measurable process, such that:

$$
\forall T \in \mathscr{T}(\mathscr{F}), E\left[\left|X_{r}\right| 1_{(T<\infty)}\right]<\infty
$$

then, there exists a unique optional process Y valued in \mathbb{R}, verifying: for every \mathscr{F} stopping time $T, E\left[X_{T} 1_{(T<\infty)} \mid \mathscr{F}_{T}\right]=Y_{T} 1_{(T<\infty)}, P$ a.e. and, we shall write: Y $={ }^{1} X$.

Also, we recall the definition of a quasi-martingale: a process $X=\left(X_{t}, t \geqq 0\right)$ is a \mathscr{F}-quasi-martingale if, and only if, it is adapted, right continuous, left-hand limited, and such that

$$
V_{\mathscr{F}}(X)=\sup _{\tau} E\left[\sum_{i=0}^{n-1}\left|E\left(X_{t_{i+1}}-X_{t_{i}} \mid \mathscr{F}_{t_{i}}\right)\right|+\left|X_{t_{n}}\right|\right]<\infty,
$$

where the supremum is taken over the finite sequences $\tau=\left(t_{0}, t_{1}, \ldots, t_{n}\right)$, with $0 \leqq t_{0}<t_{1}<\cdots<t_{n}<\infty$, and $n \in \mathbb{N}$.

It is well known that X is a quasi-martingale if, and only if, it is the difference of two positive, right-continuous, and integrable supermartingales.

2.1. Canonical Projections of Semi-Martingales

In this paper, a \mathscr{F} semi-martingale is a process $X=M+A$ such that M is a uniformly integrable \mathscr{F}. martingale and A a right continuous \mathscr{F} adapted process with bounded integrable variation, i.e.: $E \int_{0}^{\infty}\left|d A_{s}\right|<\infty$. Note that this definition is different from Meyer's [10]; in particular, a semi-martingale X-in our sense - is a quasi-martingale, as:

$$
V_{\mathscr{F}}(X) \leqq E\left[\int_{0}^{\infty}\left|d A_{s}\right|\right]<\infty .
$$

The following lemma shows the existence and uniqueness of a canonical decomposition for our semi-martingale.

Lemma 1. Let $X=M+A$ be a \mathscr{F}. semi-martingale. Then, X can be written as: X $=N+B$, where N is a uniformly integrable \mathscr{F} martingale, and B a \mathscr{F} predictable process with bounded integrable variation $\left(e . g .: E \int_{0}^{\infty}\left|d B_{s}\right|<\infty\right)$. Such a decom-
position is unique.

Proof: routine.
The decomposition obtained in the lemma is called the canonical decomposition of X. Using the notations of the lemma, we write $B=X^{3}$. This is consistent with Dellacherie's system of notations, since if $X=A$, then indeed X^{3} $=A^{3}$.

With the complete probability space (Ω, F, P), we also suppose that two filtrations $\mathscr{F}=\left(\mathscr{F}_{t}, t \geqq 0\right)$ and $\mathscr{G}=\left(\mathscr{G}_{t}, t \geqq 0\right)$ are given. They satisfy the usual conditions, as well as:

$$
\forall t \geqq 0, \quad \mathscr{G}_{t} \subseteq \mathscr{F}_{t}, \quad \text { and } \quad \vee_{t} \mathscr{F}_{t}=F .
$$

All projections considered in this subsection will be relative to \mathscr{G}, and this will no longer be mentioned.

Proposition 2. The optional projection ${ }^{1} X$ of $a \mathscr{F}$-quasi-martingale is a \mathscr{G} quasimartingale.

Moreover, we have the inequality:

$$
\begin{equation*}
V_{\mathscr{G}}\left({ }^{1} X\right) \leqq V_{\mathscr{F}}(X) \tag{2.1}
\end{equation*}
$$

Proof. Let $0 \leqq t_{0}<t_{1}<\cdots<t_{n}<\infty$.
The inequality (2.1) is a consequence of:

$$
\begin{aligned}
& E\left[\sum_{i=0}^{n-1} \mid E\left({ }^{1} X_{t_{i+1}}-{ }^{1} X_{t_{i}}\left|\mathscr{G}_{t_{i}}\right|+\left|{ }^{1} X_{t_{n}}\right|\right]\right. \\
& \quad \leqq E\left[\sum_{i=0}^{n-1}\left|E\left(X_{t_{i+1}}-X_{t_{i}} \mid \mathscr{F}_{t_{i}}\right)\right|+\left|X_{t_{n}}\right|\right]
\end{aligned}
$$

It remains to show that if X is a \mathscr{F}-quasi-martingale, ${ }^{1} X$ is rightcontinuous, with left-hand limits. By difference, we may suppose that X is a positive, integrable, right-continuous (and thus, left-hand limited) \mathscr{F}-supermartingale. For every $n \in \mathbb{N}, X \wedge n$ has the same properties: therefore, its \mathscr{G} optional projection ${ }^{1}(X \wedge n)-$ which is a \mathscr{G}-supermartingale is also right continuous ([2], T 20, p. 101). Finally, by the optional section theorem, the sequence (${ }^{1}(X \wedge n), n \in \mathbb{N}$) is increasing, and its limit is ${ }^{1} X$. From ([11], T16, p. 135), ${ }^{1} X$ is therefore a right-continuous \mathscr{G}-supermartingale.

We are now interested in the \mathscr{G}-optional projection of a \mathscr{F} semi-martingale; the proof of the next proposition - which is a reforment of proposition 2 -is straightforward.

Proposition 3. The optional projection ${ }^{1} X$ of a \mathscr{F}-semi-martingale is a \mathscr{G}-semimartingale. Moreover, if $X=N+B$ is the canonical \mathscr{F} decomposition of X, we have:

$$
\begin{equation*}
\left({ }^{1} X\right)^{3}=B^{3} \tag{2.2}
\end{equation*}
$$

Here is an immediate consequence of Proposition 3: let X be a \mathscr{F}-semimartingale, with \mathscr{F}-canonical decomposition $X=N+B$. If, moreover, X is \mathscr{G} adapted, then it is a \mathscr{G}-semi-martingale with \mathscr{G}-canonical decomposition $X=\{N$ $\left.+\left(B-B^{3}\right)\right\}+B^{3}$. The aim of the end of Section 2 is to study the optional projections of \mathscr{F}-semi-martingales defined by stochastic integrals, for instance: $U=\mathscr{F} \int H d X$, with H a \mathscr{F}-predictable (or optional) process, when X is a \mathscr{G}_{-} semi-martingale, as well as a \mathscr{F} one. More precisely, we want to compare ${ }^{1} U$ and $\mathscr{G} . \int\left({ }^{1 \text { or }}{ }^{3} H\right) d X$, in order to extend to semi-martingales the following result: if A is a \mathscr{G}-predictable process with integrable bounded variation $\left(E \int_{0}^{\infty}\left|d A_{\mathrm{s}}\right|<\infty\right)$ and H a bounded $F \otimes \mathscr{B}\left(\mathbb{R}_{+}\right)$measurable process (for instance, a bounded \mathscr{F} predictable process), then $\left(\int H d A\right)^{3}=\int{ }^{3} H d A$, and so, from proposition 1, we get: $\left[{ }^{1}\left(\int H d A\right)\right]^{3}=\int^{3} H d A$.

2．2．The Spaces $\mathscr{L}, \mathscr{L}^{\prime}$ ，and the Associated Hilbert Projections of Stochastic Integrals

The space \mathscr{L} consisting of the square integrable martingales M（e．g．： $E\left(M_{\infty}^{2}\right)<\infty$ ，with $M_{0}=0$ ，which are simultaneously \mathscr{F} and \mathscr{G}－martingales is particularly relevant to the previously presented projection problem．
M belonging to \mathscr{L} ，we examine how the different increasing processes associated with M ，via \mathscr{F} or \mathscr{G} ，and in general via a filtration with respect to which M is a martingale，depend，or do not depend on such a filtration．
－First，$[M, M]$ is independent of \mathscr{F} or \mathscr{G} ，since
$[M, M]_{t}=P . \lim _{(n \rightarrow \infty)} \sum_{\tau_{n}}\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2}$,
where τ_{n} is a sequence of refining subdivisions of $[0, t]$ ，the mesh of which decreases to 0 ．Let now $M \in \mathscr{L}$ ，be written as $M=M^{c}+M^{d}=\tilde{M}^{c}+\tilde{M}^{d}$ ，where M^{c} $+M^{d}\left(\mathrm{resp}: \tilde{M}^{c}+\tilde{M}^{d}\right)$ is its \mathscr{F}（resp： $\left.\mathscr{G}\right)$ decomposition as a sum of a continuous and a＂purely discontinuous＂（e．g．：compensated sum of jumps）martingale． Then，the increasing processes $\left\langle M^{c}, M^{c}\right\rangle$（relative to \mathscr{F} ）and $\left\langle\tilde{M}^{c}, \tilde{M}^{c}\right\rangle$（relative to $\mathscr{G})$ are equal，as both are the continuous part of $[M, M]$ ．
－On the contrary，$\langle M, M\rangle$ may depend on the filtration，and we shall write：$\left\langle\langle M, M\rangle=\langle M, M\rangle^{\mathscr{F}}\right.$ and $\langle M, M\rangle=\langle M, M\rangle^{\mathscr{G}}$ ．As in Subsection 2．1，all projections are now taken with respect to the smaller filtration \mathscr{G} ．

Next lemma ensures that no confusion is possible when one deals with stochastic integration of \mathscr{G}－predictable processes（which are also \mathscr{F}－predictable）：

Lemma 2．Let $M \in \mathscr{L}$
（a）Then，$\langle M, M\rangle^{3}=\langle M, M\rangle$
（b）Let $H \in \mathscr{P}(\mathscr{G})$ such that $E \int_{0}^{\infty} H_{s}^{2} d\langle M, M\rangle_{s}<\infty$ ．Then， $\mathscr{F} \int H d M$ is well
defined and：

$$
\begin{equation*}
\mathscr{F} \int H d M=\mathscr{G} . \int H d M . \tag{2.3}
\end{equation*}
$$

