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0. Introduction

Let (2, &, P) be a complete probability space, (%) an increasing sequence of o-
algebras contained in 4 Suppose that all events of probability zero belong to %,. A
nonnegative integer-valued (possibly, + co) random variable (r.v.) T is called a
stopping time (s.t.) if for all n the event { T=n} belongs to %, We denote by I, M,
and M the sets of all s.t.’s, a.s. finite s.t.’s, and bounded s.t.’s, resepctively. We shall
consider a sequence X =(X,) of (real-valued) r.v.’s adapted to (%,). For Te9 define
X; by

X, (w), if T(w)=n

Xr(@) :{lim sup X, (@), if T(w)=+ oo.

Let us introduce the class M(X) of all s.t.’s TeIN satisfying the condition that the
integral EX, exists, that means', EX}F <+ or EX;<+oo. Set M(X)
=T(X) M and ME(X)=T(X) N IE.

For a class 9%:=9M a random sequence (X,) is called a generalized N-regular
supermartingale with respect to (%) if (X ) is adapted to (%), the integrals EX . exist
for TeM and the inequality?

E(X %) <X as.

holds for every pair S, Tedt such T = S. If 9 is the set of nonnegative integers, then
we simply speak of generalized supermartingales.
In the problem of optimal stopping one considers the value?

V= sup EX,
TeM(X)

' As usual, X =max(0, X) and X~ =max(0, — X)
> For any TeIR define the s-algebra % as the collection of all Ae# =o(| ) ) such that

An{T=n} belongs to %, for every n=0 nz0
3 Of course, supff= — oo and infp= + w0
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which is interpreted as the maximal gain that can be obtained by stopping the
reward sequence (X,) in an optimal way. Analogously, for any s.t. SeIR(X) the
value

Vo= sup EX,
TeM(X)
TzS
is interpreted as the maximal gain by stopping after §. We now introduce the “value
at time infinity”
V.= inf V.
SeM(X)
This value can be regarded as the maximal gain which can still be obtained by
stopping (X,) after an arbitrary long period of time.

In the present note we investigate the “value at time infinity” V. We give an
explicite expression for evaluating it. Using this characterisation of V| we come to
necessary and sufficient conditions for the a.s. convergence of the sequence (X,).
Connections with other works are pointed out. Our results are stated under most
general assumptions. The main results of the paper are Theorem 2.1, Theorem 3.4,
and Theorem 4.4.

1. Preliminaries

Obviously the set M is partially ordered and directed since for arbitrary S, TeJi the
r.v.S v T*also belongs to M. But in general the ordered set MM(X) does not have this
property. We need M(X) to be directed to reflect on nets (EX p)regmx)-

Lemma 1.1. Suppose that E lim sup X, exists. Then for all SeIt there exists ans.t. T
such that T=S and TeM(X). In particular, the set IM(X) is directed.
Proof. First suppose that E (limsup X,)™ < 4 oo. Let £¢>0, SeI and define

T=min{n=8: X, <E((limsup X )" | %) +¢}.

Obviously, T =S and T is an s.t. Because of the martingale convergence theorem of
P. Levy T is a.s. finite. Hence

X, SE(limsup X,)*|7;) e

that means TeWiX) and EX ;< +co. For E (limsup X,)” < + co the analogous

result follows.
Naturally, Lemma 1.1. also holds if E liminf X, exists.

n

*  Write a v b for max(a,b) and a A b for min(a, b)
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Definition 1.1. We introduce the notations

(1) limsupEX = inf sup EX,=V_,
TeM(X) SeI(X) T%EIJIZ(SX)

(2) liminfEX,= sup inf EX,.

TeM(X) SeMi(X) TeIM(X)
TS
(3) We say that the limit of the net (EX p) gy, exists if
liminfEX ,=limsup EX ;

TeM(X) TeM(X)

and write lim EX . for it.
TeM(X)

Remark 1.1. Note that in view of Lemma 1.1

limsupEX = inf sup EX; if ElimsupX, (or E liminfX))
TeM(X) SeMt TeM(X) n n
Tz23
exists.
We want to obtain a “Fatou-equation”

limsupEX =Elimsup X,
TeM(X) n

11

(resp., iminfEX . =Eliminf X ). (1)

