Generalized Exponential Bounds, Iterated Logarithm and Strong Laws

Henry Teicher *
Department of Statistics, Hill Center for Math. Sci. Busch Campus, Rutgers University, New Brunswick, N.J. 08903, USA

Summary. New upper and lower exponential bounds are obtained under a more general condition than that of Kolmogorov and these, in turn, elicit iterated logarithm laws

$$
\varlimsup_{n \rightarrow \infty}\left(s_{n}^{2} \log _{2} s_{n}\right)^{-\frac{1}{2}} \sum_{j=1}^{n} X_{j} \stackrel{\text { a.s. }}{=} C \varepsilon(0, \infty)
$$

for a wider class of bounded, mean zero, independent random variables $\left\{X_{n}, n \geqq 1\right\}$. The constant C need not be the universal number $2^{\frac{1}{3}}$ and may depend upon the underlying distributions. Upper and lower bounds are provided for C in terms of a parameter. The upper bound is also exploited in proving a new strong law of large numbers for independent random variables.

1. Introduction

One of the most beautiful discoveries of probability theory is the celebrated Iterated Logarithm Law. Due in the case of suitably bounded independent random variables, to Kolmogorov [9] this was the culmination of a series of strides by Hausdorff, Hardy, Littlewood and Hinčine. It asserts for independent, zero mean random variables $\left\{X_{n}, n \geqq 1\right\}$ satisfying $\left|X_{n}\right| \leqq c_{n} s_{n}$, a.s., $n \geqq 1$ where c_{n}^{2} $=o\left(\frac{1}{\log _{2} s_{n}}\right), s_{n}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2} \rightarrow \infty, \sigma_{n}^{2}=E X_{n}^{2}$ that $\overline{\lim }_{n \rightarrow \infty}\left(s_{n}^{2} \log _{2} s_{n}^{2}\right)^{-\frac{1}{2}} \sum_{j=1}^{n} X_{j}^{\text {a.s. }} 2^{\frac{1}{2}}$. The crucial instruments in the proof are so-called exponential bounds for the probability that $\sum_{j=1}^{n} X_{j}$ exceeds $\lambda s_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}$. Kolmogorov's derivation of the lower exponential bound involves partitioning an integral into five parts and although ingenious is rather involved and ad hoc. Here, an improved upper bound (Lemma 1) and simplified lower bounds (Lemmas 2 and 3) are given under the more general condition

$$
\lim _{n \rightarrow \infty} c_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}=a \geqq 0 .
$$

* Research supported by National Science Foundation under Grant Number MCS 78-00805

The derivation of the upper bound is especially simple and may be considered an extension and refinement of Lemma 1 of [8] which, in turn, is related to $[10,7]$. The development of the lower bound employs the Esscher transformation [5] which has been exploited by Cramer [2]. Feller [6] and more recently Bahadur [1]. The initial argument for the lower bound is very close to that of Feller [6] who, at a crucial point, introduced assumptions whose nature seems difficult to assess. A valiant attempt to concretize these was made in [11] but unfortunately the applications there [p. 2107-8] are invalidated by an error.

Such upper and lower bounds elicit iterated logarithm laws under the prior condition $\lim _{n \rightarrow \infty} c_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}=a \geqq 0$. The constant need no longer be the universal number $2^{\frac{n^{2}}{2}}$ and when $a>0$ will depend on the underlying distributions most likely via the value of a. It would be of interest to establish this extended universality, if indeed that is the case, or otherwise to negate it by counterexample.

Under the comparable condition $c_{n}^{2}=O\left(\frac{1}{\log _{2} s_{n}}\right)$, Egorov [3] showed that

$$
\varlimsup_{n \rightarrow \infty} \frac{\left|\sum_{1}^{n} X_{j}\right|}{s_{n}\left(\log _{2} s_{n}\right)^{\frac{-}{2}}} \stackrel{\text { a.s. }}{=} C<\infty
$$

but did not rule out the possibility $C=0$ (when $c_{n}^{2} \sim a^{2} \log _{2} s_{n}$) or furnish information about C. ${ }^{1}$

2. Upper Exponential Bound

The inequalities (1), (2), (4) below bear a natural comparison with their Kolmogorov analogues. For example, Kolmogorov's coefficient of t^{2} in the right side of (1) is $\frac{1}{2}\left(1+\frac{c_{n} t}{2}\right)$ provided $0<t c_{n} \leqq 1$ and this exceeds $g\left(c_{n} t\right)$ under his proviso. Likewise, the coefficient of t^{2} in the right side of (4) exceeds $\frac{1}{2}\left(1-c_{n} t\right)$ for $0<c_{n} t \leqq 1$. The probablistic inequality (2) is of especial interest in the cases(i) $\lambda_{n} \equiv \lambda, x_{n}=\left(\log _{2} s_{n}\right)^{\frac{1}{2}}$ and (ii) $x_{n} \equiv \varepsilon, \lambda_{n}=\log _{2} s_{n}, b=2 / \varepsilon^{2}$ although intermediate cases are not devoid of interest.