Proof．（a）is a consequence of the following equalities：for $s<t$ ，

$$
\left.\left.E[《 M, M\rangle_{t}-《 M, M\right\rangle_{s} \mid \mathscr{G}_{s}\right]=E\left[M_{t}^{2}-M_{s}^{2} \mid \mathscr{G}_{s}\right]=E\left[\langle M, M\rangle_{t}-\langle M, M\rangle_{s} \mid \mathscr{G}_{s}\right]
$$

Now，from（a），we obtain the equality：

$$
\begin{equation*}
\left.\left.E\left(\int_{0}^{\infty} H_{s}^{2} d 《 M, M\right\rangle\right\rangle_{s}\right)=E\left(\int_{0}^{\infty} H_{s}^{2} d\langle M, M\rangle_{s}\right)<\infty, \tag{2.4}
\end{equation*}
$$

and therefore， $\mathscr{F} \int H d M$ and $\mathscr{G} . \int H d M$ are defined．Moreover，if H is an elementary process of $\mathscr{P}(\mathscr{G}), H=\sum H_{t_{i}} 1_{]_{\left.t_{i}, t_{i+1}\right]}}$ satisfying the integrability con－ dition，the equality（2．3）is immediate．Using the isometry formula（2．4），（2．3） extends to all $H \in \mathscr{P}(\mathscr{G})$ such that $E \int_{0}^{\infty} H_{s}^{2} d\langle M, M\rangle_{s}<\infty$ ．

In fact，we have just proved that \mathscr{L} is a \mathscr{G}－stable subspace of $\mathscr{M}^{2}(\mathscr{G})$ ，as defined by Kunita－Watanabe in［19］，i．e．： \mathscr{L} is a closed subspace of $\mathscr{M}^{2}(\mathscr{G})$ ， stable by integration of \mathscr{G}－predictable integrands H with respect to $M \in \mathscr{L}$ （under the condition：$E\left(\int_{0}^{\infty} H_{s}^{2} d\langle M, M\rangle_{s}\right)<\infty$ ）．

The set \mathscr{L}^{\prime} of martingales $M \in \mathscr{L}$ such that $《 M, M 》$ is \mathscr{G}－predictable plays a fundamental part in the projection problem．The following lemma gives a better understanding of \mathscr{L}^{\prime} ：

Lemma 3．If $M \in \mathscr{L}$ ，the following assertions are equivalent：
1）$M \in \mathscr{L}^{\prime}$
2）$\langle M, M\rangle=\langle M, M\rangle$
3）$M^{2}-\langle M, M\rangle$ is a \mathscr{F}－martingale．
Proof． 1$) \Rightarrow 2):\langle M, M\rangle-\langle M, M\rangle$ is a \mathscr{G}－predictable martingale，with bounded variation，which is null at 0 ，and so identically null．2）$\Rightarrow 1$ ）or 3 ）is obvious．

The proof of： 3$) \Rightarrow 2$ ）is similar to that of 1$) \Rightarrow 2$ ）．
There is no guarantee in general that \mathscr{L}^{\prime} be a vector space．However，let us study this case．
Lemma 4．The following assertions are equivalent：
1） \mathscr{L}^{\prime} is a vector space．
2）$\left.\forall M \in \mathscr{L}^{\prime}, \forall N \in \mathscr{L}^{\prime}, 《 M, N\right\rangle=\langle M, N\rangle$
3）$\forall M \in \mathscr{L}^{\prime}, \forall N \in \mathscr{L}^{\prime}, M N-\langle M, N\rangle$ is a \mathscr{F}－martingale．
If either one of the above assumptions is satisfied， \mathscr{L}^{\prime} is a \mathscr{G} stable subspace of $\mathscr{M}^{2}(\mathscr{G})$ ．
Proof．1）$\Leftrightarrow 2$ ）is an immediate consequence of the identity：

$$
《 M+N, M+N\rangle=\langle\langle M, N\rangle+2\langle M, N\rangle+\langle\langle N, N\rangle
$$

and the analogous one for $\langle M+N, M+N\rangle$ ．The proof of 2）$\Leftrightarrow 3$ ）is the same as in Lemma 3.

Suppose now that \mathscr{L}^{\prime} is a vector space．It is closed in $\mathscr{M}^{2}(\mathscr{G})$ ，as if $M^{(n)} \in \mathscr{L}^{\prime}$ ， $M^{(n)} \xrightarrow[M^{2}(\xi)]{ } M$ ，then $\left\langle M^{(n)}, M^{(n)}\right\rangle_{t}$ converges to $\langle M, M\rangle_{t}$ in L^{1} uniformly in t ． Moreover，if $H \in \mathscr{P}(\mathscr{G})$ and $M \in \mathscr{L}^{\prime}$ are such that $E \int_{0}^{\infty} H_{s}^{2} d\langle M, M\rangle_{s}<\infty$ ，then U $=\mathscr{F} \int H d M=\mathscr{G} \cdot \int H d M \in \mathscr{L} \quad$ and $\left.\left.\quad 《 U, U\right\rangle=\int H^{2} d 《 M, M\right\rangle=\int H^{2} d\langle M, M\rangle$ $=\langle U, U\rangle$ thus showing：$U \in \mathscr{L}^{\prime}$ ． \mathscr{L}^{\prime} is therefore a \mathscr{G} stable subspace of $\mathscr{M}^{2}(\mathscr{G})$ ．

At this point，we may ask the question：is \mathscr{L}^{\prime} a strict subset of \mathscr{L} ？It is not so easy to find a quite general counterexample．However，here is one：let T be a \mathscr{F}－predictable stopping time and $H \in L^{2}\left(\mathscr{F}_{T}\right) \ominus L^{2}\left(\mathscr{F}_{T-}\right)$ ．The process M defined by $M_{t}=H 1_{(T \leqq t)}$ is a square integrable \mathscr{F}－martingale．We have：$\langle M, M\rangle_{t}$ $=E\left[H^{2} \mid \mathscr{F}_{T-}\right] 1_{(T \leq t)}$ ．Take $\mathscr{G}=\mathscr{F}^{M}$ ．In general，$\langle M, M 》$ is not \mathscr{G}－predictable，as the following particular case shows：suppose $\mathscr{\mathscr { F }}_{t}=\mathscr{F}_{0}$ for every $t<1$ ，and $\mathscr{F}_{t}=\mathscr{F}_{1}$
for every $t \geqq 1$ ；take $T=1, H \in L^{2}\left(\mathscr{F}_{1}\right) \ominus L^{2}\left(\mathscr{F}_{0}\right)$ ．Then，$《 M, M 》 \in \mathscr{P}\left(\mathscr{F}^{M}\right)$ if，and only if $E\left[H^{2} \mid \mathscr{F}_{0}\right] \in \sigma(H)$ and it is now easy to give an explicit counterexample： let $\left(\mathbb{R}^{2}, \mathscr{B}\left(\mathbb{R}^{2}\right)\right)$ be given with the probability $P=\mu \otimes v, \mu$ and v already being probabilities on $\left(\mathbb{R}, \mathscr{B}(\mathbb{R})\right.$ ），having finite second moments，and such that $\int y d v(y)$ $=0 . X$ and Y denote the coordinate variables on $\mathbb{R}^{2}(X(x, y)=x, Y(x, y)=y), \mathscr{F}_{0}$ $=\sigma\{X\} V \mathscr{N}_{P}, \mathscr{F}_{1}=\sigma\{X, Y\} \vee \mathscr{N}_{P}$ ，where \mathscr{N}_{P} is the class of P negligible sets of R^{2} ． Then，$H=X Y \in L^{2}\left(\mathscr{F}_{1}\right) \ominus L^{2}\left(\mathscr{F}_{0}\right)$ ，and $E\left[H^{2} \mid \mathscr{F}_{0}\right]=X^{2} E\left(Y^{2}\right) \notin \sigma\{H\} V \mathscr{N}_{P}$ for＂gen－ eral＂μ and v ．

Let us now slightly change our point of view．The filtration \mathscr{F} being fixed，it is natural to consider the square－integrable \mathscr{F} martingales M which belong to $\mathscr{L}^{\prime}(\mathscr{F}, \mathscr{G})$（using an obvious notation）for all \mathscr{G} such that $\mathscr{F}^{M} \subseteq \mathscr{G} \subseteq \mathscr{F}$ ．

In other words，we consider the class

$$
\mathscr{I}=\left\{M \in \mathscr{M}^{2}(\mathscr{F}) / 《 M, M 》 \in \mathscr{P}\left(\mathscr{F}^{M}\right)\right\}
$$

（the letter \mathscr{I} is used for intrinsic）．Here are two remarkable sub－classes of \mathscr{I} ：
－the square integrable continuous \mathscr{F}－martingales：indeed，for such M＇s， $《 M, M\rangle$ is adapted to \mathscr{F}^{M}（from the second remark in Subsection 1．1），and continuous；therefore，it is in $\mathscr{P}\left(\mathscr{F}^{M}\right)$ ．
－the compensated sums of \mathscr{F} totally inaccessible stopping times．Let $\left(T_{n}\right)$ be a sequence of \mathscr{F} totally inaccessible stopping times，which are strictly ordered，e．g．：$T_{n}<T_{n+1} P$ a．e．and increasing P a．e．to infinity．Let M be defined by $M_{t}=\sum_{n} 1_{\left(T_{n} \leqq t\right)}-A_{t}$ ，where A_{t} is the \mathscr{F} dual predictable projection of $\sum_{n} 1_{\left(T_{n} \leqq t\right)}$ ．A is continuous；therefore，the T_{n}＇s are the successive jumping times of M ，and so，are \mathscr{F}^{M} stopping times．This implies that A is \mathscr{F}^{M} adapted，and so， $A \in \mathscr{P}\left(\mathscr{F}^{M}\right)$ ．Moreover，$\langle M, M 》=A$ ，so that：$M \in \mathscr{I}$ ．

2．3． \mathscr{G} Projections of \mathscr{F} Stochastic Integrals

In the present subsection，we consider measurable integrands（not necessarily optional）．This provides a natural setting for our results，although the extension of stochastic integration to optional integrands，made by P．A．Meyer in［10］，is maximal in the following sense：indeed，let $M \in \mathscr{M}_{\mathrm{loc}}(P, \mathscr{F})$ and H be a $F \otimes \mathscr{B}\left(\mathbb{R}_{+}\right)$measurable process such that $E \int_{0} H_{s}^{2} d[M, M]_{s}<\infty$ ；then if $\mathscr{F}: \int H d M$ is defined by the same method as P．A．Meyer＇s in［10］，it is shown in ［16］（Proposition 1，page 483）that $\mathscr{F} \int H d M=\mathscr{F} \int{ }^{1} H d M\left({ }^{1} H\right.$ is here the $L^{2}(\mathcal{O}(\mathscr{F}), d[M, M] d P)$ projection of H（see Subsection 1．1）．

Proposition 4．Let $M \in \mathscr{L}$ ，and H be a $F \otimes \mathscr{B}\left(\mathbb{R}_{+}\right)$measurable process such that $E \int_{0}^{\infty} H_{s}^{2} d[M, M]_{s}<\infty$.

