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Summary. As is well known (cf. Derman (1970) and references cited there), 
dynamic programming problems with finite state and action spaces can be 
solved by linear programming techniques. In the present paper it will be shown 
that this statement can be generalized to the case of general state and action 
spaces. 

By this approach, the underlying sequential structure is completely 
neglected. Instead, vectore space structures and linear programming results 
(such as existence and duality theorems, complementary slackness) are used to 
obtain optimality statements. 

1. The Dynamic Programming Model 

Let ((S, ~), (A, 9A), D, p, q, r, fl) be a (discounted stationary Markovian) decision 
model in the sense of Hinderer [4], i.e. (S, ~) is the state space, (A, 9.I) is the 
action space, for all seS the s-section D S of D E ~ |  denotes the set of 
admissible actions if the state s has occurred, p is the initial distribution on ~, q 
a transition probability from D to S, the so-called transition law, r: D ~IR the 
bounded, measurable reward function, fie(0, 1) the discount factor. 

Throughout, we shall assume that (S, ~) and (A, 9.1) are SB-spaces, i.e. S and A are 
elements of ~r-algebras generated by complete, separable and metrizable topologies 
and ~ and 9A are the traces of those o--algebras in S and A. Furthermore, let D 
contain the graph of a measurable map from S to A. 

A (randomized stationary Markov) policy ~ is a transition probability from S to 
A with ~(s, Ds) = 1 for all seS. By a theorem of Ionescu-Tulcea, a policy ~ together 

co 

with p and q defines a probability measure P~ = p | ~ | q | 7c | ... on @ (~  | 9.1) and, 
1 

by this, a stochastic process (((,, %), neN), (~ (or c~,) being the projection into the n- 
th state (or action) space. A policy ~c* is f-optimal if ~* maximizes the functional 

~ V ~ = E ~  " - l r o ( ~ . , ~ .  . 
n ~ l  
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Notation is as in [4], e.g. N is the set of positive integers, IR is the set of real 
numbers, B x is the x-section of the set B, PYIx is the conditional distribution of Y 
under X, pr, is the projection into the n-th coordinate of a cartesian product space. 

2. The Linear Programming Model 

General linear programs in a symmetric form have been studied by e.g. Krabs [6]. 
A slight modification of his model leads to the following pair of dual programs: Let 
E be a normed vector space, F a partially ordered normed vector space with 
positive cone F+, L: E ~ F  a continuous linear mapping with conjugate L*' 
F* ~ E*, c~E*, b~F. 

Primal Program (P): 

For x~E,  c(x)=Min !, L x > b .  

Dual Program (D): 

For y*eF*,  y*(b)=Max !, L* y*=c,  y* >O. 

The results derived by Krabs can easily be transferred to this case. Let M = {xeE:  
L x  > b}, N = {y*~F*: L* y*=c ,  y* >O}, a=  inf c(x), r =sup y*(b), a (or r) is the 

x e M  y * e N  

value of (P) (or (D)). Elements x ~ M ,  y * ~ N  are feasible. If x ~ M  and c (x )=a  (or 
y* eN and y*(b) = ~), x (or y*) are optimal. (P) and (D) are called feasible (or solvable), 
if there are feasible (or optimal) elements x and y*, respectively. 

Theorem 1 ("weak duality theorem", cf. [6], Satz 3.2). 

(i) ~<~r. 
(ii) I f  x and y* are feasible, and c(x) =y*(b), then x and y* are optimal, and "c = a. 

Theorem 2 (" complementary slackness", cf. [6], Satz 3.3). Let x ~ M, y* ~ N. Then the 
following affirmations are equivalent." 

(i) x and y* are optimal, and z = a. 
(ii) y*(Lx - b) = O. 

Theorem 3 ("existence theorem" cf. [6], p. 45 and Satz 4.14). 

a) I f  the convex cone 

K ( L , c ) = f ( c ( x ) + 7 , L x - y ) :  xeE ,  ~>=0, yeN+} 

is closed (in the topology induced by the usual norm on 1R x F ), then (P) is feasible and 
its value a is finite if and only/f(D) is feasible and its value r is finite. In both cases, (P) 
is solvable and 

- -  O0 < "C = f f  < O 0 .  

b) I f  there is an x ~ E such that L x - b belongs to the interior ofF+, and if the value 
cr of(P) is finite, then (D) is solvable, and z =cr. 



Solving a Dynamic Program by Linear Programming 341 

3. The Linear Programming Formulation of the Dynamic Program 

Now (and for the rest of the paper) let E (or F) be the space of measurable bounded  
mappings v: S ~ 1R (or w: D ~ IR). Then  there is an isometric isomorphism between 
F* and the space of bounded  additive set functions on ~3 = D cv ~ | 9.I (cf. [3], p. 258), 
and the following pair of linear programs in the above sense can be established: 

(P) ~vdp=Min!  

v(s)-fi  S q(s,a, dt)v(t)>=r(s,a), (s,a)~D. 

(D) Srdv=Max!  

~(u(s)-fl~q(s,a, dt)u(t))v(d(s,a))=~udp, u~E, 
~wdv>O, w~F+. 