TeM(X) n

This equation was proved by W. Sudderth [10] under the assumption that the
random sequence (X,) is bounded above (resp., below) by an integrable r.v. R. Chen
[3] generalized this result assuming only that the family (X F )y qn (resp., (X 7 )rean) 18
uniformly integrable. His proofis only a slight modification of that of W. Sudderth.
We will get Eq. (1.1) under most general assumptions. For (1.1) to make sense the
integral Elim sup X, must exist. We obtain a second condition by considering the

example in [10]: There (X,) is a nonnegative uniformly integrable sequence
converging to zero. Equation (1.1) does not hold since limsup EX ;> 1. One can
easily verify that, indeed, limsup EX = - o0, TeMm )
Tei(X)

Definition1.2. (1) X =(X,) belongs to the class .£* if Elimsup X, exists and
limsup EX ;< + c0.
TeM(X)

(2) X belongs to the class & if —X belongs to £*.

(3) Weset =2*nY,.

Definition 1.3. We say that X has the property (x) if for all Se there exists an s.t.
Teli(X)suchthat T2Sand EX > — c0.

Now we give two lemmas which we need for the proof of the announced
theorem. Before let us define

Y, =esssupE(X %) (1.2
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Lemma 1.2. Assume that X has the property (x). Then

(1) (Y,) is a generalized M-regular supermartingale;

(i) Ys= X as. for SeM(X);
(iii) (Y,) is the least sequence satisfying statements (i) and (ii);
(iv) EYg= sup EX, for SeIi;

TeM(X)
T>5S

(v) if, in addition, limsup EX ;. < + co then
TeM(X)

liminf Y, <limsup X, as.

n

Proof. These results are well-known in the theory of optimal stopping if (X,) is

bounded below by an integrable r.v. (cf. J.L. Snell [9], G.W. Haggstrom [6]).

Because of the importance for Theorem 2.1 we give the proof in a similar way.
First note that for SeI

Yi=esssup E(X ;| %).
TeM(X)
T25

From this and the properties of esssup it follows that for all Sedk there exists a
sequence (T,) = W(X) such that 7, =S and

Ys=supE(X, |%) as. (1.3)
k

Hence Y, is #-measurable and because of property (x) the integrals E Y exist and
are not equal to — co for all SeIM. Now let us prove the supermartingale inequality.
Fix SeM. Use (1.3) and choose T; such that 7, =S, T, eM(X), and EX} > — 0
(property (x)). Define a new sequence (S,) SM(X) in the following way:

S =T,

s = Se if E(X;,[Z)2EX
1 T,,,  otherwise.

|75)

Tr+1

The sequence (E(X, %)) is increasing now and therefore
Ys=supE(X;, | %)=limE(X, | %) as.
k k
Because of EXg > — oo, from B. Levi’s theorem on monotone convergence for
ReM with RS
E(Y| %) = EGmE (X, | %) Fo) =limE (X, | )
k k
SsupE(Xg, [ F) =Y, as,
k
i.e. the supermartingale inequality holds and (i) is proved. Statement (ii) is obvious.
Let (W) satisfy (i) and (ii). Then for all TeIR(X), T=n
W,2E(W,| Z)ZE(X (| %) as.
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and thus

W =Y as.

n—/— "n

which proves (iii).
For all SeI and TeW(X) such that T=S one has

EY,2EY,2EX,.
Consequently,

EY;= sup EX,.
e

On the other hand, consider the above defined sequence (S,) S %i(X) such that
§,28, EXg, > — o0, and E(X§, | %)) is increasingly converging to Y;. This gives

EY;=E(limE(Xg, | %))=limEX; < sup EX,
k C e

for all Sed.

Finally, let us prove (v). Because of limsupEX < + oo there exists an s.t.
TeMX)

SeI(X)such that sup EX <+ co. According to statement (iv) E Yg < + co. For

TeM(X)
TzS

this s.t. SeWi(X) one can find a sequence of s.ts (S,) such that S eIN(X) and
S.=Svm (cf. Lemma 1.1). Let £>0 and define
B=B(m,e)={X,<Y —eforalln=§_}.

By way of contradiction suppose that for some ¢>0 and m=0 it holds P(B)>0.
Then for all TeMi(X) with T=S, °

ExpXr=EyzYr—¢P(B).
Statement (ii) gives

EX SEY,—¢P(B)
and by statement (i)

EX, <EY; —¢P(B).