Then，$P_{\mathscr{E}}^{1}\left(\mathscr{F} \int H d M\right)=P_{\mathscr{L}}\left(\mathscr{G} . \int H d M\right)=P_{\mathscr{L}}\left(\mathscr{G} \cdot \int{ }^{1} H d M\right)$ where ${ }^{(1){ }^{1} H}$ is here the $L^{2}(\mathcal{O}(\mathscr{G}), d[M, M] d P)$ projection of H ．
（1）See the last remark of Subsection 1．1．

Proof. The last equality comes from $\mathscr{G} . \int H d M=\mathscr{G} . \int{ }^{1} H d M$. Let N be another martingale of \mathscr{L}. Then:

$$
\begin{aligned}
E \int_{0}^{\infty} H_{s} d[M, N]_{s} & =E\left[\left(\mathscr{F} \int H d M\right)_{\infty} N_{\infty}\right] \\
& =E\left[\left(\mathscr{F} \int H d M\right)_{\infty} N_{\infty}\right] \\
& =E\left[\left\{P_{\mathscr{L}}^{1}\left(\mathscr{F} \int H d M\right)\right\}_{\infty} N_{\infty}\right] .
\end{aligned}
$$

On the other hand, we have:

$$
\begin{aligned}
E \int_{0}^{\infty} H_{s} d[M, N]_{s} & =E\left[\left(\mathscr{G} \int H d M\right)_{\infty} N_{\infty}\right] \\
& =E\left[\left\{P_{\mathscr{L}}\left(\mathscr{G} \int H d M\right)\right\}_{\infty} N_{\infty}\right] .
\end{aligned}
$$

As the equality $E\left[\left\{P_{\mathscr{L}}{ }^{1}\left(\mathscr{F} \int H d M\right)\right\}_{\infty} N_{\infty}\right]=E\left[\left\{P_{\mathscr{L}}\left(\mathscr{G} . \int H d M\right)\right\}_{\infty} N_{\infty}\right]$ takes place for every $N \in \mathscr{L}$, we obtain:

$$
P_{\mathscr{L}}{ }^{1}\left(\mathscr{F} \int H d M\right)=P_{\mathscr{L}}\left(\mathscr{G} \int H d M\right) .
$$

Let us remark that no hypothesis on the \mathscr{G}-martingales, or even on the space \mathscr{L}, has been made in Proposition 4, but the result does not give an explicit formula.

However, we now give a sufficient condition to obtain such a formula:
Corollary. Let the hypotheses of Proposition 4 be verified. Note $U={ }^{1}\left(\mathscr{F} \cdot \int H d M\right)$ and $V=\mathscr{G}$. $\int{ }^{1} H d M$.

If $E\left(U_{\infty}^{2}\right)=E\left(V_{\infty}^{2}\right), U$ belongs to \mathscr{L} iff V belongs to \mathscr{L}, and then $U=V$.
Proof. From Proposition 4, we have: $P_{\mathscr{L}}(U)=P_{\mathscr{L}}(V)$. Then, U belongs to \mathscr{L} iff U $=P_{\mathscr{L}}(V)$.

Writing $V=P_{\mathscr{L}}(V)+P_{\mathscr{L} \perp}(V)$, we get:

$$
\left.E\left(V_{\infty}^{2}\right)=E\left[\left(P_{\mathscr{L}}(V)\right)_{\infty}^{2}\right]+E\left(P_{\mathscr{L}}(V)\right)_{\infty}^{2}\right) .
$$

If $U=P_{\mathscr{L}}(V)$, the hypothesis $E\left(U_{\infty}^{2}\right)=E\left(V_{\infty}^{2}\right)$, implies then:
$P_{\mathscr{L}^{1}}(V)=0$, and so $V=P_{\mathscr{L}}(V)=U$.
Conversely, if V belongs to \mathscr{L}, we have: $V=P_{\mathscr{L}}(U)$, and the equality:

$$
E\left[U_{\infty}^{2}\right]=E\left[P_{\mathscr{L}}(U)_{\infty}^{2}\right]+E\left[P_{\mathscr{L}^{\prime}}(U)_{\infty}^{2}\right]
$$

then gives $P_{\mathscr{L} \perp}(U)=0$, and $U=P_{\mathscr{L}}(U)=V$.
Remark. If M is quasi-left continuous (for \mathscr{F}, and then for $\mathscr{G}), H \in \mathcal{O}(\mathscr{F})$, and $U \in$ \mathscr{L}, the inequality $E\left(V_{\infty}^{2}\right) \leqq E\left(U_{\infty}^{2}\right)$ is always verified.

Indeed, we have:

$$
\begin{aligned}
E\left(V_{\infty}^{2}\right) & =E \int_{0}^{\infty}\left({ }^{1} H\right)_{s}^{2} d[M, M]_{s} \\
& \leqq E \int_{0}^{\infty} H_{s}^{2} d[M, M]_{s}=E\left(U_{\infty}^{2}\right)
\end{aligned}
$$

Let us now study the particular case when $M \in \mathscr{L}$, and $H=1_{(\Delta M=0)}$. Then, we have:

$$
U=\mathscr{F} \int H d M=M^{c / \mathscr{F}} \quad \text { and } \quad V=\mathscr{G} \cdot \int H d M=M^{c / \mathscr{G}}
$$

and the equality $E\left(U_{\infty}^{2}\right)=E\left(V_{\infty}^{2}\right)\left(=E\left([M, M]_{\infty}^{c}\right)\right)$ from the beginning of Subsection 2.3.

Then, from the corollary, if $M^{c / \mathscr{F}} \in \mathscr{H}^{2}(\mathscr{G})\left(\right.$ or: $\left.M^{c / \mathscr{G}} \in \mathscr{M}^{2}(\mathscr{F})\right)$ we have: $M^{c / \mathscr{F}}$ $=M^{c / \mathscr{G}}$.

When looking at projections on \mathscr{L}^{\prime} (when \mathscr{L}^{\prime} is a stable subspace), we get the following theorem, the proof of which is similar to that of Proposition 4.
Theorem 2. Suppose that \mathscr{L}^{\prime} is a vector space. Then, it is a \mathscr{G} stable subspace of $\mathscr{M}^{2}(P, \mathscr{G})$.

Let $M \in \mathscr{L}^{\prime}$, and H be a \mathscr{F} predictable process such that $\left.E \int_{0}^{\infty} H_{s}^{2} d 《 M, M\right\rangle_{s}<\infty$.

Then,

$$
P_{\mathscr{L}^{\prime}}{ }^{1}\left(\mathscr{F} \int H d M\right)=\int^{3} H d M .
$$

We now look at the dual situation, i.e.: we study the processes of the form ${ }^{1}\left(\int_{0}^{0} H_{s} d M_{s}\right)$, where H is \mathscr{G} predictable, and M is a \mathscr{F}-martingale.

Proposition 5. Let $M \in \mathscr{M}^{2}(\mathscr{F})$, and H be a bounded \mathscr{G}-predictable process. Then:
$P_{\mathscr{L}}{ }^{1}\left(\mathscr{F} \int H d M\right)=\int H d P_{\mathscr{L}}\left({ }^{1} M\right)$.
Proof. \mathscr{L} being a \mathscr{G}-stable space, we only have to show the equality:
$E\left[\left(\mathscr{F} \int H d M\right)_{\infty} Z_{\infty}\right]=E\left[\left(\mathscr{G} . \int H d^{1} M\right)_{\infty} Z_{\infty}\right]$,
for every martingale $Z \in \mathscr{L}$.
By a density argument, we may suppose that H can be written as:

$$
H=\sum_{i=0}^{n-1} H_{t_{i}} 1_{\left.1 t_{i}, t_{i+1}\right]}, \quad \text { where } 0 \leqq t_{0}<t_{1}<\cdots<t_{n}<\infty,
$$

and $H_{t_{i}} \in b\left(\mathscr{G}_{t_{i}}\right)$, for every $i \leqq n-1$.
The right member of (2.5) is then equal to:

$$
E\left[\sum_{i} H_{t_{i}}\left({ }^{1} M_{t_{i+1}}-{ }^{1} M_{t_{i}}\right) Z_{\infty}\right]=E\left[\left(\mathscr{F} \int H d M\right)_{\infty} Z_{\infty}\right],
$$

and therefore, (2.5) is proved.
The corollary of Proposition 4 and its proof are still valid if one takes \mathscr{U} $={ }^{1}\left(\mathscr{F} \int H d M\right)$ and $V=\int H d^{1} M$, with the hypotheses in force in Proposition 5.

2.4. A Simplifying Hypothesis

Let us now express our previous results under the following fundamental hypothesis:
($\mathscr{H})$ Every square integrable \mathscr{G}-martingale is a \mathscr{F}-martingale.
We first remark, by density arguments, that (\mathscr{H}) holds if, and only if, every bounded \mathscr{G}-martingale (resp: every \mathscr{G} local martingale) is a \mathscr{F}-martingale, (resp. a \mathscr{F} local martingale).