Lemma 1. Let $S_{n}=\sum_{j=1}^{n} X_{j}$ where $\left\{X_{j}, 1 \leqq j \leqq n\right\}$ are independent r.v.'s with $E X_{j}=0$, $E X_{j}^{2}=\sigma_{j}^{2}, s_{n}^{2}=\sum_{1}^{n} \sigma_{j}^{2}$; set $g(x)=x^{-2}\left(e^{x}-1-x\right)$ and suppose that $0<c_{j} s_{j} \uparrow, 1 \leqq j \leqq n$. (i) If $P\left\{X_{j} \leqq c_{j} s_{j}\right\}=1,1 \leqq j \leqq n$ then

[^0]\[

$$
\begin{equation*}
E e^{t S_{n} / s_{n}} \leqq e^{t^{2} g\left(c_{n} t\right)}, \quad t>0 \tag{1}
\end{equation*}
$$

\]

and if, in addition, $0<c_{n} x_{n} \leqq a$, then for all positive λ_{n} and b,

$$
\begin{equation*}
P\left\{\max _{1 \leqq j \leqq n} S_{j}>\lambda_{n} x_{n} S_{n}\right\} \leqq e^{-x_{n}^{2}\left[\lambda_{n} b-b^{2} g(a b)\right]} \tag{2}
\end{equation*}
$$

(ii) If $P\left\{X_{j} \geqq-c_{j} s_{j}\right\}=1,1 \leqq j \leqq n$ then

$$
\begin{equation*}
E e^{t S_{n} / s_{n}} \geqq \exp \left\{t^{2} g\left(-c_{n} t\right)\left[1-\frac{t^{2} g\left(-t c_{n}\right)}{s_{n}^{4}} \sum_{j=1}^{n} \sigma_{j}^{4}\right]\right\}, \quad t>0 \tag{3}
\end{equation*}
$$

and if, in addition, $\sigma_{j} \leqq c_{n} s_{n}, 1 \leqq j \leqq n$

$$
\begin{equation*}
E e^{t S_{n} / s_{n}} \geqq e^{t^{2} g\left(-t c_{n}\right)\left[1-t^{2} c_{n}^{2} g\left(-t c_{n}\right)\right.} \geqq e^{t^{2} g\left(-t c_{n}\right)\left[1-\frac{t^{2} c_{n}^{2}}{2}\right]}, \quad t>0 \tag{4}
\end{equation*}
$$

Proof. The function $g(x)$ is non-negative, increasing and convex on $(-\infty, \infty)$. This is obvious for $x>0$ but is not apparent when $x<0$. The identities

$$
\begin{equation*}
x g^{\prime}(x)=(x-2) g(x)+1, \quad x g^{\prime \prime}(x)=(x-3) g^{\prime}(x)+g(x) \tag{5}
\end{equation*}
$$

ensure that $x^{2} g^{\prime \prime}(x)=\left(x^{2}-4 x+6\right) g(x)+x-3$. Thus to verify convexity and monotonicity for $x<0$ it suffices to establish that for $y>0$

$$
\begin{equation*}
g(-y)>\frac{y+3}{y^{2}+4 y+6} \quad \text { and } \quad g(-y)>\frac{1}{y+2} \tag{6}
\end{equation*}
$$

In fact, it suffices to prove the former since this clearly implies the latter. To this end, note that for $0<y<3$

$$
e^{y}-1-y-\frac{y^{2}}{2}=\frac{y^{3}}{6}\left[1+\frac{y}{4}+\frac{y^{2}}{4.5}+\ldots\right]<\frac{y^{3}}{6\left(1-\frac{y}{4}\right)}<\frac{y^{3}}{6-2 y}
$$

and so $e^{y}<\left(y^{2}+4 y+6\right) /(6-2 y)$ implying

$$
g(-y)=\frac{e^{-y}-1+y}{y^{2}}>\frac{1}{y^{2}}\left[\frac{6-2 y}{y^{2}+4 y+6}+y-1\right]=\frac{y+3}{y^{2}+4 y+6} .
$$

