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O. Introduction 

Let (O, ~-, P) be a complete probability space, (~,,) an increasing sequence of o- 
algebras contained in ~,~ Suppose that all events of probability zero belong to ~ .  A 
nonnegative integer-valued (possibly, + c~) random variable (r.v.) T is called a 
stopping time (s.t.) if for all n the event { T= n} belongs to ~,~. We denote by 9J~, 9)l, 
and 9)l b the sets of all s.t.'s, a.s. finite s.t.'s, and bounded s.t.'s, resepctively. We shall 
consider a sequence X = (Xn) of (real-valued) r.v.'s adapted to (g,,). For TegJl define 
X r by 

Xr  (co) = ~X~(co), if T(co) = n 
~Jlm sup X,(co), if T(co) = + oo. 

n 

Let us introduce the class 9J~(X) of all s.t.'s TEg.R satisfying the condition that the 
integral E X  r exists, that means 1, EX~ < +c~ or EXr  < +oo. Set ~ ( X )  
= ~ ( X )  c~TA and 9 ) l b ( x ) = ~ ( X )  c~91l b. 

For a class 91__ 9Jl a random sequence (Xn) is called a generalized 91-regular 
supermartingale with respect to (~)  if(X,) is adapted to (~), the integrals E X  r exist 
for Te91 and the inequality 2 

E(XTI~s)<=Xs a.s. 

holds for every pair S, TeN such T > S. If 9l is the set of nonnegative integers, then 
we simply speak of generalized supermartingales. 

In the problem of optimal stopping one considers the value 3 

V= sup E X  r 
T ~ ( X )  

1 As usual, X + =max(0,X) and X =max(0, - X )  
z For any T E N  define the a-algebra ~T as the collection of all AsJ| U ~) such that 
Ac~{T=n} belongs to ~ for every n > 0  , so  
3 Of course, supr = - co and inf0 = + co 
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which is interpreted as the maximal gain that can be obtained by stopping the 
reward sequence (X,) in an optimal way. Analogously, for any s.t. SegJ~(X) the 
value 

Vs= sup EX r 
Ts~JI(X) 

T>S 

is interpreted as the maximal gain by stopping after S. We now introduce the "value 
at time infinity" 

V~ = inf V s. 
Salt(X) 

This value can be regarded as the maximal gain which can still be obtained by 
stopping (X,) after an arbitrary long period of time. 

In the present note we investigate the "value at time infinity" V~. We give an 
explicite expression for evaluating it. Using this characterisation of V~o we come to 
necessary and sufficient conditions for the a.s. convergence of the sequence (X,). 
Connections with other works are pointed out. Our results are stated under most 
general assumptions. The main results of the paper are Theorem 2.1, Theorem 3.4, 
and Theorem 4.4. 

1. Preliminaries 

_ _  m 

Obviously the set 9)l is partially ordered and directed since for arbitrary S, T~gJI the 
r.v. S V T 4 also belongs to ~ .  But in general the ordered set 92R(X) does not have this 
property. We need 931(X) to be directed to reflect on nets (EXr)r~(x) .  

Lemma 1.1. Suppose that E lim sup X ,  exists. Then for all S e?O~ there exists an s.t. T 
n 

such that T >  S and T~J2(X). In particular, the set ?iJ~(X) is directed. 

Proof. First suppose that E(limsupX~)+ < + oo. Let ~>0, S~gJ~ and define 
n 

r = m i n  {n>S" X~_-<E((lim supX~)+l~)+~}.  
n 

Obviously, T > S and T is an s.t. Because of the martingale convergence theorem of 
P. Levy T is a.s.' finite. Hence 

X r < E ((lim sup X,) + [~r) + 8 
n 

that means T~gJI(X) and EX r < + oo. For  E (lim sup Xn) < + oo the analogous 
n 

result follows. 
Naturally, Lemma 1.1. also holds if E l iminfX,  exists. 

n 

4 Write a v b  for max(a,b) and a A b  for min(a,b) 
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Definition 1.1. We introduce the notations 

(1) l imsupEX T= inf sup E X  r=Voo, 
T ~ ( X )  S~gJ~(X) TegJI(X) 

T ~ S  

(2) l i m i n f E X r =  sup inf E X r .  
T~gJ't(X) S~3I(X) TeTA(X) 

T>=S 

(3) We say that the limit of the net ( E X r ) r ~ ( x )  exists if 

lira infEX r = lira sup E X T  
T~.~I(X) T~9~(X) 

and write lira EX r for it. 
T~?Ot(X) 