Hypothesis (\mathscr{H}) implies that \mathscr{G} has a nice structure, relatively to \mathscr{F}, as is shown-among other properties - in the following theorem:
Theorem 3. Let $\mathscr{G}=\left(\mathscr{G}_{t}, t \geqq 0\right)$ be a sub-filtration of $\mathscr{F}=\left(\mathscr{F}_{t}, t \geqq 0\right)$ e.g. for every t, $\mathscr{G}_{t} \subseteq \mathscr{F}_{t}$.

The following assertions are equivalent:
(1) Hypothesis (\mathscr{H}) is verified.
(2) For every t, \mathscr{F}_{t} and \mathscr{G}_{∞} are conditionally independent with respect to \mathscr{G}_{i}.
(3) For every t, \mathscr{G}_{t} is the (F, P) complete σ-field generated by the variables $E\left[G \mid \mathscr{F}_{t}\right]\left(G \in L^{2}\left(\mathscr{G}_{\infty}\right)\right)$.
(4) For every process $A, \mathscr{B}\left(\mathbb{R}_{+}\right) \otimes \mathscr{G}_{\infty}$ measurable with bounded integrable variation, the equality $A^{\mathscr{G 3}}=A^{g{ }^{\text {F }} 3}$ holds.
(5) For every $X \in \mathscr{M}^{2}(\mathscr{F})$, and every deterministic bounded function h, the equality: ${ }^{1}\left(\int h d X\right)=\int h d^{1} X$ holds.

Moreover, if one of the properties (1) ...(5) is verified, the equality \mathscr{G}_{t} $=\mathscr{F}_{t} \cap \mathscr{G}_{\infty}$ holds, for every $t \geqq 0$.
Remark. In [23] (Lemma 4), Sekiguchi already remarked that hypothesis (\mathscr{H}) implies: $\forall t \geqq 0, \mathscr{G}_{t}=\mathscr{F}_{t} \cap \mathscr{G}_{\infty}$.

Moreover, in Theorem 1 of the same paper, the equivalences of (1) and of different assertions similar to (3) are shown, for \mathscr{G}, the filtration generated by the continuous \mathscr{F}-martingales.
Proof of Theorem 3. It is easily seen that (\mathscr{H}) is verified iff:

$$
\forall t \geqq 0, \quad \forall X \in L^{1}\left(\mathscr{G}_{\infty}\right), \quad E\left[X \mid \mathscr{G}_{t}\right]=E\left[X \mid \mathscr{F}_{t}\right]
$$

which is an expression-among many - of (2). Thus, the equivalence between (1) and (2) is obtained.

Let us now remark that (2) implies: $\mathscr{G}_{t}=\mathscr{F}_{t} \cap \mathscr{G}_{\infty}$, for every $t \geqq 0$. Indeed, we only have to show $\mathscr{F}_{t} \cap \mathscr{G}_{\infty} \subseteq \mathscr{G}_{t}$. But if $A \in \mathscr{F}_{t} \cap \mathscr{G}_{\infty}$, we have from (2):

$$
1_{A}=E\left[1_{A} \mid \mathscr{G}_{\infty}\right]=E\left[1_{A} \mid \mathscr{G}_{t}\right] \quad P \text { a.e., and thus, } A \in \mathscr{G}_{t} .
$$

$(2) \Rightarrow(3): \mathscr{G}_{t}$ is the (F, P) complete σ-field generated by the variables $E\left[X \mid \mathscr{G}_{t}\right]$ $\left(X \in L^{2}\left(\mathscr{G}_{\infty}\right)\right)$. But, from (2), $E\left[X \mid \mathscr{G}_{t}\right]=E\left[X \mid \mathscr{F}_{t}\right]$ and so, we have (3).
(3) $\Rightarrow(2)$: If $G \in L^{2}\left(\mathscr{G}_{\infty}\right)$, one has: $E\left[G \mid \mathscr{G}_{t}\right]=E\left[E\left(G \mid \mathscr{F}_{t}\right) \mid \mathscr{G}_{t}\right]=E\left[G \mid \mathscr{F}_{t}\right]$, from the definition of \mathscr{G}_{t}.
(2) \Rightarrow (4): If A is a $\mathscr{B}\left(\mathbb{R}_{+}\right) \otimes \mathscr{G}_{\infty}$ measurable process, with integrable bounded variation, the following equality follows from (2): $\forall(s, t)$, such that $0 \leqq s \leqq t$: $E\left[A_{t}-A_{s} \mid \mathscr{G}_{s}\right]=E\left[A_{t}-A_{s} \mid \mathscr{F}_{s}\right]$. This may also be written as:

$$
E\left[A_{t}^{\mathscr{G}}-A_{s}^{\mathscr{G}} \mid \mathscr{G}_{s}\right]=E\left[A_{t}^{\mathscr{F}}-A_{s}^{\mathscr{F} 3} \mid \mathscr{F}_{s}\right] .
$$

Again using (2), we obtain:

$$
E\left[A_{t}^{\mathscr{G} 3}-A_{s}^{\mathscr{G} 3} \mid \mathscr{F}_{s}\right]=E\left[A_{t}^{\mathscr{F} 3}-A_{s}^{\mathscr{F} 3} \mid \mathscr{F}_{s}\right] .
$$

Thus, $A^{\mathscr{F} 3}-A^{\mathscr{G} 3}$ is a \mathscr{F}-predictable martingale, null at $t=0$, and with bounded variation: therefore, it is null for all t, and $A^{\mathscr{F} 3}=A^{\mathscr{G}}$.
$(4) \Rightarrow(2)$: If $X \in b\left(\mathscr{G}_{\infty}\right)$, and $t \geqq 0$, let us note: $A_{u}=X 1_{(t \leqq u)}$. Then, we have:

$$
\begin{aligned}
A_{u}^{\mathscr{G}} & =E\left[X \mid \mathscr{G}_{t-}\right] 1_{(t \leqq u)} \\
A_{u}^{\mathscr{F} 3} & =E\left[X \mid \mathscr{F}_{t-}\right] 1_{(t \leqq u)} .
\end{aligned}
$$

Therefore, if (4) is true, we have for every t :

$$
E\left[X \mid \mathscr{F}_{t-}\right]=E\left[X \mid \mathscr{G}_{t-}\right] P \text { a.e. }
$$

Replacing t by $(t+h)$, and letting h decrease to 0 , we obtain (2).
$(2) \Leftrightarrow(5)$: By a density argument, we may only make use of the functions $h(u)$ $=1_{\mathrm{ls}, \infty \rho}(u)\left(s \in \mathbb{R}_{+}\right)$.

If $X \in \mathscr{M}^{2}(\mathscr{F})$, the equality:

$$
E\left[X_{\infty}-X_{s} \mid \mathscr{G}_{s}\right]={ }^{1} X_{\infty}-{ }^{1} X_{s}
$$

is equivalent to:

$$
E\left[X_{s} \mid \mathscr{G}_{\infty}\right]=E\left[X_{s} \mid \mathscr{G}_{s}\right]
$$

and this verified for all $X \in \mathscr{M}^{2}(\mathscr{F})$ iff (2) is true.
The different equivalences obtained in Theorem 3 obviously imply many consequences, of which we shall only give a few important ones: if (\mathscr{H}) is verified,
(c.1) T is a \mathscr{G}-stopping time iff it is a \mathscr{F}-stopping time, which is also \mathscr{G}_{∞} measurable; moreover, $E^{\mathscr{G}_{T}}=E^{\mathscr{F}_{T}} E^{\mathscr{G}_{\infty}}=E^{\mathscr{G}_{\infty}} E^{\mathscr{F}_{T}}$ (e.g.: \mathscr{F}_{T} and \mathscr{G}_{∞} are independent, conditionally to $\mathscr{G}_{T}=\mathscr{F}_{T} \cap \mathscr{G}_{\infty}$).
(c.2) H is a \mathscr{G}-optional (resp: predictable) process iff it is a \mathscr{F} optional (resp: predictable) one, such that, for all t, H_{t} is \mathscr{G}_{∞} measurable. Moreover, if H is bounded, and \mathscr{F}-optional, its \mathscr{G}-optional projection cannot be distinguished from its "optional" projection on the constant filtration (\mathscr{G}_{∞}) (we may also replace optional by predictable).
(c.3) This last result may be extended as follows: let $M=\left(M_{t}, t \geqq 0\right)$ be a uniformly integrable \mathscr{F}-martingale. Then, for every random variable $S: \Omega \rightarrow \mathbb{R}_{+}$,
\mathscr{G}_{∞}-measurable, one has:

$$
\begin{equation*}
{ }^{1} M_{S}=E\left[M_{S} \mid \mathscr{G}_{\infty}\right] \tag{2.6}
\end{equation*}
$$

and

$$
{ }^{1} M_{S_{-}}=E\left[M_{S_{-}} \mid \mathscr{G}_{\infty}\right] \quad(\text { if } P(S>0)=1)
$$

These formulas are obvious, from (2), when S takes a countable number of values, and then, formulas (2.6) follow from the right-continuity (resp: left-continuity) of M and ${ }^{1} M$ (resp: M_{-}and ${ }^{1} M_{-}$).
(c.4) $\mathscr{L}=\mathscr{L}^{\prime}=\mathscr{M}^{2}(P, \mathscr{G})$. This is proved as follows: if $M \in \mathscr{M}^{2}(P, \mathscr{G})$, then A $=[M, M]$ is an increasing process satisfying the conditions listed in the assertion (4) of Theorem 3. Thus, $A^{\mathscr{C 3}}=\langle M, M\rangle$, and $A^{\mathscr{F} 3}=\langle 《 M, M 》$ are equal, therefore, M belongs to \mathscr{L}^{\prime}.