Because of EY; <E Y;< 4 o0 and ¢P(B) >0 this inequality contradicts statement
(iv). Therefore

PB)=P({X,=Y,—¢forallnzS,_})=0
for all ¢>0 and all m=0. Consequently, for all >0
P({X,=Y,—¢ infinitely often})=1

3

Let y, be the indicator function of the set 4
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which obviously implies

P(liminfY, Slimsup X ,)=1

Remark 1.2. Tt is worth while to notice that M(Y)=M if X has the property ().
Lemma 1.3. For all SeMt

sup EX;= sup EX;.

TeM(X) TeM(X)
Tz8 Tz=S

Proof. This equality, which means that the value V does not change using arbitrary
s.t.s, is well-known under conditions of integrability on the sequence (X ,) (cf. [4], or
for Markov processes, [8]). Here we give a short proof based on P. Levi’s
martingale convergence theorem.

It suffices to show that

EX, < sup EX, (1.4)
ReM(X)
Rz=S

for all SeM and TeIM(X) with T=S.
Let SedM, TeM(X) with T=S, and £>0 be fixed. Define

R=min{nzS:E(X ;%)X +¢}

which is obviously an s.t. Inequality (1.4) is trivial if EX; = — co. Let us assume now
that X 7 is integrable and return later to the case E X . = + 00. On the set { T=n} one
has

R=T=n as.
and therefore on {T< + o0}
R=T<+w as. (1.5)
It remains to verify that R< + o0 on {T= + o0}. Clearly
"E(X;|Z)zX,+¢ as. on {R=+4o0}
for all n=0, the martingale convergence theorem yields

X=ImE(X;|Z)zlimsupX,+¢ as. on {R=+w}

From (1.5) the inclusion {R =+ o0} £{T= + o} a.s. holds and, consequently,

limsupX,zlimsupX, +¢ as. on {R=+oc0}.

Hence the set {R = + oo} has probability zero, ie. {R < + o} as. Thus the s.t. R -
belongs to M. From the definition of R one has ReI(X)and EX <E X +¢ This
gives

EX. < sup EXp+e¢
ReM(X)
FEN
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and, after passage to the limit for ¢ | 0, inequality (1.4). Finally, suppose E X ;= + .
Let a be a positive real number and apply the result just obtained to the integrable
r.v. X7=Xr Aa. Therefore

EXT<supEX%= sup EX%= sup EX%=< sup EX,.

ReMt ReMh Reim(X) ReM(X)
R=S EXR>— o R=S R2S
R>S

Since X7 is increasing, (1.4) follows from B. Levi’s monotone convergence theorem.

2. Inequalities and Equalities for the Value at Infinity

As a direct consequence of Lemma 1.3 we give

Proposition 2.1 (cf. W. Sudderth [107]).
i) If Elimsup X, exists, then

limsupEX,2Elimsup X,
TeM(X) n

(i) If EliminfX, exists, then

lim 1nfEXTSEhm infX,.

TeM(X)

Proof. Of course, (ii) follows applying (i) to (— X ). From Lemma 1.3
sup EX;ZElimsupX,

TeM(X)
TzS
for all SeM(X) since by assumption + oo belongs to M(X) and the proofis finished.
Now we formulate the basic result of the paper which is the already mentioned
“Fatou-equation”.

Theorem 2.1. (i) If X belongs to £*, then

limsupEX ,=E hm supX,.

TeM(X)
(i) If X belongs to &, then
liminfEX ;=E hm infX,.

TeMM(X)

Proof. It is sufficient to prove (i). Because of Proposition 2.1 it remains to verify the
inequality

limsupEX,<ElimsupX,.
TeM(X) n

Nothing has to be shown if lim supE X = — o0 or E lim sup X, = + co. Therefore
TeM(X)
one restricts oneself to the case E hm sup X, < -+ oo and hm supEX ;> —oo. But, if
TeWi(X)



316 A. Engelbert and H.J. Engelbert

limsupE X ;> — co it is easy to see that in view of Remark 1.1 X is then satisfying
TeM(X)
property (*). Consequently, Lemma 1.2 is valid for the sequence (Y,) defined in (1.2).

Thus from the Remarks 1.1 and 1.2 and Lemma 1.2(iv)

limsupEX ;= inf sup EX,;= inf EY.
TeM(X) SeMM(Y) T?zth) Sed(Y)

Lemma 1.2(v) implies the existence of E lim infY,. Hence from Proposition 2.1 (ii)

n

and Lemma 1.2(v)

limsupEX;<EliminfY, <E limsup X,
TeM(X) n n

which completes the proof of the theorem.
Now we consider one special case in which the conditions of Theorem 2.1 can be
weakened.