Immediately,  we get the following results: 

Lemma 4. I f  v is feasible for (D), then the following holds: 

(i) v>O, 
(ii) v (D)=  1/(1 -]3). 

Proof (i) Putt ing w =  1B for B ~ ,  we get 

v(B) =~ 1BdV>O. 

(ii) For  u = 1 s we have 

1 = y u dp = ~ (u(s) - fl y q(s, a, dr) u(O) v(d(s, a)) 

= ~ (1 - ]3) v(d(s, a)) = (1 - ]3) v(D). 

Lemma 5. (P) is feasible, and 

1 
sup r(s, a) < c~. 

cr < a ' -  1 - ]3  (s,a)~D 

Proof Let  v(s)=a' for all s~S. Then v is feasible for (P), and a<=~vdp=a'. 

A first connect ion between the dynamic programming problem and the dual 
p rogram (D) is given by the following 

Theorem 6. For any policy ~, v~, defined by 

v~(B)= ~ ,-1 p B ]3 (~)~ . . . .  ~( ), B ~ ,  
n = J .  

is feasible for (D). 

Proof v~ is a bounded  measure on T?, and for ueE we have 

(u(s)-- ]3 ~ q(s, a, dt)u(t)) v~(d(s, a)) 
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= ~ ft.-1 ~ (u(s)- fi ~ q(s, a, dt) u(t))(P~)(~ . . . .  )(d(s, a)) 
n = l  

= ~ fl,-l(~u(s)(p~)(~ . . . .  )(d(s,a)) 
n = l  

- fl S (P~)(~ . . . .  ~(d(s, a)) ~ q(s, a, dr) u(t)) 

= ~ fl"-l(~ud(P~):n-fl~ud((P~)(~ . . . .  ~| 
n = l  

n = l  

n = l  n = l  

=~udp. 

The following result will be needed: 

Lemma 7 ([-4], Corollary 12.7). Let (X, 5) and (Y, 15) be SB-spaces, B ~ q~ | 15, and let v 
be a probability measure on 5|  concentrated on B. I f  there is a transition 
probability O from ( X, 5) to ( Y, 15) with O(x, Bx) > O for all xEprl(B), then there exists 
a conditional distribution QffVpr2]prl with 

Q(x, B~) = 1 for all x~prl(B ). 

From this, we immediately get 

Corollary 8. For any probability measure v on 7~, (a version of) Vprzlpr a is a policy. 

Now let the measure v be feasible for (D). Then ~=(1 - f i )v  is a probability 
measure on ~ (Lemma4), there is a version ~'Tpr~lp~ 1 which is a policy 
(Corollary 8), and v~ is feasible for (D). Furthermore, we have 

Lemma 9. Let the measure v be feasible for (D). Then v = v~. 

Proof For any B ~ ,  

v~(B)= ~ fl"-l(P~)(~ .... )(B) 
n = l  

= ~, ft,-1 ~ p(dsx) ~ re(s1, daa) ~ q(s> al, ds2) 
n = l  

�9 .. yq(s,_l,a~_>ds,)rc(s,,Bs~). 

For u,(s) = ~ re(s, daO... ~ q(s,_ 1, a,_ 1, ds.) rc(s,, B~), neN,  seS, we have u,~E and 

n = l  

= ~ fl~-i y (u~(s) - f l  y q(s, a, dt) u~(t)) v(d(s, a)) 
n = l  
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o0 
1 7. fin-l(~undvprl-fi~v(d(s,a))~q(s,a, dt) un(t)) 

1 - .-1= 

-- 1 ~ [~n_l(~prl(dSl)STC(Sl,dal ) 
1 - ~  .=1 

�9 ..~q(Sn_l, an_l,dS,)rc(s~,Bs n) 

- f i  ~ gprl(ds) ~ ~pr21pr~(s, da) ~ q(s,a, dt) ~ n(t, daO 

... ~ q(s,_ 1, a,_ 1, ds~) n(s~, B j )  

1 1 
--  ] - - f i  S Yprt (ds1)Vpr2]prt (S1 ' B~I)= 1 - f l  g(B)= v(B). 

Theorem 10. (D) is feasible, and 

- o o < 1 _  ~ inf r(s,a)<z sup r(s,a)<oo). 

Proof. According to Lemma 6, (D) is feasible, and because of Lemma 4, for any 
feasible v we have 

1 
r > ~ r d v > ~  inf r(s,a)dv= inf r ( s , a ) > -  oo. 

(~,~)~D 1 - f i  (s,,)~D 

The rest follows directly from Lemma 5 and Theorem 1. 
A direct consequence of complementary slackness in linear programming is 

Theorem 11. Let v be feasible for (P), and let v be feasible for (D) and a-additive. Then 
the following statements are equivalent: 

(i) v and v are optimal, and z = a. 
(ii) v(s)=r(s,a)+ fl ~ q(s,a, dt)v(t) for v-almost all (s,a)~O. 

Proof. Because of Theorem 2, (i) and 

(ii') ~ (v(s) - fl ~ q(s, a, dr) v(t) - r(s, a)) v(d(s, a)) = 0 

are equivalent. But the integrand is nonnegative, and thus (ii) and (ii') are 
equivalent, too. 