Remark. Incidentally, using this last consequence of hypothesis (\mathscr{H}), it is easy to show that in subsection 1, under the representation property (H.4), hypothesis (H.1) is equivalent to the apparently (but not really) weaker hypothesis (H.1)': $X \in \mathscr{A}_{\text {loc }}^{2}\left(P, \mathscr{F}^{X}\right)$.

We now compare the \mathscr{F} and \mathscr{G} stochastic integrations of \mathscr{G} optional processes relatively to $M \in \mathscr{H}_{\text {loc }}(P, \mathscr{G})$, and we show that (\mathscr{H}) allows us to extend the result of Lemma 2 from \mathscr{G} predictable to \mathscr{G} optional processes.

Proposition 6. Let (\mathscr{H}) be verified.
If $H \in \mathcal{O}(\mathscr{G})$ and $M \in \mathscr{M}_{\text {loc }}(P, \mathscr{G})$ are such that $\left(\int_{0}^{1} H_{s}^{2} d[M, M]_{s}\right)^{\frac{1}{2}}$ is \mathscr{G} locally integrable, then:

$$
\mathscr{F} \int H d M=\mathscr{G} \cdot \int H d M .
$$

Proof. 1) Let us remark that the space $W(P, \mathscr{G})=\left\{M \in \mathscr{M}(P, \mathscr{G}) / E \int_{0}^{\infty}\left|d M_{s}\right|<\infty\right\}$ is dense in: $H^{1, d}(P, \mathscr{G})=H^{1}(P, \mathscr{G}) \cap \mathscr{M}^{d}(P, \mathscr{G})$. This is a consequence of the density of $\mathscr{M}^{2, d}(P, \mathscr{G})$ in $H^{1, d}(P, \mathscr{G})$ and of the orthogonal decomposition of a martingale belonging to $\mathscr{M}^{2, d}(P, \mathscr{G})$ as a (generally infinite) sum of discontinuous martingales, having only one jump.
2) If $H \in b(\mathcal{O}(\mathscr{G}))$, and $M \in W(P, \mathscr{G})$, we get:

$$
\mathscr{F} \int_{0}^{t} H_{s} d M_{\mathrm{s}}=\int_{0}^{t} H_{\mathrm{s}} d M_{\mathrm{s}}-\left(\int_{0}^{0} H_{s} d M_{s}\right)_{t}^{\mathscr{F} 3}
$$

([16], Proposition 3), where $\int_{0}^{t} H_{s} d M_{s}$ is a Stieltjes integral. The same equality is true, when \mathscr{F} is replaced by \mathscr{G}. So, from Theorem 3, (4), we obtain: $\mathscr{F} \int H d M$ $=\mathscr{G} . \int H d M$.
3) We still suppose $H \in b(\mathcal{O}(\mathscr{G})$), but M is now a \mathscr{G} (and \mathscr{F}) local martingale, which we can suppose to be in $H^{1}(P, \mathscr{G})$. Let $M=M_{0}+M^{c}+M^{d}$ be the \mathscr{G} decomposition of M as a sum of a \mathscr{G} continuous local martingale and a purely
discontinuous one. Then, since the set $\left\{H \neq{ }^{3 \mathscr{G}} H\right\}$ is a denumberable union of \mathscr{G} stopping time graphs ([2], page 101, T 19), we have: $\mathscr{G} . \int H d M^{c}=\mathscr{F} \int H d M^{c}$. So, we only have to take $M \in H^{1, d}(P, \mathscr{G})$ in the following. The applications $M \rightarrow\{(\mathscr{F}$ or $\mathscr{G})$. $\left.\int H d M\right\}_{\infty}$ are continuous from $H^{1}(P, \mathscr{G})$ to $L^{1}\left(\mathscr{F}_{\infty}, P\right)$ (and their norms are smaller than or equal to $c\|H\|_{\infty}$, where c is a universal constant appearing in Davis' inequality [10]). From 1) and 2), these applications are equal on $W(P, \mathscr{G})$, which is dense in $H^{1, d}(P, \mathscr{G})$, and so, are equal on all of $H^{1, d}(P, \mathscr{G})$. Then, if $H \in b(\mathcal{O}(\mathscr{G}))$, and M is a \mathscr{G} local martingale, we have: $\mathscr{F} \int H d M=\mathscr{G} . \int H d M$.
4) If $M \in \mathscr{A}_{\text {loc }}(P, \mathscr{G})$, the equality $\mathscr{F} \int H d M=\mathscr{G} . \int H d M$ now extends (by density and continuity) to all $H \in \mathcal{O}(\mathscr{G})$ such that $\left(\int_{0}^{0} H_{s}^{2} d[M, M]_{s}\right)^{\frac{1}{2}}$ is \mathscr{G}-locally integrable.

We now give the simplified form under which our results in Propositions 4, 5 and Theorem 2, appear, when the hypothesis (\mathscr{H}) is verified.
Proposition 7. Let (\mathscr{H}) be true and M be a \mathscr{G} local martingale.

1) If H is a $F \otimes \mathscr{B}\left(\mathbb{R}_{+}\right.$) measurable (or \mathscr{F} optional) process such that, either $E \int_{0}^{\infty} H_{s}^{2} d[M, M]_{s}<\infty$, or H is bounded, then:

$$
{ }^{1}\left(\mathscr{F} \int H d M\right)=\mathscr{G} \cdot \int{ }^{1} H d M=\mathscr{F} \cdot \int{ }^{1} H d M
$$

2) Under one of the following hypotheses:
(i) M is locally square integrable ${ }^{2}$, and H is a \mathscr{F}-predictable process such that $E \int_{0}^{\infty} H_{s}^{2} d\langle M, M\rangle_{s}<\infty$
(ii) H is a \mathscr{F} predictable bounded process, then:

$$
{ }^{1}\left(\mathscr{F} \int H d M\right)=\int{ }^{3} H d M
$$

Proof. The equalities, under square integrability conditions, come directly from Proposition 4 and Theorem 2, as the hypothesis (\mathscr{H}) implies $\mathscr{L}=\mathscr{L}^{\prime}=$ $\mathscr{M}^{2}(P, \mathscr{G})$ (consequence (c.4) of Theorem 3).

If H is bounded, the previous equalities extend to all \mathscr{G} local martingales M, as $\mathscr{M}^{2}(P, \mathscr{G})$ is dense in $H^{1}(P, \mathscr{G})$, and the applications

$$
M \rightarrow^{1}\left(\mathscr{F} \int H d M\right)_{\infty}\left(\text { or: }\left\{\mathscr{G} \cdot \int^{1} H d M\right\}_{\infty} \text {, or: }\left\{\int^{3} H d M\right\}_{\infty}\right. \text {) }
$$

are continuous from $H^{1}(P, \mathscr{G})$ to $L^{1}\left(\mathscr{F}_{\infty}, P\right)$.
Proposition 8. Let (\mathscr{H}) be verified and M be a square integrable \mathscr{F}-martingale. If H is a \mathscr{G} predictable process such that $E \int_{0}^{\infty} H_{\mathrm{s}}^{2} d[M, M]_{s}<\infty$, then the integral $E\left(\int_{0}^{\infty} H_{s}^{2} d\left[{ }^{1} M,{ }^{1} M\right]_{s}\right)$ is also finite, and ${ }^{0}$ the equality ${ }^{1}\left(\mathscr{F} \int H d M\right)=\int H d^{1} M$ holds.

[^0]Proof. First, remark that ${ }^{1}\left(M^{2}\right)-\left({ }^{1} M\right)^{2}$ is a \mathscr{G}-submartingale. Indeed, for all couples (s, t) such that $0 \leqq s \leqq t$, one has:

$$
\begin{aligned}
& E\left[\left({ }^{1} M\right)_{t}^{2}-\left({ }^{1} M\right)_{s}^{2} \mid \mathscr{G}_{s}\right] \\
& \quad=E\left[\left({ }^{1} M_{t}-{ }^{1} M_{s}\right)^{2} \mid \mathscr{G}_{s}\right] \\
& \quad=E\left[\left(E\left(M_{t}-M_{s} \mid \mathscr{G}_{\infty}\right)\right)^{2} \mid \mathscr{G}_{s}\right] \\
& \quad \leqq E\left[\left(M_{t}-M_{s}\right)^{2} \mid \mathscr{G}_{s}\right] \\
& \quad \leqq E\left[M_{t}^{2}-M_{s}^{2} \mid \mathscr{G}_{s}\right]=E\left[{ }^{1}\left(M^{2}\right)_{t}-{ }^{1}\left(M_{s}^{2}\right) \mid \mathscr{G}_{s}\right]
\end{aligned}
$$

Now, from the inequality:

$$
E\left[\left({ }^{1} M\right)_{t}^{2}-\left({ }^{1} M\right)_{s}^{2} \mid \mathscr{G}_{s}\right] \leqq E\left[M_{t}^{2}-M_{s}^{2} \mid \mathscr{G}_{s}\right],
$$

it follows that:

$$
E\left[\left[{ }^{1} M,{ }^{1} M\right]_{t}-\left[{ }^{1} M,{ }^{1} M\right]_{s} \mid \mathscr{G}_{s}\right] \leqq E\left[[M, M]_{t}-[M, M]_{s} \mid \mathscr{G}_{s}\right]
$$

This implies that for every \mathscr{G} predictable process H, one has:

$$
E\left(\int_{0}^{\infty} H_{s}^{2} d\left[{ }^{1} M,{ }^{1} M\right]_{s}\right) \leqq E\left(\int_{0}^{\infty} H_{s}^{2} d[M, M]_{s}\right)
$$

The equality ${ }^{1}\left(\mathscr{F} \int H d M\right)=\int H d^{1} M$ now comes from Proposition 5, using the density of bounded \mathscr{G}-predictable processes in $L^{2}\left(\mathscr{P}(\mathscr{G}), d[M, M]_{s} d P\right)$.

We now give two simple examples where (\mathscr{H}) is verified (see Sekiguchi [23] for another):

- the simplest of all is most certainly given by the filtrations $\mathscr{G}_{t}=\mathscr{F}_{t_{A} T}$, with T a \mathscr{F}-stopping time;
- let \mathscr{F} (resp: \mathscr{G}) be the usually completed filtration of a n-dimensional Brownian motion ($B_{t}, t \geqq 0$) (resp: of $R_{t}=\left|B_{t}\right|$).