Remark  1.1. Note that in view of Lemma 1.1 

lim sup E X  r = inf sup E X  r if E lim sup X~ (or E lim infX=) 
T~fBI(X) S~fYJI T ~ I ( X )  n n 

T > S  

exists. 
We want to obtain a "Fatou-equat ion" 

lim sup E X  r = E lim sup X, 
r ~ ( x )  ~ (1.1) 

(resp., lira infEX r = E lim inf X~). 
T ~ I ( X )  n 

This equation was proved by W. Sudderth [10] under the assumption that the 
random sequence (Xn) is bounded above (resp., below) by an integrable r.v.R. Chen 
[3] generalized this result assuming only that the family (X,~)r~ ~ (resp, ( X T ) T ~ )  is 
uniformly integrable. His proof is only a slight modification of that ofW. Sudderth. 
We will get Eq. (1.1) under most general assumptions. For  (1.1) to make sense the 
integral E lim sup X n must exist. We obtain a second condition by considering the 

example in ['10]" There (Xn) is a nonnegative uniformly integrable sequence 
converging to zero. Equation (1.1) does not hold since limsup E X T >  1. One can 
easily verify that, indeed, lim sup E X  r = q-o0, TEgJI(X) 

T ~ I ( X )  

Definition1.2. (1) X=(Xn) belongs to the class ~ *  if E l i m s u p X .  exists and 
n 

lim sup E X  r < + oo. 
TE~(X) 

(2) X belongs to the class S,  if - X  belongs to ~v,. 

(3) We set S = S *  c~ 5e,. 

Definition 1.3. We say that X has the property (,) if for all Seg~ there exists an s.t. 
TegJ~(X) such that T > S and E X  T > - oo. 

Now we give two lemmas which we need for the proof of the announced 
theorem. Before let us define 

Y, = ess sup E (XT] ~.~) (1.2) 
T~.~(X) 

T > n  
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Lemma 1.2. Assume that X has the property (,). Then 
(i) (Yn) is a generalized 9J~-regular supermartingale ; 

(ii) Ys> Xs a.s. for s~gJI(X); 
(iii) (Yn) is the least sequence satisfying statements (i) and (ii); 
(iv) EYs= sup EXr  for S~gJ~; 

T ~ ( X )  
T>_S 

(v) /f, in addition, lim sup E X  T < + oo then 
regJl(X) 

lim inf Y, _-< lira sup X~ a.s. 
n n 

Proof. These results are well-known in the theory of optimal stopping if (X,) is 
bounded below by an integrable r.v. (cf. J.L. Snell [9], G.W. Haggstrom [6]). 
Because of the importance for Theorem2.1 we give the proof in a similar way. 

First note that for S~9)l 

Ys = ess sup E(Xr [~,~s). 
TEg~I(X) 

T>S 

From this and the properties of ess sup it follows that for all S~gJ~ there exists a 
sequence (Tk)N~(X) such that Tk>S and 

Ys=supE(Xr~l~s) a.s. (1.3) 
k 

Hence Y, is G-measurable and because of property (,) the integrals E Ys exist and 
are not equal to - oo for all S~9)l. Now let us prove the supermartingale inequality. 
Fix SegJ~. Use (1.3) and choose T I such that T 1 >S, TI~9.R(X), and EXrl  > -oo 
(property (,)). Define a new sequence (Sk)~= ~J~(X) in the following way: 

SI=T1 
_~Sk, if E(Xsk[Ys)>E(Xrk+ll~,~s) 

Sk + ~ -- ~ Tk + 1 otherwise. 

The sequence (E(Xsk[Ss)) is increasing now and therefore 

Ys=supE(XskJo~s)=limE(Xs~J~s) a.s. 
k k 

Because of EXs~ > -  oo, from B. Levi's theorem on monotone convergence for 
REgJ~ with R < S  

E( Ysl ~ )  = E(limE(Xsk[~s) ] ~ )  = lim E(Xskl ~ )  
k k 

<=supE(Xs~I~,~)<= YR a.s., 
k 

i.e. the supermartingale inequality holds and (i) is proved. Statement (ii) is obvious. 
Let (W,) satisfy (i) and (ii). Then for all TE92~(X), T>n 

W>E(WTI~)>=E(XTI~) a . s .  
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and thus 

W,>Yn a.s. 

which proves (iii). 
For  all S~gJ~ and T~gJ~(X) such that T>S one has 

EYs>EYT>EXT . 

Consequently, 

EYs > sup E X r .  