4. Existence Theorems 

For the application of part a) of Theorem 3, we require the following 

Lemma 12. K(L, c) is closed. 

Proof. The proof is merely technical, hence we just give an indication: For 

F;= { w = L u - p e F :  u~E, pEF + }, 

put 

f ( w ) = i n f { ~ u d p : L u - w e F + } ,  w~l~, (4.1) 

and show that F = F ,  the inf in (4.1) is assumed, and f is lower semicontinuous. 
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Now from Theorem 3, Theorem 10, and Lemma 12 we get 

Theorem 13. (P) is solvable, (D) is feasible,  and z = a. 

Trivially, for the interior b~+ of F+ we have 

/~+ = {w~F: infw>0}.  

Now let e>0, c~= sup r (s ,a )+e ,  and v ( s ) = 3 / ( 1 - f l )  for all s~S. Then v~E,  and 
(s,a)eD 

(Lv - r)(s, a) = v(s) - f l  f q (s, a, dt) v( t) - r(s, a) 

= 6/(1 - fl) - fl 6/(1 - fl) - r(s, a) 

= sup r ( s , a ) - r ( s , a ) + e > e > O  for all (s ,a)eD,  
(s, a) E D 

i.e. L v - r ~ F + .  Hence from part b) of Theorem 3 and Theorem 10, we easily derive 

Theorem 14. (D) is solvable. 

Remark .  Our way of proof for the solvability of (D) rests heavily on the special 
structure of F, which was suggested by the characteristics of the underlying 
dynamic programming model. When generalized linear programming is used to 
construct optimal statistical procedures, it is reasonable to define F to be some La 
space (cf. Krafft and Witting [-7]), however. Indeed, the positive cone ofL 1 generally 
has a void interior, and thus a separate proof for an analogue to Theorem 14 is 
required in this case. 

5. The Modified Dual Program 

By 

7~ ~ 7~' <==> Vn : Vn, , 

an equivalence relation in the set of policies is defined, and according to Theorem 6 
and Lemma 9, there is a one-to-one correspondence between the set of measures 
which are feasible for (D), and the set of equivalence classes (with respect to " ~  ") of 
policies. 

Now the following optimization problem (which is no longer a linear program 
in the above sense) suggests itself: 
(D*) (For measures v on 3:)  

~ r d v = M a x !  

~ ( u ( s ) - f l ~ q ( s , a ,  d O u ( t ) ) v ( d ( s , a ) ) = ~ u d p ,  ueE .  

Clearly, any v feasible for (D*) is also feasible for (D). So for the value z* of(D*) we 
obtain (cf. Theorem 10) 

1 
- ~  <l~flfl (~.~)~Dinf r ( s ,a )<z*<-~ .  
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The following results justify the introduction of (D*) in connection with the 
dynamic programming problem. 

Theorem 15. (D*) and the problem of finding a ~-optimal policy are equivalent in the 
following sense: 

a) I f  n is a policy, then v~ is feasible for (D*), and V==Srdv~. 
b) I f  v is feasible for (D*), g=(1 - f l )  v, then there is a policy n~egpr21pr,, and V~v 

=~rdv. 
c) V = sup V~ = ~*. 

Proof The assertion follows immediately from Theorem 6 and Lemma 9. 

Especially we have 

Corollary 16. A ~-optimal policy ~* is obtained by deriving a solution v* of(D*) and 
choosing a policy n* ~((1 - fl) V*)pr21p~ . 

Proof For any policy n, 

V~=jrdv,<~rdv*=V~, .  

Another relation between the dynamic programming problem and the dual pair 
(P), (D) of linear programs is provided by the following 
Theorem 17. Let 7~ be any policy, and let 

co 

be feasible for (P) (note that V~=~ V~(')dp). 
Then V~(') is optimal for (P), n is F)-optimal, and v~ is optimal for (D). 

Proof For all yEN, 

~rdv<~ V~(')dp=~rdv~< inf Svd p. 
vEM 

In view of Theorem 14 and Corollary 16, it is worth while to provide conditions 
which guarantee the "completeness" of the class of o--additive set functions on 
with respect to the optimization of the dual program (D). The following well known 
example shows that even in very simple cases we have to consider set functions 
which are not a-additive: 

Example ([1], p. 229). Put S=  {0}, A =N,  D =S x A, and 

r(O, n) = (n - 1)/n, neN.  

Then we have 

(P) (For v~lR:) 

v = Min !, v - flv >= (n - 1)/n, 

and trivially v = 1/(1- fi) is optimal. 

n~lN, 
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Furthermore,  

(D) (For  contents v on N:) 

~ ((n-1)/n)v(dn)=Max!, v(N).(1-fl).u=u, uMR. 

Clearly, an optimal measure v on N does not  exist. F r o m  Theorem 14 we know that 
(D) is solvable, so a content  ~ on N with g(B) = 0 for all finite B c N and 9(N) = 1 
must  e x i s t - a  result which has been found by H o r n  and Tarski (1948), e.g., in quite a 
different connection. 
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