Proposition 2.2. Suppose that for some ToeIt we have Fp = F .
(i) If ElimsupX, exists then
limsupEX=ElimsupX,.
TeM(X) n
(i) If EliminfX, exists then
liminfEX ;=Elim infX,.
TeM(X) n

Proof. Assertion (ii) is an immediate consequence of (i). In view of Proposition 2.1(i)
it suffices to verify

limsupEX <ElimsupX,.
TeM(xX) n

For ElimsupX,=+o0 the inequality is clear. Therefore suppose that

Elimsup X, < + 0. Let ¢>0 and define

S=max{nzTy: X, ZlimsupX, +¢}
which is an s.t. because of the assumption. Obviously, SeI(X) and for all TeW(X)
such that T=S one has

EX <ElimsupX,+e.

Hence

limsupEX;<Elimsup X,k +e.
TeM(X) n

Letting ¢ | 0 the assertion follows.
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Remarks 2.1. (a) In particular, the condition of Proposition 2.2 is fulfilled
in the totally previsible case: &, =4, for all n=0. In this case M consists of all
nonnegativer r.v.’s.

(b) It is interesting to notice that the value lim sup E X ; does not change when

TeM(X

(%) is replaced by a new family (%,) of a-algeb;a)s contained in & The only
conditions are that X belongs to #* with respect to both (%4,) and (%) and, of
course, Z¥ =%, for all n 20 where Z¥ is the smallest g-algebra relative to which X,
is measurable for every m=<n.

(c) Now we consider the case where ¥, =% for all 0. Using Proposition 2.2

we observe that limsupE X, with respect to (¢,) cannot be equal to + o0 if X
TeM(X)

belongs to £* (with respect to (£)). Thus, if X belongs to £* (with respect to (%))

the value limsupE X, does not change by passing over to (%,).
TeIM(X)

(d) Suppose now that X is a Markov sequence and (%,) such that ¥ ¥, Z,
for all n=0. Then it can be proved that X belongs to #* with respect to (%) if X
belongs to £* with respect to (¢,). Therefore, if X belongs to £* with respect to

(%,) the extension of (¥¢,) to (%) does not change the value limsupE X .
TeM(X)

3. Necessary and Sufficient Conditions for the Almost Sure Convergence

Now we investigate the connections between equalities for the value at infinity and
a.s. convergence of random sequences. First we formulate sufficient conditions.

Theorem 3.1. Suppose that EliminfX,, ElimsupX,, and lim EX, exist. Then
n n TeMmX)

lim EX, Ehm infX,=Elim supX (3.1)

TeM(X)
If one (and therefore all) of the values is finite, then im X, exists a.s. and is
R
integrable.

Proof. From Proposition 2.1

liminfEX ;< Ehmme <EhmsupX <limsupEX,

TeM(X) TeW(X)

and since lim E X exists equality (3.1) holds. The second assertion is obvious.
TeM(X)

Now we apply Theorem 3.1 to supermartingales.

Theorem 3.2. Let (X,) be a generalized I(X)-regular supermartingale and suppose
that EliminfX, and Elimsup X, exist. Then

n

EliminfX, EhmsupX = inf EXy.

n TeM(X)

If one (and therefore all) of the values is finite, then llmX exists a.s. and is
integrable.
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Proof. This theorem is a direct consequence of Theorem 3.1: If (X,) is a generalized
MM (X)-regular supermartingale, the net (EX ;). is decreasing and therefore

lim EX, exists and is equal to inf EXr.
TeM(X) TeM(X)

We next state connections between generalized Mi(X)-regular supermartingales
and properties of uniform integrability.

Theorem 3.3. Let (X ) be a generalized M (X)-regular supermartingale. Suppose that
one of the following conditions is satisfied.
(a) EliminfX , exists and is not equal to + co.

(b) EliminfX, exists and there is an s.t. TeM(X) such that EX ;< +

(c) M(X)=M
Then the following two conditions are equivalent :
() E 11m infX, and Elim supX exist and one (and therefore all) of the values
Elim infX,, EhmsupX and inf E X is not equal to — co.
TeM(X)

(2) The famlly (X7 )remx) is uniformly integrable.
Proof. First assume condition (a) or (b).
Let (2) be satisfied. By Proposition 2.1

lim 1nfEXTSEhm infX,

TeM(X)
and, since (X,) is a generalized MM (X)-regular supermartingale,

inf EX;=< SEhm infX,.