T>_S 

On the other hand, consider the above defined sequence (Sk)~9~(X) such that 
Sk~SI EXsl > -Go,  and E(Xskl~s) ) is increasingly converging to Ys. This gives 

E Ys=E(limE(Xs~l~s))=limEXsk~ sup E X  T 
k k T~931(X) 

T>_S 

for all S ~ .  
Finally, let us prove (v). Because of lim s u p E X r <  +oo there exists an s.t. 

TE~J~(X) 

S c ~ ( X )  such that sup  E X  r < + co. According to statement (iv) E Ys < + oe. For 
T~fll(X) 

T>=S 

this s.t. S ~ ( X )  one can find a sequence of s.t.'s (S~) such that S , , ~ ( X )  and 
S,~>=S v m (cf. Lemma 1.1). Let ~>0  and define 

B=B(m,~)={X~<=Y-~ for all n~S,,}. 

By way of contradiction suppose that for some e>O and m=>O it holds P(B)>O. 
Then for all T~f~(X) with T~Sm 5 

EZBXr<EzB Y r -  eP(B). 

Statement (ii) gives 

E X  r < E Y r -  eP(B) 

and by statement (i) 

E XT < E Ys, - eP(B). 

Because of E Ysm<E Ys < + oo and eP (B )> 0  this inequality contradicts statement 
(iv). Therefore 

P(B)=P((X,< Yn-e for all n>Sm})=0  

for all e > 0 and all m > 0. Consequently, for all 8 > 0 

P({X, > Y, - ~ infinitely often}) = 1 

5 Let/~a be the indicator function of the set A 
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which obviously implies 

P(lim infY, < lim sup X,) = 1 

Remark 1.2. It is worth while to notice that 9J/(Y) =~lJ/if X has the property (,). 

Lemma 1.3. For all SEgJ~ 

sup E X r =  sup E X  T . 
re~l (X)  T ~ ( X )  

T > S  T>_S 

Proof. This equality, which means that the value V s does not change using arbitrary 
s.t.'s, is well-known under conditions of integrability on the sequence (Xn) (cf. [4], or 
for Markov processes, [8]). Here we give a short proof  based on P. Levi's 
martingale convergence theorem. 

It suffices to show that 

E X T  <= sup E X  g (1.4) 
REgJ~(X) 

R > S  

for all S~gJ~ and T~gJI(X) with T>S.  
Let S~IJ~, T~gJ~(X) with T>S,  and e > 0  be fixed. Define 

R = min{n >S:  E ( X r ] ~ )  < Xn + e } 

which is obviously an s.t. Inequality (1.4) is trivial if EX r = - oo. Let us assume now 
that X r is integrable and return later to the case E X T = + oo. On the set { T = n} one 
has 

R < T = n  a.s. 

and therefore on {T< + oo} 

R < T < + o o  a.s. (1.5) 

It remains to verify that R <  + oo on {T=  + oo}. Clearly 

E ( X r l ~ ) > X n + ~  a.s. on {R=  + ~ }  

for all n > 0, the martingale convergence theorem yields 

X T = l i m E ( X r l ~ ) > l i m s u p X n + e  a.s. o n { R = + o o } .  
n n 

From (1.5) the inclusion {R=  + oo} ~ { T =  + oo} a.s. holds and, consequently, 

l i m s u p X n > l i m s u p X n + e  a.s. on { R = + o o } .  
n n 

Hence the set {R = + oo} has probability zero, i.e. {R < + oo} a.s. Thus the s.t. R 
belongs to 9)l. F rom the definition of R one has R ~991 (X) and E X r < E X n + e. This 
gives 

E X T <  sup EXR+~ 
R ~ 951 (X)  

R ~ S  
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and, after passage to the limit for e ~ 0, inequali ty (1.4). Finally, suppose E X r = + oo. 
Let  a be a posit ive real number  and apply  the result just  ob ta ined  to the integrable 
r.v. X )  = X  r/x a. Therefore  

E X ~  < s u p E X ~  = sup E X ~  = sup E X ~  < sup E X  R .  
R~gJI R ~ I  R~9OI(X) R~.~rt (x)  
R >=S E X R  > - ~ R >=S R >_S 

R > S  

Since X )  is increasing, (1.4) follows f rom B. Levi 's  m o n o t o n e  convergence theorem.  