Then, (\mathscr{H}) is verified, which can be seen from either of the following points:
(i) $R_{t}=\left|B_{t}\right|$ is a \mathscr{F}-Markov process, which implies property 2) of theorem 3 and thus (\mathscr{H}).

More generally let $\mathscr{\mathscr { F }}$ (resp: \mathscr{G}) be the filtration of a Hunt process X, valued in a Polish space E (resp: of $Y=\varphi(X)$, valued in K, another Polish space), where $\varphi: E \rightarrow K$ is continuous, and lets the semi-group $\left(P_{t}\right)$ of X invariant (see [25] for more details). This last condition implies that Y is a \mathscr{F}-Markov process, e.g. for every $t \geqq 0$, the future of Y and the past of X at time t are independent, conditionally to Y_{i}. From this, it follows easily that assertion (2) of Theorem 3, and therefore (\mathscr{H}) are verified.
(ii) From [25], \mathscr{G}_{t} is equal to the usually completed filtration of

$$
\begin{aligned}
Y_{t} & =\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s} \quad(\text { if } n=1) \\
& =\int_{0}^{t} \sum_{i=1}^{n} \frac{B_{s}^{i} d B_{s}^{i}}{R_{s}} \quad(\text { if } n>1)
\end{aligned}
$$

Y is a standard real Brownian motion, which implies that every \mathscr{G}-martingale is a stochastic integral for Y, and so, a \mathscr{F}-martingale.

Apart from using the equivalences of Theorem 3, a practical means of verifying hypothesis (\mathscr{H}) consists in establishing that the space of square integrable \mathscr{G}-martingales is generated (as a stable space) by a finite (or infinite) family of martingales M which are also \mathscr{F} martingales. (for instance see point (ii) of the last example).

Thus we are naturally concerned with the characterization of martingales which have the predictable representation property (see the outline, subsection 1.2 , and $[14,15,7])$. As the reader may have noticed, this question is underlying the whole present work. But, it is important here to know whether this representation property is relative to \mathscr{F} or \mathscr{G}. The following proposition fully answers this question:

Proposition 9. Let X be a \mathscr{F} - and \mathscr{G}-local martingale such that every \mathscr{F} local martingale M can be represented as:

$$
M=a+\mathscr{F} \int H d X \quad(a \in \mathbb{R}, H \in \mathscr{P}(\mathscr{F})) .
$$

Then the two following assertions are equivalent:
a) every \mathscr{G} local martingale N can be represented as:
$N=b+\mathscr{G} \int K d X \quad(b \in \mathbb{R}, K \in \mathscr{P}(\mathscr{G}))$
b) all \mathscr{G} local martingales are \mathscr{F} local martingales.

Proof. a) \Rightarrow b) is obvious, as $\mathscr{G} . \int K d X=\mathscr{F} \int K d X$ for all \mathscr{G} predictable processes such that $\left(\int_{0} K_{s}^{2} d[X, X]_{s}\right)^{\frac{1}{2}}$ is \mathscr{G} locally integrable (this is a slight generalization of Lemma 2).
b) \Rightarrow a) From Proposition 1, it is sufficient to show that every squareintegrable \mathscr{G} martingale N may be represented as:

$$
N=b+\mathscr{G} . \int K d X \quad(b \in \mathbb{R}, K \in \mathscr{P}(\mathscr{G})) .
$$

From b), we have:

$$
N_{t}=E\left[N_{\infty} \mid \mathscr{F}_{t}\right]=a+\mathscr{F} \int H d X,
$$

with $a \in \mathbb{R}, H \in \mathscr{P}(\mathscr{F})$ such that $E\left(\int_{0}^{\infty} H_{s}^{2} d[X, X]_{s}\right)<\infty$.
By a density argument, we can suppose that H is bounded. Then, from Proposition 8, 2), ii), we have:

$$
N=a+{ }^{1}\left(\mathscr{F} \int H d X\right)=a+\int{ }^{3} H d X
$$

Remark. Let X be a \mathscr{F} local martingale, verifying the hypothesis of proposition 9. This hypothesis is also obviously verified by $Y=\mathscr{F} \int H d X$ where H is a \mathscr{F} predictable process, which is null at most on an evanescent set (and is, for simplicity, bounded). Then, we can apply Proposition 9 to Y, with $\mathscr{G}=\mathscr{F}^{Y}$.

3. On a Filtering Equation

3.1. Preliminaries

Going back to and using the notations of section 1, we now consider the problem of calculating $E_{Q}\left[U \mid \widetilde{F}_{t}^{X}\right]$, for bounded and \mathscr{F}_{t} measurable random variables U.

For all such U 's,

$$
E_{Q}\left[U \mid \mathscr{F}_{t}^{X}\right]=\frac{E_{P}\left[L_{t} U \mid \mathscr{F}_{t}^{X}\right]}{E_{P}\left(L_{t} \mid \mathscr{F}_{t}^{X}\right)} \quad Q \text { a.s. }
$$

(let us remark that the set $\left\{\omega / E_{P}\left(L_{t} \mid \mathscr{F}_{t}^{X}\right)(\omega)=0\right\}$ is negligible for Q, and more generally the processes $L, L_{-},{ }^{1 P} L,{ }^{1 P} L_{-}$are strictly positive outside a Q evanescent set) and so, the problem is to express $E_{P}\left[L_{t} U \mid \mathscr{F}_{t}^{X} \mathrm{I}\right.$ or, more precisely, ${ }^{1 P}(L U)$ (once again, all projections are relative to the filtration \mathscr{F}^{X}, and are defined from Dellacherie's book [2], and Section 1 if necessary).

We work in the following particular situation, already mainly considered in $[1,5,17]$:

In addition to H.1, H.2, H.3, H.4, we suppose:

$$
\begin{equation*}
\mathscr{F}_{t}=\mathscr{F}_{t}^{X} \vee \mathscr{U}, \quad \text { with } \mathscr{F}_{\infty}^{X} \text { and } \mathscr{U} \quad P \text { independent. } \tag{H.5}
\end{equation*}
$$

Note that, for any $U \in b(\mathscr{U}), L_{t} U=U+\int_{0}^{t} U L_{s-} \varphi_{s} d X_{s}$ is a (P, \mathscr{F}) martingale. Moreover, we have:

Lemma 6. Let $U \in b(\mathscr{U})$. Then,

$$
\begin{equation*}
{ }^{1 P}(L U)=E_{Q}[U]+\int_{0}^{t}{ }^{3 P}\left(L_{-} U \varphi\right) d X \tag{3.1}
\end{equation*}
$$

The proof is obtained by putting together the proof of Theorem 1 and the additional equalities (deduced from H.5):

$$
E_{P}\left(U \mid \mathscr{F}_{t}^{X}\right)=E_{P}(U)=E_{P}\left(L_{0} U\right)=E_{Q}(U)
$$

3.2. The Fundamental Filtering Equation

Let us specialize the above situation by assuming:
There is a Fellerian Markov process Z, valued in E (polish space, with Borel σ-field \mathscr{E}) such that $\mathscr{U}=\mathscr{F}_{\infty}^{Z}$.

Let us recall that therefore the semi-group $P_{t}(x, d y)$ on (E, \mathscr{E}) attached to Z verifies:
$\forall f \in C_{b}(E), \quad(t, x) \rightarrow P_{\mathrm{t}}(x, f)$ is bicontinuous.

There is a bounded, $\mathscr{P}\left(\mathscr{F}^{X}\right) \otimes \mathscr{E}$ measurable function

$$
\begin{equation*}
\psi:(s, \omega, z) \rightarrow \psi_{s}(\omega, z) \quad \text { such that } \varphi_{s}(\omega)=\psi_{s}\left(\omega, Z_{s}(\omega)\right) \tag{H.7}
\end{equation*}
$$

Taking $U=g\left(Z_{t_{1}}\right)$, with $g \in b(\mathscr{E})$, we deduce from (3.1):

$$
\begin{equation*}
E_{P}\left[L_{t_{1}} g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t_{1}}^{X}\right]=E_{Q}\left[g\left(Z_{t_{1}}\right)\right]+\int_{0}^{t_{1}} 3 P\left(L_{-} g\left(Z_{t_{1}}\right) \psi(Z)\right) d X \tag{3.2}
\end{equation*}
$$

Using mainly (H.5) and (H.6), we obtain the:
Theorem 4. Let $g \in b(\mathscr{E})$, and $t_{1} \geqq 0$.
Under the hypotheses (H.1) ... (H.7), we have:

$$
\begin{equation*}
E_{P}\left[L_{t_{1}} g\left(Z_{t_{1}}\right) \mid \mathscr{\mathscr { F }}_{t_{1}}^{X}\right]=E_{Q}\left[g\left(Z_{t_{1}}\right)\right]+\int_{0}^{t_{1}} d X_{s}^{3 P}\left(L_{s-} \psi_{s}\left(Z_{s}\right) P_{t_{1}-s} g\left(Z_{s}\right)\right) . \tag{3.3}
\end{equation*}
$$

Proof. Let \mathscr{G} be the right continuous P complete filtration obtained from \mathscr{G}_{t}^{0} $=\mathscr{F}_{t}^{X} \vee \mathscr{F}_{t}^{Z}$. Then:

$$
\begin{aligned}
{ }^{3 P}\left(L_{-} g\left(Z_{t_{1}}\right) \psi(Z)\right) & ={ }^{3 P}\left({ }^{1 P / G}\left(L_{-} g\left(Z_{t_{1}}\right) \psi(Z)\right)\right) \\
& ={ }^{3 P}\left(L_{-} \psi(Z)^{1 P / G} g\left(Z_{t_{1}}\right)\right) \\
& ={ }^{3 P}\left(L_{t-} \psi_{t}\left(Z_{t}\right) P_{t_{1}-t} g\left(Z_{t}\right)\right)
\end{aligned}
$$

(in the second equality, we consider $g\left(Z_{t_{1}}\right)$ as a stochastic process, which is constant in $t \in R_{+}$; moreover, the time set here is $\left[0, t_{1}\right]$). Now, (3.3) follows from (3.2).