T (X)

Because (X7)remx, is uniformly integrable one has sup EX7 < +o0. Con-
sequently, the integral Elimsup X, exists and TeMm)

n

—o0< inf EXTSEllmme <ElimsupX,,
TeM(X) n

proving (1).
Conversely, let (1) be satisfied. By Theorem 3.2 and Lemma 1.3

'EliminfX,=ElimsupX,= inf EX, (3.2)
n n TeM(X)
= inf EX;
TeM(X)
<EX, (3.3)

for all TeMR(X). Let SeM(X) and AeF. Define

S if wed
S =
4() { +oo  otherwise.

Inequality (3.3) is then true for S, and thus

"Elimsup X, <Ey, Xs+Ey ;limsupX,.
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By assumption, condition (a) or (b), and equality (3.2) now lim sup X, is integrable.
This gives for every AeZ "

Ey,limsupX,<Ey, X;

which means

"E(limsup X, |#) <X as.

Hence

X5 SE(limsupX,)”| %) as.

for all SeIMN(X) proving the uniform integrability of (Xg )g.anx)-

Finally, suppose (c). Then (—X, ) is a P-regular supermartingale which,
obviously, is satistying (a). Therefore the theorem is true for (— X ). From this
follows immediately that the theorem holds for (X,), too.

It seems that the implication (1)—(2) was not known previously. Now we give

several equivalent conditions to characterize generalized supermartingales.

Proposition 3.1. Let (X,) be a generalized supermartingale. The following conditions
are equivalent.

(1) (X ) is uniformly integrable.

(2) (X7 )rean is uniformly integrable.

(3) (X,) is M-regular, inf EX ;> — oo, and Eliminf X, exists.
TeM n
4) (X,) is M-regular and Elimin{X , exists and is not equal to — co.

If one (and therefore all) of the conditions is satisfied then lim X, exists a.s. and

Elim X, > — co. If, moreover, there is an s.t. TeM such that EX§ < + oo thenlim X,

n

n
is integrable,

Proof. The implications (1)—(2)—(3)—(4)—(1) will be proved. Since (X ) is a
submartingale, (1)—(2) is well-known (cf. [7], TV 30).

Let(2) be satisfied. Then (X, ) is M-regular since, in particular, (X ) is uniformly
integrable (cf. [7], TV 17, TV 28). Thus (X,) is a generalized IM-regular super-
martingale such that (X7)7.qy is uniformly integrable. According to Theorem 3.3
the condition (3) holds.

Suppose now (3). In view of Proposition 2.1

EliminfX, = inff EX > — 0
n Te
which proves (3)—(4).
If (4) is satisfied then also ElimsupX, exists and thus, from Theorem 3.3

n

condition (1) follows.
Finally, if one of the conditions (1), (2), (3) or (4) holds then (X9 with X¢=X, A a
for a 20 is satisfying the conditions of Theorem 3.2. Consequently, lim X“ exists a.s.
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and is integrable. From this can easily be derived that lim X, exists a.s. By condition
(4), Elim X, exists and is not equal to —oco. The additional condition of the

existence of an s.t. TeI such that EX{ <+ oo implies

"ElimX,<limsupEX,= infEX ;< + o0,
n TeM TeM

ie. im X, is integrable.

We return to the general situation and give necessary and sufficient conditions
for the a.s. convergence. First we give a theorem that looks like Lebesgue’s theorem
on changing the order of limit and integral.

Theorem 3.4. Let X belong to . The following conditions are equivalent:
(1) lim E X exists.

TeM(X)
(2) lim X, exists a.s.
n

If one of these conditions is satisfied then lim X, is integrable and
n

lim EX;=ElimX,. (3.4
TeMX) n
Proof. Theorem 3.1 gives (1)—(2). For the implication (2)—(1) and the equality (3.4)

use Theorem 2.1.
We come to the special case considered in Proposition 2.2.

Proposition 3.2. Suppose that for some T,eM we have F = F,, and let EliminfX

and Elimsup X, exist. The following conditions are equivalent. "
n

(1) lim EXj exists and is finite.
TeM(X)
(2) lim X, exists a.s. and is integrable.