2. Inequalities and Equalities for the Value at Infinity 

As a direct consequence of L e m m a  1.3 we give 

Proposition 2.1 (cf. W. Sudder th  [10]). 
(i) I f  E lira s u p X ,  exists, then 

n 

l im sup E X r > E lim sup X n 
T~gYt(X)  n 

(ii) I f  E lira in fX n exists, then 
n 

l im i n f E X  r < E lim infX. .  
T ~ ( X )  n 

Proof. Of course, (ii) follows applying (i) to ( - X ~ ) .  F r o m  L e m m a  1.3 

sup  EXr__>E lim s u p X  n 
T~F.OI(X) n 

T > S  

for all scgJI(X) since by assumpt ion  + oo belongs to ~J~(X) and the p roof  is finished. 
N o w  we formulate  the basic result of  the paper  which is the already ment ioned  

"Fa tou-equa t ion" .  

Theorem 2.1. (i) I f  X belongs to ~q~*, then 

l im s u p E X  r = E  lim s u p X , .  
Te~O~(X) n 

(ii) I f  X belongs to LP,, then 

lim infE X r = E lira infXn. 
TcgJ~(X)  n 

Proof. It  is sufficient to prove  (i). Because of Propos i t ion  2.1 it remains  to verify the 
inequali ty 

lira sup E X r __< E lim sup X~. 
TcgJ~(X)  n 

Noth ing  has to be shown if lim s u p E X  r = - ~ or E lim s u p X ,  = + oo. Therefore  
T E g ~ ( X )  n 

one restricts oneself  to the case E lim sup X,, < + c~ and lim s u p E X  T > - oo. But, if 
n T ~ ( X )  
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lim sup E X T > - Go it is easy to see that in view of Remark 1.1 X is then satisfying 
TE~(X)  

property (,). Consequently, Lemma 1.2 is valid for the sequence (Yn) defined in (1.2). 
Thus from the Remarks 1.1 and 1.2 and Lemma 1.2(iv) 

l i m s u p E X T =  inf sup EXT= inf EY s. 
T~gI(X) S e ~ ( Y )  T~OI(X) Se~r~(g) 

T>_S 

Lemma 1.2(v) implies the existence of E lim infYn. Hence from Proposition 2.1(ii) 
n 

and Lemma 1.2(v) 

lim sup E X r < E lim inf 17. < E lira sup X n, 
TegJl(X) n n 

which completes the proof of the theorem. 
Now we consider one special case in which the conditions of Theorem 2.1 can be 

weakened. 

Proposition 2.2. Suppose that for some Toeg~ we have ~ T o  : ~ c ~ "  

(i) If  E lim supXn exists then 
n 

lim sup E X w = E lim sup X,. 
T e ~ ( X )  n 

(ii) I f  E lim infX~ exists then 
n 

lira infEX w = E  lira infX,. 
TegJi(X) n 

Proof. Assertion (ii) is an immediate consequence of(i). In view of Proposition 2.1 (i) 
it suffices to verify 

lim supEX r < E lim supX~. 
TenOr(X) n 

F o r  E l i m s u p X ~ = + ~  the inequality is clear. Therefore suppose that 
n 

E l i m s u p X , <  + oo. Let e > 0  and define 
t l  

S =ma x  {n > To: X n_ 1 > l im supX,  + e} 
n 

which is an s.t. because of the assumption. Obviously, S~gJ~(X) and for all T~gJI(X) 
such that T > S one has 

EXT <E limsupX~ + e. 
n 

Hence 

lim supEX r _-<E lim supX,  + e. 
T ~ t ( X )  n 

Letting e ~ 0 the assertion follows. 
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Remarks 2.i. (a) In particular, the condition of Proposition2.2 is fulfilled 
in the totally previsible case: ~=Yo~  for all n>0.  In this case 9J~ consists of all 
nonnegativer r.v.'s. 

(b) It is interesting to notice that the value lira su p EX  r does not change when 
T~?OI(X) 

(~ )  is replaced by a new family (N.) of a-algebras contained in ~ The only 
conditions are that X belongs to 50* with respect to both (N.) and (~ )  and, of 
course, ~ x  __c~. for all n > 0 where ~ x  is the smallest a-algebra relative to which X,. 
is measurable for every m < n. 

(c) Now we consider the case where N. = ~- for all n > 0. Using Proposition 2.2 
we observe that lira supEX r with respect to (N.) cannot be equal to + o9 if X 

TegJl (X)  

belongs to 50* (with respect to (~)). Thus, i fX  belongs to Lf* (with respect to (~))  
the value l imsupEX r does not change by passing over to (N,). 

r ~ g l l ( X )  

__ C ~ -  (d) Suppose now that X is a Markov sequence and (N.) such that ~x_~ N. = ~n 
for all n>0.  Then it can be proved that X belongs to 5 ~ with respect to (~)  i f X  
belongs to 50* with respect to (~.). Therefore, if X belongs to 50* with respect to 
(N.) the extension of (~.) to (~.) does not change the value l im su p EX  r. 