We shall now obtain a generalization of Kunita's recursive filtering equation [8], the generalization being that we only work with a local martingale X having the predictable representation property described in Subsection 1.2, instead of taking a Wiener process for X (also, see [1]).

From now on, the time set is $\left[0, t_{1}\right]$, for a fixed $t_{1}>0$.
We need more notations: - for $g \in b(\mathscr{E})$, we set $\bar{g}_{t_{1}}=E_{Q}\left[g\left(Z_{t_{1}}\right)\right]$
$-P^{t_{1}} g$ is the process: $(t, \omega) \rightarrow P_{t_{1-t}} g\left(Z_{t}(\omega)\right)$

- we still write ψ for the process: $(t, \omega) \rightarrow \psi\left(t, \omega, Z_{t}(\omega)\right)$
- if H is a bounded measurable process, we note $\hat{H}={ }^{3 Q} H$
- Finally, let $U_{t}=\bar{g}_{t_{1}}+\int_{0}^{t}{ }^{3 P}\left(L_{-} \psi P^{t_{1}} g\right)_{s} d X_{s}$ and $V_{t}={ }^{1 P} L_{t}$.

Before writing the filtering equation, we need to identify some projections.
Lemma 7. If $g \in b(\mathscr{E})$, we have under (H.1) ... (H.7):

$$
\begin{equation*}
\frac{U}{V}={ }^{1 Q}\left(g\left(Z_{t_{1}}\right)\right)={ }^{1 Q}\left(P^{t_{1}} g\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{U-}{V-}=\widehat{P_{g}^{t_{1}}} . \tag{3.5}
\end{equation*}
$$

Proof. From (H.6), if $g \in C_{b}(E)$, the process $P_{g}^{t_{1}}$ is right continuous, and so, has a right continuous \mathscr{F}^{X} optional projection. So, to show (3.4) for such a g, it is sufficient to show it for every t, and the result will follow by right continuity. By the monotone class theorem, (3.4) will then be valid for every $g \in b(\mathscr{E})$ so, we now look at $E_{Q}\left[P_{t_{1-t}} g\left(Z_{t}\right) \mid \mathscr{F}_{t}^{X}\right]$ which is equal (Subsection (3.1)) to:

$$
\frac{E_{P}\left[L_{t} P_{t_{1}-t} g\left(Z_{t}\right) \mid \mathscr{F}_{t}^{X}\right]}{E_{P}\left[L_{t} \mid \mathscr{F}_{t}^{X}\right]}=\frac{E_{P}\left[L_{t} E_{P}\left[g\left(Z_{t}\right) \mid \mathscr{G}_{t}\right] \mid \mathscr{F}_{t}^{X}\right]}{E_{P}\left[L_{t} \mid \mathscr{F}_{t}^{X}\right]}
$$

(the filtration \mathscr{G} has already been used in Theorem 3).
The last expression is obviously equal to:

$$
\frac{E_{P}\left[L_{t} g\left(Z_{t_{t}}\right) \mid \mathscr{\mathscr { F }}_{t}^{X}\right]}{E_{P}\left(L_{t} \mid \mathscr{F}_{t}^{X}\right)}
$$

which is $E_{Q}\left(g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t}^{X}\right)$ thereby proving the right hand side of (3.4).
Moreover,

$$
\begin{equation*}
\frac{E_{P}\left[L_{t} g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t}^{X}\right]}{E_{P}\left[L_{t} \mid \mathscr{F}_{t}^{X}\right]}=\frac{E_{P}\left[L_{t_{1}} g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t}^{X}\right]}{E_{P}\left[L_{t} \mid \mathscr{F}_{t}^{X}\right]}+\Delta \tag{3.6}
\end{equation*}
$$

with

$$
\Delta=-\frac{E_{P}\left[\left(L_{t_{1}}-L_{t}\right) g\left(Z_{t_{i}}\right) \mid \mathscr{F}_{t}^{X}\right]}{E_{P}\left[L_{t} \mid \mathscr{F}_{t}^{X}\right]}
$$

L is a \mathscr{F} martingale, which implies, as $g\left(Z_{t_{1}}\right) \in b\left(\mathscr{F}_{0}\right)$, that $g\left(Z_{t_{1}}\right) L$ is also a \mathscr{F} martingale. Then,

$$
\Delta=-\frac{E_{P}\left[E_{P}\left[\left(L_{t_{1}}-L_{t}\right) g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t}\right] \mid \mathscr{F}_{t}^{X}\right]}{E_{P}\left[L_{t} \mid \mathscr{F}_{t}^{X}\right]}=0
$$

So, from (3.6), we get:

$$
E_{Q}\left[g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t}^{X}\right]=\frac{E_{P}\left[L_{t_{1}} g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t}^{X}\right]}{E_{P}\left[L_{t} \mid \mathscr{F}_{t}^{X}\right]}
$$

and, from (3.3) (Theorem 3), we get the left hand side of (3.4). Now, (3.5) proceeds from (3.4) as the predictable projection of a martingale M is M_{-}.

For simplicity we now assume:
X is quasi-left continuous (relatively to \mathscr{F}^{X}).
From [15] or [7], we know that (H.8) and the predictable representation property assumed for X by (H.4) (Subsection 1.2) imply the existence of a \mathscr{F}^{X} predictable set A (resp: process f) such that:

$$
E_{P} \int 1_{A^{c}} d\left\langle X^{c}, X^{c}\right\rangle=E_{P} \int 1_{A} d\left\langle X^{d}, X^{d}\right\rangle=0
$$

resp: $\Delta X=f I_{\Delta X \neq 0}$
Theorem 5. Let $g \in b(\mathscr{E})$, and $t_{1}>0$.
Under the hypotheses (H.1),..,(H.8) and supposing that the processes $(1+\hat{\psi} f)^{-1}$ is $\left(\mathscr{F}^{x}, Q\right)$ locally bounded, we have:

$$
\begin{align*}
& E_{Q}\left[g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t_{1}}^{X}\right] \\
& \left.=E_{Q}\left[g\left(Z_{t_{1}}\right)\right]+\int_{0}^{t_{1}} \widehat{\left[\psi \times P_{g}^{t_{1}}\right.}-\widehat{\psi} \widehat{P_{g}^{t_{1}}}\right]\left(1_{A}+\frac{1_{A^{c}}}{1+\hat{\psi} f}\right) d \tilde{X} \tag{3.7}
\end{align*}
$$

with $\tilde{X}=X-\int_{0}^{0} \hat{\psi} d\langle X, X\rangle \in \mathscr{M}_{1 \mathrm{cc}}\left(Q, \mathscr{F}^{X}\right)$
Remarks. 1) The appearence of $d \tilde{X}$ in the right-member of (3.7) is a priori expected from Remark 3) in Subsection 1.2.
2) The technical hypothesis made on $(1+\hat{\psi} f)^{-1}$ does not seem too stringent, as this process is equal to V_{-} / V, on $\Delta X \neq 0$, and Q almost every trajectory of V_{-} / V is bounded on every compact set of \mathbb{R}_{+}.

Proof of the Theorem. Applying Ito's formula under P, to U_{t} / V_{t}^{\prime}, with $V^{\prime}=(V \vee \varepsilon)$, (which is again, from [10], and with the definition there of, a semimartingale), we get:

$$
\begin{align*}
\frac{U_{t}}{V_{t}^{\prime}}= & \frac{U_{0}}{V_{0}^{\prime}}+\int_{0}^{t}\left[\frac{d U_{s}}{V_{s-}^{\prime}}-\frac{U_{s-}}{\left(V_{s-}^{\prime}\right)^{2}} d V_{s}^{\prime}\right]+\int_{0}^{t} \frac{U_{s-}}{\left(V_{s-}^{\prime}\right)^{3}} d\left\langle\left(V^{\prime}\right)^{c},\left(V^{\prime}\right)^{c}\right\rangle_{s} \\
& -\int_{0}^{t} \frac{1}{\left(V^{\prime}\right)_{s-}^{2}} d\left\langle U^{c},\left(V^{\prime}\right)^{c}\right\rangle_{s}+\sum_{0<s \leqq t} \frac{U_{s}}{V_{s}^{\prime}}-\frac{U_{s-}}{V_{s-}^{\prime}}-\left\{\frac{\Delta U_{s}}{V_{s-}^{\prime}}-\frac{U_{s-} \Delta V_{s}}{\left(V_{s-}^{\prime}\right)^{2}}\right\} \tag{3.8}
\end{align*}
$$

This equality is also valid Q as. Also, from [10] (Chapt. 6), we have:

$$
\begin{equation*}
\left(V^{\prime}\right)_{t}^{c}=\int_{0}^{t} 1_{\left(V_{s}>\varepsilon\right)} d V_{s}^{c} \tag{3.9}
\end{equation*}
$$

We note $T_{\varepsilon}=\inf \left\{t>0 ; V_{t}<\varepsilon\right\}$.
As we have already remarked, V and V_{-}are strictly positive outside a Q evanescent set. So, the stopping times T_{ε} increase to ∞, Q a.s., as ε decreases to 0.

Moreover, on $\left\{\omega \mid T_{\varepsilon}(\omega)>t_{1}\right\}$, we can replace V^{\prime} by V in Equation (3.8), using (3.9), and the local character of stochastic integrals [10]. Finally, Equation (3.8) is true under Q, with V replacing V^{\prime}.