On the other hand, for $y \geqq 3$,

$$
g(-y)=\frac{e^{-y}-1+y}{y^{2}}>\frac{y-1}{y^{2}} \geqq \frac{y+3}{y^{2}+4 y+6}
$$

completing the proof of convexity and monotonicity.
The point of departure for (1), (2), (3) is the simple observation

$$
\begin{equation*}
E e^{t X_{j} / s_{n}}=1+E\left[e^{t X_{j /} / s_{n}}-1-\frac{t X_{j}}{s_{n}}\right]=1+t^{2} E \frac{X_{j}^{2}}{s_{n}^{2}} g\left(\frac{t X_{j}}{s_{n}}\right) . \tag{7}
\end{equation*}
$$

Hence, monotonicity ensures under (i) that if $t>0$

$$
E e^{t X_{j} / s_{n}} \leqq 1+\frac{t^{2} \sigma_{j}^{2}}{s_{n}^{2}} g\left(t c_{n}\right) \leqq e^{t^{2} g\left(t c_{n}\right) \sigma_{j}^{2 / s / s_{n}^{2}}}
$$

and (1) follows via independence.
If rather (ii) obtains, then (7) in conjunction with the elementary inequality (1 $+u) e^{u^{2}}>e^{u}, u>0$ yields for $t>0$

$$
E e^{t X_{j} / s_{n}} \geqq 1+\frac{t^{2} \sigma_{j}^{2}}{s_{n}^{2}} g\left(-t c_{n}\right) \geqq \exp \left\{\frac{t^{2} \sigma_{j}^{2}}{s_{n}^{2}} g\left(-t c_{n}\right)-\frac{t^{4} \sigma_{j}^{4}}{s_{n}^{4}} g^{2}\left(-t c_{n}\right)\right\}
$$

whence (3) is immediate. Under the additional hypothesis $\sigma_{j} \leqq c_{n} s_{n}, 1 \leqq j \leqq n$ necessarily $s_{n}^{-4} \sum_{j=1}^{n} \sigma_{j}^{4} \leqq c_{n}^{2}$ and (4) follows from (3), in view of $g(0)=\frac{1}{2}$.

To establish (2), note that via the submartingale inequality and (1), for $t>0$

$$
\begin{align*}
P\left\{\max _{1 \leqq j \leqq n} S_{j}>\lambda x_{n} s_{n}\right\} & =P\left\{\max _{1 \leqq j \leqq n} e^{t S_{j}} \geqq e^{\lambda t x_{n} s_{n}}\right\} \leqq e^{-\lambda t x_{n} s_{n}} E e^{t S_{n}} \\
& \leqq e^{-\lambda t x_{n} s_{n}+t^{2} s_{n}^{2} g\left(c_{n} s_{n} t\right)} \tag{8}
\end{align*}
$$

and so setting $t=b x_{n} / s_{n}, b>0, x_{n}>0$

$$
P\left\{\max _{1 \leqq j \leqq n} S_{j}>\lambda x_{n} S_{n}\right\} \leqq e^{-x_{n}^{2}\left[\lambda b-b^{2} g\left(c_{n} x_{n} b\right)\right]} \leqq e^{-x_{n}^{2}\left[\lambda b-b^{2} g(a b)\right]} .
$$

Clearly, nothing precludes λ being a function of n.
The simple inequality of (2) yields a generalization of the easier half of the Law of the Iterated Logarithm.
Corollary 1. Let $\left\{X_{n}, n \geqq 1\right\}$ be independent r.v.'s with $E X_{n}=0, E X_{n}^{2}=\sigma_{n}^{2}, s_{n}^{2}$ $=\sum_{1}^{n} \sigma_{i}^{2} \rightarrow \infty$. (i) If $\sigma_{n}^{2}=o\left(s_{n}^{2}\right)$ and $X_{n} \leqq c_{n} s_{n} \uparrow$, a.s., $n \geqq 1$ where $c_{n}>0$ then

$$
\begin{align*}
& c_{n} \sqrt{\log _{2} s_{n}} \rightarrow 0 \Rightarrow \varlimsup_{n \rightarrow \infty} \frac{\sum_{j=1}^{n} X_{j}}{s_{n} \sqrt{\log _{2} s_{n}}} \leqq \sqrt{2}, \quad \text { a.s. } \tag{9}\\
& c_{n} \sqrt{\log _{2} s_{n}} \rightarrow a \in(0, \infty) \Rightarrow \varlimsup_{n \rightarrow \infty} \frac{\sum_{j=1}^{n} X_{j}}{s_{n} \sqrt{\log _{2} s_{n}}} \leqq \min _{b>0}\left[\frac{1}{b}+b g(a b)\right], \text { a.s. }
\end{align*}
$$

or

$$
\begin{equation*}
0<c_{n} \sqrt{\log _{2} s_{n}} \leqq a \tag{10}
\end{equation*}
$$

In particular when $a=1$ the minimum in (10) is $e-1$. (ii) If $\left|X_{n}\right| \leqq c_{n} s_{n} \uparrow$, a.s., $n \geqq 1$ where $c_{n} \sqrt{\log _{2} s_{n}} \rightarrow a \in[0, \infty)$ then $\varlimsup_{n \rightarrow \infty}\left|\sum_{1}^{n} X_{j}\right| / s_{n} \sqrt{\log _{2} s_{n}} \leqq K$, a.s. where $K=\sqrt{2}$ if $a=0$ and $K=\min _{b>0}\left[\frac{1}{b}+b g(a b)\right] \leqq \min \left[a+\frac{e-2}{a}, 1+g(a)\right]$ otherwise.