If one of these conditions is satisfied then

lim EX;=ElimX,.
TeM(X) "

The proof is a direct consequence of Proposition 2.2. Proposition 3.2 can be
applied to the case where & =% for all n=0, i.e. if the parameter T for the net
(EX y)remey is ranging over all nonnegative finite r.v’s such that the integral
" EX, makes sence.

4. Connections to Amarts

The notion of an amart was introduced by G.A. Edgar and L. Sucheston [5].

Definition 4.1. We set
(1) limsupEX,= inf sup EX;
TeMP (X) SeM?b(X) Te]?J;bS(IX)

(2) iminfEX ;= sup inf EX;
Temb (X) S 00 T 00
=
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(3) We say that the limit of (EX ;) qne x, €Xists if

liminfEX ;=limsupE X ;

TeMb (X) TeIR? (X)

and write lim EX, for it.
TeMb(X)
(4) A random sequence X =(X,) is called a (generalized) amart if lim EX;
TeM®(X)
exists and is finite.

We need a theorem which is taken from R. Chen [3]. Since his proof is not
the simplest we give another one.

Proposition 4.1. (i) If (X, ) is uniformly integrable then

EhmsupX SlimsupE X ;<limsupE X ;.
TeMb

TeMi(X)
(i) If (XF) is uniformly integrable then
IminfEX ;<liminfEX <E hm infX,

Temrv Tem(xX)
Proof. Tt suffices to prove (i). The uniform integrability of (X) implies
liminfE X, < + o and by Fatou’s lemma EliminfX; < 4 co. But

n n

(limsup X,)” =liminfX

and hence Elimsup X, exists. Thus by Proposition 2.1 the first inequality holds.

Note that by Lemma 1.1 the set IM(X) is non-void. For proving the second
inequality let Se9R® and TeM such that T=S and EX;> — . The family
(X7, ) 1s for n=0 uniformly integrable. By Fatou’s lemma

TAn

hrnlnfEXTM<supEX

nzm

Tan

where m is an arbitrary nonnegative integer. Because of Se9® there can be
found m =0 such that S <m. Therefore

EX;<sup EX,
ReMmb
R=S

and, consequently,

sup EX; < supEX .
TeM(X) Temp
TzS T2S

This yields

inf sup EX,;< inf sup EX,< inf supEX,,
SeI(X) TeMi(X) SeMmd TeM(X) SeIMP TeMMb
TzS TzS TzS

proving the assertion.
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Directly from Proposition 4.1 we now obtain the following

Theorem 4.1. Let (X,) be a uniformly integrable amart. Then

(i) lim EX; exists and is finite,
L Temx
(i) im X, exists a.s. and is integrable;

(i) lim EX,;=lmEX, ElimX
TeM(X) TeMmb
Statement (iii) does not remain Vahd without the assumption of the uniform

integrability as the following example shows.

Example 4.1. Let (Y) be a sequence of independent r.v.s such that P(Y,=1)
=P(Y,=0)=1}. Define X,=2"7, Y. Then (X,) is a nonnegative martingale

which is not unlformly mtegrable Obv1ously, th =0 as. and lmEX =1
TeMb

From Fatou’s lemma follows EX <1 for all T eim. By Theorem 2.1 lim EX;
exists and is equal to zero. Tem(x)
We proceed with a proposition of R. Chen [3].

Proposition 4.2. (i) Let (X {)r.qw be uniformly integrable. Then
limsupEX ;<ElimsupX,.

TeMb
(i) Let (X7)reame be uniformly integrable. Then
Ehm infX, <liminfEX ;.

TeMM?

Proof. 1t is enough to prove (i). First notice that in view of Proposition 4.1 and
the uniform integrability of (XF)r.gps

E(lim supX )t <Elim supX+ <limsupEX; < supEX7 < + 0.

TeIR? TeMmb
Consequently, E lim supX exists and is not equal to + 0. Let ¢ be a positive

real number such that P(limsupX,=c)=0. Then

n

limsupE X <inf sup Eyx, <o X7+ sup Eyy. g X7
TeMb n T}’Egﬁ TeMmb
n

§limEsupx{m§ c} X, + sup EX{X-} >C)X7t
n mzn TeMb
=E hm sup X{limsuan§c) Xn + Sup E X(X; >C}X;:'
n n TeMm?b

Now one passes over to the limit as ¢foo. In view of the uniform integrability
of (X F)reame the second member on the right hand side tends to zero. Finally, by
Fatou’s lemma

im SUpE yimeupx, < limsup X, <Elimsup X,
cteo n - n n
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since ElimsupX,< + co and the assertion follows. This proposition yields the
following theorem which is also due to R. Chen [3].