T ~ l ( X )  

3. Necessary and Sufficient Conditions for the Almost Sure Convergence 

Now we investigate the connections between equalities for the value at infinity and 
a.s. convergence of random sequences. First we formulate sufficient conditions. 

Theorem 3.1. Suppose that E liminfX.,  E lim supXn, and lim E X  r exist. Then 
n n T ~ 9 ~ ( X )  

lira E X r = E lim infX. = E lim sup Xn. (3.1) 
T~gJI(X) n n 

I f  one (and therefore all) of the values is finite, then l imX n exists a.s. and is 
n 

integrable. 

Proof. From Proposition 2.1 

lim infE X r < E lim infX, < E lira sup Xn < lim sup E X r 
T~fOI(X) n n T e ~ t ( X )  

and since lim E X  r exists equality (3.1) holds. The second assertion is obvious. 
T E g . r / ( X )  

Now we apply Theorem 3.1 to supermartingales. 

Theorem 3.2. Let (X.) be a generalized 9~(X)-regular supermartingale and suppose 
that E lira infX~ and E lim supX~ exist. Then 

n n 

E l i m i n f X ~ = E l i m s u p X ~ =  inf E X r .  
n n Te931(X) 

I f  one (and therefore all) of the values is finite, then l imX, exists a.s. and is 
integrable. 
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Proof This theorem is a direct consequence of Theorem 3.1: If(X,) is a generalized 
gJt(X)-regular supermartingale, the net (EXT)T~.~(X) is decreasing and therefore 

lim' E X  T exists and is equal to inf EXr .  
T ~ 9 ~ ( X )  T ~ Y ~ ( X )  

We next state connections between generalized ~(X)-regular  supermartingales 
and properties of uniform integrability. 

Theorem 3.3. Let (Xn) be a generalized ~Jl(X)-regular supermartingale. Suppose that 
one of the following conditions is satisfied." 

(a) E l i m i n f X .  exists and is not equal to + ~ .  
n 

(b) E l iminfX.  exists and there is an s.t. T6gJt(X) such that E X r <  + 
n 

(c) ~ ( x ) = ~ .  
Then the following two conditions are equivalent: 
(1) E lim infX. and E lira supX.  exist and one (and therefore all) of the values 

n n 

EliminfX.i  E l imsupX. ,  and inf E X r is not equal to --oo. 
n T ~ ( X )  

(2) The family (XT )T~(X ~ is uniformly integrable. 

Proof First assume condition (a) or (b). 
Let (2) be satisfied. By Proposition 2.1 

lim infEX T =< E l im infX. 
T~gJ t (X)  n 

and, since (X~) is a generalized g)l(X)-regular supermartingale, 

inf E X  r =< E lim infX~. 
TokYO(X) n 

Because (XT)T~(X) is uniformly integrable one has sup E X  r < + oo. Con- 
sequently, the integral E lim supX,  exists and T~93~(X) 

n 

- c ~  < inf EXT<=El imin fX~<El imsupX ~, 
Te~OI(X) n n 

proving (1). 
Conversely, let (1) be satisfied. By Theorem 3.2 and Lemma 1.3 

E l i m i n f X , = E l i m s u p X , =  inf E X  T (3.2) 
n n T e T ~ ( X )  

= inf E X  r 
T e ~ ( x )  

<=EX T (3.3) 

for all T ~ ( X ) .  Let S~J t (X)  and A~o~s . Define 

{ S  if co~A 
SA(CO) = oO otherwise. 

Inequality (3.3) is then true for S A and thus 

E lira sup Xn < E ~a X S  -}- E )~fi. lira sup X~. 
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By assumption, condition (a) or (b), and equality (3.2) now lim supX,  is integrable. 
This gives for every A ~  s 

E ZA lim sup X.  < E ZA Xs 
n 

which means 

E(limsupX, l~s)< Xs a.s. 
n 

Hence 

X s <E( l imsupX, ) - l~s )  a.s. 
n 

for all S~gJ~(X) proving the uniform integrability of (Xs)s~x(x). 
Finally, suppose (c). Then ( - X 2 )  is a 9Jr-regular supermartingale which, 

obviously, is satisfying (a). Therefore the theorem is true for ( - X 2 ) .  From this 
follows immediately that the theorem holds for (X,), too. 

It seems that the implication (1)--*(2) was not known previously. Now we give 
several equivalent conditions to characterize generalized supermartingales. 

Proposition 3.1. Let (Xn) be a generalized supermartingale. The following conditions 
are equivalent. 