Let us now recall that from the definition of U, we have:

$$
d U=V_{-} \times \widehat{\psi \times P_{g}^{t_{1}}} d X \quad P \text { a.s. and } Q \text { a.s. }
$$

From Theorem 1, we get:

$$
d V=V_{-} \hat{\psi} d X \quad P \text { a.s. and } Q \text { a.s. }
$$

Finally, from Lemma 7:

$$
\frac{U_{-}}{V_{-}}=\widehat{p_{g}^{t_{1}}}
$$

So, after some calculus, the expression of U_{t} / V_{t} becomes:

$$
\begin{aligned}
\frac{U_{t}}{V_{t}}= & \left.\bar{g}_{t_{1}}+\int_{0}^{t} \widehat{\left[\psi \times P_{g}^{t_{1}}\right.}-\widehat{\psi} \times \widehat{P_{g}^{t_{1}}}\right]\left(d X-\hat{\psi} d\left\langle X^{c}, X^{c}\right\rangle\right) \\
& \left.-\sum_{(0<s \leq t)}^{\left[\psi \times P_{g}^{t_{i}}\right.}-\widehat{P_{g}^{t_{1}}} \times \hat{\psi}\right]_{s} \frac{\hat{\psi}_{s}\left(\Delta X_{s}\right)^{2}}{\left(1+\hat{\psi}_{s} \Delta X_{s}\right)} \quad Q \text { a.s. }
\end{aligned}
$$

Now remembering that $\Delta X=f I_{\Delta X \neq 0}$, with $f \in \mathscr{P}\left(\mathscr{F}^{X}\right)$, we get:

$$
\begin{aligned}
& \left.\frac{U_{t}}{V_{t}}=\bar{g}_{t_{1}}+\int_{0}^{t} \widehat{\left[\psi \times P_{g}^{t_{g}}\right.}-\hat{\psi} \times \widehat{P_{g}^{t_{i}}}\right]\left(d X-\hat{\psi} d\left\langle X^{c}, X^{c}\right\rangle\right) \\
& \left.-\int_{0}^{t} \widehat{\left[\psi \times P^{t_{1}}\right.}-\widehat{P_{g}^{t_{1}}} \times \hat{\psi}\right]\left(\frac{\hat{\psi}}{1+\hat{\psi} f}\right)\left(d\left\langle X^{d}, X^{d}\right\rangle+\Delta X d X\right) \quad Q \text { a.s. }
\end{aligned}
$$

Here, we have used Pratelli-Yoeurp's formula (see [10]): P a.s. and Q a.s.,

$$
\sum_{0<s \leqq t}\left(\Delta X_{s}\right)^{2}-\left\langle X^{d}, X^{d}\right\rangle_{t}=[X, X]_{t}-\langle X, X\rangle_{t}=\int_{0}^{t}\left(\Delta X_{s}\right) d X_{s}
$$

In our case, $\Delta X d X=f I_{\Delta X \neq 0} d X=f d X^{d}$.
Again transforming the expression of U_{t} / V_{t}, we get, under Q :

$$
\begin{aligned}
\frac{U_{t}}{V_{t}}= & \bar{g}_{t_{1}}+\int_{0}^{t} \widehat{\left[\psi \times P^{t_{1}}\right.}-\hat{\psi} \times \widehat{\left.P^{t_{1}}\right]}\left\{d X^{c}+\frac{1}{1+\hat{\psi} f} d X^{d}\right\} \\
& \left.-\int_{0}^{t} \widehat{\left[\psi \times P^{T_{g}}\right.}-\hat{\psi} \times \widehat{P^{t_{1}}}\right] \hat{\psi}\left\{d\left\langle X^{c}, X^{c}\right\rangle+\frac{1}{1+\hat{\psi} f} d\left\langle X^{d}, X^{d}\right\rangle\right\}
\end{aligned}
$$

Now, we make use of the \mathscr{F}^{X} predictable set A, whose existence was recalled before the theorem, by remarking:

$$
\left(1_{A}+\frac{1}{1+\hat{\psi} f} 1_{A^{c}}\right) d\langle X, X\rangle=d\left\langle X^{c}, X^{c}\right\rangle+\frac{1}{1+\hat{\psi} f} d\left\langle X^{d}, X^{d}\right\rangle \quad Q \text { a.s. }
$$

and:

$$
\left(1_{A}+\frac{1_{A^{c}}}{1+\hat{\psi} f}\right) d X=d X^{c}+\frac{1}{1+\hat{\psi} f} d X^{d} \quad Q \text { a.s. }
$$

Then, (3.7) proceeds from the last expression we obtained for U_{t} / V_{t}.
Remarks. 1) From the end of the proof, Equation (3.7) can also be written as:

$$
\begin{align*}
& E_{Q}\left[g\left(Z_{t_{1}}\right) \mid \mathscr{F}_{t_{1}}^{X}\right] \\
& \left.=E_{Q}\left[g\left(Z_{t_{1}}\right)\right]+\int_{0}^{t_{1}} \widehat{\left[\psi \times P_{g}^{t_{1}}\right.}-\hat{\psi} \times \widehat{P g}\right]\left\{d \tilde{X}^{c}+\frac{1}{1+\hat{\psi} f} d \tilde{X}^{d}\right\}
\end{align*}
$$

where:

$$
\tilde{X}_{t}^{c}=X_{t}^{c}-\int_{0}^{t} \hat{\psi} d\left\langle X^{c}, X^{c}\right\rangle, \quad \tilde{X}_{t}^{d}=X_{t}^{d}-\int_{0}^{t} \hat{\psi} d\left\langle X^{d}, X^{d}\right\rangle
$$

Moreover, from [7], (Proposition 2.1), \tilde{X}^{d} belongs to $\mathscr{M}_{\text {loc }}^{d}\left(Q, \mathscr{F}^{X}\right)$. Therefore, $\tilde{X}=\tilde{X}^{c}+\tilde{X}^{d}$ is the decomposition of \tilde{X} in $\mathscr{M}_{\mathrm{loc}}^{c}\left(Q, \mathscr{F}^{X}\right)+\mathscr{M}_{\mathrm{loc}}^{d}\left(Q, \mathscr{F}^{X}\right)$.
2) We refer the reader to [1], when the observation consists of a marked point process and a Wiener process plus a drift.
3) Theorem 5 is an extension of results in [5] and [17].

References

1. Brémaud, P.: Filtrage récursif pour une observation mixte par la méthode de la probabilité de référence. Article de Thèse de Doctorat (1976) - Paris VI.
2. Dellacherie, C.: Capacités et processus stochastiques. Berlin: Heidelberg, New York: Springer 1972
3. Doléans-Dade, C.: "Quelques applications de la formule de changement de variables pour les semi-martingales". Z. Wahrscheinlichkeitstheorie verw. Gebiete 16, 181-194 (1970)
4. Doléans-Dade, C.; Meyer, P.A.: Intégrales stochastiques par rapport aux martingales locales. Sém. Probab. IV, Lect. Notes in Math. 124, Berlin-Heidelberg-New York: Springer 1970
5. Duncan, T.: Probability densities for diffusion processes with application to non-linear filtering theory and detection theory. Ph. D. Thesis, Dept. of Electrical Eng., Univ. of Stanford, (1967).
6. Jacod, J.: A general theorem of representation for martingales. Proceedings of Sympos. Pure Math. 31, (1977)
7. Jacod, J.; Yor, M.: Etude des solutions extrémales et représentation intégrale des solutions pour certains problèmes de martingales. Z. für Wahrscheinlichkeitstheorie verw. Gebiete 38, 83-125 (1977)
8. Kunita, H.: Asymptotic behavior of the non-linear filtering errors of Markov processes. J. Multivariate Anal. 1, 365-393 (1971)
9. Meyer, P.A.: Intégrales stochastiques. Sém. Probab. I, Lecture Notes in Math. 39. Berlin-Heidelberg-New York: Springer 1966
10. Meyer, P.A.: Un cours sur les intégrales stochastiques. Séminaire Probab. X, Lecture Notes in Math. 511. Berlin-Heidelberg-New York: Springer 1976
11. Meyer, P.A.: Probabilités et potentiel. Paris: Hermann 1965
12. Van Schuppen, J.; Wong, E.: Transformation of local martingales under a change of law. Ann. Probability 2, 879-888 (1974)
13. Wong, E.: A likelihood ratio formula for two dimensional random fields. IEEE Trans. Information theory, 20, 418-422 (1974)
14. Yen, K., Yoeurp, Ch.: Représentation des martingales comme intégrales stochastiques de processus optionnels. Sém. Proba. X, Lecture Notes in Math. 511. Berlin-Heidelberg-New York: Springer 1976
15. Yor, M.: Représentation intégrale des martingales, étude des distributions extrémales. Article de Thèse de Doctorat, (1976), Paris VI.
16. Yor, M.: Sur les intégrales stochastiques optionnelles et une suite remarquable de formules exponentielles. Sém. Probab X, Lecture Notes in Math. 511. Berlin-Heidelberg-New York: Springer 1976
17. Zakaï, M.: On the optimal filtering of diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 11, 230-243 (1969)
18. Kunita, H.: Théorie du filtrage. Cours de 3e Cycle à l'Université Paris VI (1974-75)
19. Kunita, H., Watanabe, S.: On square integrable martingales. Nagoya Math. J. 30, 209-245 (1967)
20. Jacod, J.: Multivariate point processes, predictable projection, Radon-Nikodym derivatives, representation of martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 235-246 (1975)
21. Brémaud, P.: La méthode des semi-martingales en filtrage lorsque l'observation est un processus ponctuel marqué. Sém. Probab. X, Lecture Notes in Math. 511, Berlin-Heidelberg-New York: Springer 1976
22. Brémaud, P., Jacod, J.: Processus ponctuels et martingales: présentation des résultats récents sur la modélisation et le filtrage. Advances Appl. Probability 9, 362-416 (1977)
23. Sekiguchi, T.: On the Krickeberg decomposition of continuous martingales. Lecture Notes in Math. 511. Berlin-Heidelberg-New York: Springer 1976
24. Jacod, J., Mémin, J.: Caractéristiques locales et condition de continuité absolue pour les semimartingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 1-37 (1976)
25. Yor, M.: Sur les théories du filtrage et de la prédiction. Sém. Probab. XI, Lecture Notes in Math. 581. Berlin-Heidelberg-New York: Springer 1977

[^0]: 2 From the remark made in Subsection 1.1, there is no need to specify whether it is with respect to \mathscr{F} or \mathscr{G}.