Theorem 4.2. Let (X ;). be uniformly integrable. The following conditions are
equivalent :
(1) (X,) is an amart.

(2) imE X ; exists and is finite.
TeWt
(3) im X, exists a.s. and is integrable.

Proof. Note that M(X)=MW from Fatow’s lemma. The implication (1)—(2) is
given by Theorem 4.1 and (2)—(3) is known from Theorem 3.4. Finally, Pro-
position 4.2 yields (3)—(1).

In the following we need the amart convergence theorem which 1s due to D.G.
Austin, G.A. Edgar, and A. Ionescu Tulcea [1] and R.V. Chacon [2].

The amart convergence theorem states that lim X, exists a.s. and is integrable
if (X,) is an amart satisfying the condition supE | X | <+ co. It is clear that the

nz0

theorem also is true if we only assume limsupE|X,|< 4+ o0. The converse

statement of the amart convergence theorem is not true as the following
example shows.

Example 4.2. Let (X ) be as in Example 4.1 and define Z,, ., =X, and Z,,=0 for
all n20. Then limZ,=0 a.s. but

n

liminfEZ;=0 and limsupEZ, =1.
TeR? Ten?
Before we present an interesting connection of L;-bounded amarts to

convergent nets (EX )y gy, We give a proposition which itself is interesting,
too.

Proposition 4.3. (i) Suppose lim supEX <+ o0 and limsupEX ;< +00. Then X
belongs to ¥*. Tem (X
(ii) Suppose lim supEXJr <+ and iminfEX ;> —oo. Then X belongs to
g TeM? (X)
"
Proof. 1t is sufficient to verify (i). By Fatou’s lemma Elim sup X, exists (cf. proof

of Proposition4.1). It remains to show limsupEXF < +oo which implies

limsupE X ;< + 0. Remark 1.1 gives Tem(X)
TeM(X)
limsupEX 7 = inf sup EX; < inf supEX7
TeM(X) SeIR TeMX) SeM TeMm
T=S T=S
=limsupEX7.
TeM

But in view of Proposition 4.1

limsupEXF <limsupE X,

TeMm Ter?
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Hence the assertion is proven if limsupE X < + <o can be shown. Choose an
TeMmb

integer k>0 with supEX, < +oo. Notice that then every TeM’ with T=k
nzk

belongs to MP(X). Let now Sed® such that S=k and sup EX,< +oo. Let
TeM? with T2 S and choose n such that n> T Define  52%

T(w) if we{X;20}
n otherwise.

R(cu)={

Thus ReI?(X) with R=S and one has
Xi<Xe+Xo.
Consequently,

supEX{< sup EXp+supEX, .
TeMb ReMb (X) nzk
T=S R2S

The assumptions now yield the proposition.

Theorem4.4. Let (X,) be an amart such that limsupE|X, |<+ 0. Then
lim EX; exists and is finite. "
TeM(X)
The amart convergence theorem implies the a.s. existence and integrability of
lim X ,. Now from Proposition 4.3 and Theorem 3.4 the assertion follows.

n

Unfortunately, the proof of this theorem is based on the amart convergence
theorem. A direct proof is not known to us. However, a direct proof of
Theorem4.4 would be of interest because Theorem4.4 implies the amart
convergence theorem in view of Theorem 2.1.

It should be noticed that under the assumptions of Theorem4.4 lim EX,
TeM(X)

and lim EX, are not equal in general (cf. Example4.1). Moreover, the
Te? (X)
converse statement to Theorem 4.4 does not hold, ie. if lim EX, exists and is
finite then (X,) need not be an amart (cf. Example 4.2). 7¢™&®
Summarizing the results of the paper we conclude that the class of random

sequences (X,) having the property that lim EX, exists and is finite is in
TeM(X)
several situations more interesting then the class of amarts. In particular, under

the assumption limsupE | X,| < + co the class of amarts is smaller.

Finally, an interesting consequence of Theorem 4.4 should be mentioned:
For every supermartingale (X)) satisfying the condition supE X, < + oo we have

that lim EX, exists and is finite. nz0
TeIR(X)
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