(1) (X2) is uniformly integrable. 
(2) (X~)r~ ~ is uniformly integrable. 
(3) (Xn) is 9~-regular, i n f E X r >  - o o ,  and El iminfX,  exists. 

T ~ f B I  n 

(4) (Xn) is 9J~-regular and E l iminfX, exists and is not equal to -oo. 
n 

I f  one (and therefore all) of the conditions is satisfied then l imX, exists a.s. and 
n 

E l imX, > - oo. I f  moreover, there is an s.t. T~gJ~ such that EX~. < + oo then l imX, 
n 

is integrable. 

Proof The implications (1)~(2)~(3)~(4)-+(1) will be proved. Since (X2) is a 
submartingale, (1)--+(2) is well-known (cf. [7], TV 30). 

Let (2) be satisfied. Then (X,) is ~-regular  since, in particular, (X 2) is uniformly 
integrable (cf. [7], TV 17, TV 28). Thus (X,) is a generalized 9N-regular super- 
martingale such that (X r ) r ~  is uniformly integrable. According to Theorem 3.3 
the condition (3) holds. 

Suppose now (3). In view of Proposition 2.1 

E l i m i n f X , >  i n f E X r  > - oo 
n TE~O~ 

which proves (3)~(4). 
If (4) is satisfied then also El imsupX~ exists and thus, from Theorem3.3 

n 

condition (1) follows. 
Finally, if one of the conditions (1), (2), (3) or (4) holds then (X~) with X] = X,/x a 

for a > 0 is satisfying the conditions of Theorem 3.2. Consequer/tly, lim X] exists a.s. 
n 



320 A. Engelbert and H.J. Engelbert 

and is integrable. From this can easily be derived that l imX, exists a.s. By condition 
n 

(4), E l i m X ,  exists and is not equal to - o o .  The additional condition of the 
n 

existence of an s.t. T~93~ such that EX~  < + oo implies 

E l i m X  <=limsupEXT= i n f E X T <  + o% 
n T E g ~  T ~ O ~  

i.e. l imX. is integrable. 
n 

We return to the general situation and give necessary and sufficient conditions 
for the a.s. convergence. First we give a theorem that looks like Lebesgue's theorem 
on changing the order of limit and integral. 

Theorem 3.4. Let X belong to •.  The following conditions are equivalent: 
(1) lim E X  T exists. 

T ~ ( X )  

(2) l imX. exists a.s. 
n 

I f  one of these conditions is satisfied then l imX.  is integrable and 
n 

lira E X  T = E  limX n. (3.4) 
T~fI~(X) n 

Proof. Theorem 3.1 gives (1)4(2). For  the implication (2)4(1) and the equality (3.4) 
use Theorem 2.1. 

We come to the special case considered in Proposition 2.2. 

Proposition 3.2. Suppose that for some T0 ~gJl we have ~'~ro = ~oo and let E lim infXn 
and E lim supX, exist. The following conditions are equivalent. 

n 

(1) lira E X  T exists and is finite. 
T ~ g J I ( X )  

(2) l imX, exists a.s. and is integrable. 
n 

I f  one of these conditions is satisfied then 

lim E X r = E l i m X  .. 
TeTJ~(X) n 

The proof is a direct consequence of Proposition 2.2. Proposition 3.2 can be 
applied to the case where ~ = ~ for all n > 0, i.e. if the parameter T for the net 
(EXr ) r ~ (x )  is ranging over all nonnegative finite r.v.'s such that the integral 
E X  T makes sence. 

4. Connections to Amarts 

The notion of an amart was introduced by G.A. Edgar and L. Sucheston [5]. 

Definition 4.1. We set 
(1) l i m s u p E X r =  inf sup  E X  r 

T~gJ~b(X) S~JIb(X) Te~J~b(x) 
T>=S 

(2) l i m i n f E X r =  sup i n f  E X  r 
T~fJJlb(X) S ~ ( X )  Tegl~b(X) 

T >>=S 
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(3) We say that the limit of'(EXr)Te~jtb(X ) exists if 

lira inf E x T = lim sup E X T 
TE~J~b(X) T~gJ~b(X) 

and write l i m  E X  T for it. 
re.q~b(X) 

(4) A random sequence X =(Xn) is called a (generalized) amart  if lim E X  T 
T e ~ b ( X )  

exists and is finite. 
We need a theorem which is taken from R. Chen [33. Since his proof  is not 

the simplest we give another one. 

Proposition 4.1. (i) I f  (X~) is uniformly integrable then 

E lim supX n =< lim s u p E X  r < lira s u p E X  T 
n T~931(X) T~93l b 

(ii) I f  (X +) is uniformly integrable then 

lim infE XT < lim infE X r < E lira infX. 
Te!O~ b T e ~ ( X )  n 

Proof. It suffices to prove (i). The uniform integrability of (X~-) implies 
liminfEX~- < + oo and by Fatou's  lemma E l i m i n f X  2 < + oo. But 

n n 

(lim sup X, ) -  = lim infX 2 
n n 

and hence E lim supX,  exists. Thus by Proposition 2.1 the first inequality holds. 
n 

Note that by Lemma 1.1 the set 9J~(X) is non-void. For proving the second 
inequality let S~gJt b and T~gJt such that T > S  and EXT>--oo .  The family 
(XrA n) is for n > 0 uniformly integrable. By Fatou's  lemma 

E X  T <_ lim infEX r A n < sup E XT ̂  n 
n n ~ m  

where m is an arbitrary nonnegative integer. Because of S ~  b there can be 
found m ~ 0 such that S ~ m. Therefore 

E X T  <= s u p  E X  R 
R E ~  b 
R > S  

and, consequently, 

sup EXT<= s u p E X  T. 
T~9)I(X) T~9~ b 

T>=S T > S  

This yields 

inf sup EXT<= inf sup EXT<= inf supEXT, 
SeflJl(X) T~92~(X) Se .~  b Te~JI(X) S~J1 b T~931 b 

T>=S T > S  T > S  

proving the assertion. 



322 A. Engelbert and H.J. Engelbert 

Directly from Proposition 4.1 we now obtain the following 

Theorem 4.1. Let (Xn) be a uniformly integrable amart. Then 
(i) lira E X  y exists and is finite; 

T E g J I ( X )  

(ii) l imX, exists a.s. and is integrable ; 
n 

(iii) lira E X r =  l i m E X r = E l i m X , .  
T E g J I ( X )  T~gJ1 b n 

Statement (iii) does not remain valid without the assumption of the uniform 
integrability as the following example shows. 

Example4.1. Let (Yn) be a sequence of independent r.v.'s such that P(Y,=I)  
=P(Y,=0)=�89 Define X ,=2" .  YI' . . . '  Y,. Then (X,) is a nonnegative martingale 
which is not uniformly integrable. Obviously, l i m X , = 0  a.s. and lira E X r = I .  

n T ~ 9 ) l  b 

From Fatou's lemma follows E X T < I  for all T~9)I. By Theorem 2.1 lira E X r  
exists and is equal to zero. r~(x)  

We proceed with a proposition of R. Chen [3]. 

Proposition 4.2. (i) Let ( X ~ ) r ~  be uniformly integrable. Then 

lira sup E Xr  < E lira sup X.. 
T ~ J I  b n 

(ii) Let ( X r ) r ~ b  be uniformly integrable. Then 

E lira infX, < lira infEX T. 
It T~gJ~ b 

Proof. It is enough to prove (i). First notice that in view of Proposition 4.1 and 
the uniform integrability of (X/~)r~b 

E(lim supX,) + < E  lim supX~ + __<lim supEX~ < sup EX~ < + oo. 
n n T ~ g J I  b T e ~ ) l  ~ 

Consequently, Elim supX, exists and is not equal to + ~ .  Let c be a positive 
n 

real number such that P(lim sup X, = c)= 0. Then 
n 

limsupEXT_-<inf sup E Z{x~ <=cI XT + sup E )~(X~ >c}X + 
T e ~  b n T ~ g J I  b T E ~  b 

T > _ n  

< limE sup Z{x+, <= ~} Xm q- sup E Z{x+ >c} X+r 
n m > n  T ~ J I  b 

= E limsup Z{limsupXi,< c} Xn -}- r~sup E Z{x} > c}X~. 

Now one passes over to the limit as c t oo. In view of the uniform integrability 
of (X~)r~m~ the second member on the right hand side tends to zero. Finally, by 
Fatou's lemma 

lira supE lim supX, < E lira supX n 
cT oo ) Q l i m n s u p X n  < C} n - -  n 



Optimal Stopping and Almost Sure Convergence of Random Sequences 323 

since E l imsupXn< + oo and the assertion follows. This proposition yields the 
n 

following theorem which is also due to R. Chen [3]. 

Theorem 4.2. Let (XT)T~b be uniformly integrable. The following conditions are 
equivalent: 

(1) (X/l) is an amart. 
(2) l imEX r exists and is finite. 

T ~fOl 

(3) l imX, exists a.s. and is integrable. 
/1 

Proof. Note that 9Jl(X)=9)l from Fatou's lemma. The implication (1)~(2) is 
given by Theorem4.1 and (2)~(3) is known from Theorem 3.4. Finally, Pro- 
position 4.2 yields (3)--*(1). 

In the following we need the amart convergence theorem which is due to D.G. 
Austin, G.A. Edgar, and A. Ionescu Tulcea [1] and R.V. Chacon [2]. 

The amart convergence theorem states that limX/1 exists a.s. and is integrabIe 
/1 

if (Xn) is an amart satisfying the condition supE IX/1] < + oo. It is clear that the 
n > 0  

theorem also is true if we only assume limsupE]X/1]< +oo. The converse 
n 

statement of the amart convergence theorem is not true as the following 
example shows. 

Example 4.2. Let (Xn) be as in Example 4.1 and define Z2/1+ 1 =X~ and Z2/1=0 for 
all n>0.  Then l imZ~=0 a.s. but 

I1 

l imin fEZT=0 and l i m s u p E Z r = l .  
T ~ I  b T ~  b 

Before we present an interesting connection of Ll-bounded amarts to 
convergent nets(EXr)T~O~(x) we give a proposition which itself is interesting, 
too. 

Proposition4.3. (i) Suppose l imsupEX 2 < +oo and l i m s u p E X r <  + oo. Then X 
belongs to Y * .  " T~ffrlb(x) 

(ii) Suppose l imsupEX~ + < + ~  and l i m i n f E X r > - o o .  Then X belongs to 
~ , .  n TE~Ib(X) 

Proof. It is sufficient to verify (i). By Fatou's lemma E lim supX. exists (cf. proof 
n 

of Proposition4.1). It remains to show l i m s u p E X ~ < + o o  which implies 
lira supEX r < -/- oo. Remark 1.1 gives T~R(X) 
Tc~'t(X) 

l i m s u p E X ~ =  inf sup EX~ < inf supEX + 
T~JI(X)  S~gJI T~JI(X) S~gJi Ta92it 

T > S  T > S  

= lim sup EX +. 
T E ~ 9 1  

But in view of Proposition 4.1 

lim supEX~ <lim supEX~. 
T~J~ T~J~ b 
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Hence the assertion is proven if l i m s u p E x ~ - <  + oo can be shown. Choose an 
T c ~  b 

integer k > 0  with s u p E x ~ < + o o .  Notice that then every T~O)F with T > k  
n>k 

belongs to 9Xb(X). Let now SegX b such that S > k  and sup E X r <  +or .  Let 
TffOJ~ b with T>-S and choose n such that n>T.  Define TcgjIb 

- -  - -  T > _ S  

R(co) = {T(co) if O,)@{XT~:O } 
otherwise. 

Thus R~gJIb(X) with R>=S and one has 

x~ <-_xR+x2. 

Consequently, 

s u p E X ~ <  sup E X R + S U p E X  2. 
T e g ) l  b R E ~  b ( X )  n > k 
T>S R> S  

The assumptions now yield the proposition. 

Theorem4.4. Let (Xn) be an amart such that l i m s u p E [ X n [ < + o o .  Then 
l im E X  r exists and is finite, n 

Teg~(X) 

The amart  convergence theorem implies the a.s. existence and integrability of 
l imX n. Now from Proposition 4.3 and Theorem 3.4 the assertion follows. 

n 

Unfortunately, the proof  of this theorem is based on the amart  convergence 
theorem. A direct proof  is not known to us. However, a direct proof  of 
Theorem4.4 would be of interest because Theorem4.4 implies the amart  
convergence theorem in view of Theorem 2.1. 

It should be noticed that under the assumptions of Theorem 4.4 l im E X  r 
TE~i(X) 

and l i ra  E X  r are not equal in general (cf. Example4.1). Moreover, the 
T ~ b ( x )  

converse statement to Theorem 4.4 does not hold, i.e. if l im E X  r exists and is 
finite then (Xn) need not be an amart  (cf. Example 4.2). r~ (x )  

Summarizing the results of the paper we conclude that the class of random 
sequences (Xn) having the property that l im E X  r exists and is finite is in 

TE~(X)  

several situations more interesting then the class of amarts. In particular, under 
the assumption l imsupE Ixnl < + oo the class of amarts is smaller. 

n 

Finally, an interesting consequence of Theorem4.4 should be mentioned: 
For every supermartingale (X~) satisfying the condition s u p E X  2 < + ~ we have 
that lira E X  r exists and is finite, n>0 

TE~01(X)  
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