Proof. If $\lambda>b^{-1}+b g(a b)$ where $g(x)=x^{-2}\left(e^{x}-1-x\right)$ then for α larger than but sufficiently close to one, $\lambda / \alpha^{2}>b^{-1}+b g(a b)$. Define an increasing sequence of integers $\left\{n_{k}, k \geqq 1\right\}$ by $s_{n_{k}} \leqq \alpha^{k}<s_{n_{k}+1}$. Since $\sigma_{n}^{2}=o\left(s_{n}^{2}\right)$ entails $s_{n+1}^{2} \sim s_{n}^{2}$, necessarily $s_{n_{k}+1}^{2}=s_{n_{k}}^{2}+\sigma_{n_{k}+1}^{2}=s_{n_{k}}^{2}+o\left(s_{n_{k}}^{2}\right)$ and so $s_{n_{k}} \sim \alpha^{k}$. Suppose now that either
$c_{n} \sqrt{\log _{2} s_{n}} \rightarrow a_{0} \geqq 0$ or $0<c_{n} \sqrt{\log _{2} s_{n}} \leqq a$. Then for any $a>a_{0}$ and all large n, necessarily $c_{n} x_{n} \leqq a$ with $x_{n}=\sqrt{\log _{2} s_{n}}$ and so (2) obtains for this choice of x_{n}, a and all large n. Thus, replacing λ_{n} by λ / α^{2} in (2), there exists an $\varepsilon>0$ such that for all large k

$$
\begin{aligned}
P\left\{\max _{1 \leqq j \leqq n_{k}} S_{j}>\frac{\lambda}{\alpha^{2}} s_{n_{k}}\left(\log _{2} s_{n_{k}}\right)^{\frac{1}{2}}\right\} & \leqq \exp \left\{-\left[\frac{\lambda b}{\alpha^{2}}-b^{2} g(a b)\right] \log _{2} s_{n_{k}}\right\} \\
& \leqq \exp \left\{-(1+\varepsilon) \log _{2} s_{n_{k}}\right\} \leqq \frac{1}{(k \log \alpha)^{1+(\delta / 2)}}
\end{aligned}
$$

whence by the Borel-Cantelli lemma

$$
\begin{aligned}
P\left\{S_{n}>\lambda s_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}, \text { i.o. }\right\} & \leqq P\left\{\max _{n_{k-1}<n \leqq n_{k}} S_{n}>\lambda s_{n_{k-1}}\left(\log _{2} s_{n_{k-1}}\right)^{\frac{1}{2}}, \text { i.o. }\right\} \\
& \leqq P\left\{\max _{1 \leqq n \leqq n_{k}} S_{n}>\frac{\lambda}{\alpha^{2}} S_{n_{k}}\left(\log _{2} s_{n_{k}}\right)^{\frac{1}{2}}, \text { i.o. }\right\}=0 .
\end{aligned}
$$

Consequently, for all $b>0$, with probability one

$$
\varlimsup_{n \rightarrow \infty} \frac{\sum_{j=1}^{n} X_{j}}{S_{n} \sqrt{\log _{2} s_{n}}} \leqq \frac{1}{b}+b g(a b)
$$

This proves (10) when $0<c_{n} \sqrt{\log _{2} s_{n}} \leqq a$. Under the alternative hypothesis, letting $a \downarrow a_{0}$, the preceding holds with a replaced by a_{0}. If $a_{0}=0$ then $g(0)=\frac{1}{2}$ and the right side has a minimum of $\sqrt{2}$. When $a_{0}=1$ (or $a=1$), (5) reveals that $g^{\prime}(1)=1-g(1)$ whence the minimum value $e-1$ occurs at $b=1$. In case (ii) the hypothesis ensures $\sigma_{n}^{2} / s_{n}^{2} \leqq c_{n}^{2} \rightarrow 0$ and the conclusion follows by applying (i) to both $\left\{-X_{n}, n \geqq 1\right\}$ and $\left\{X_{n}, n \geqq 1\right\}$.

Finally, to verify that the right side of (10) is bounded by $\min \left[a+\frac{e-2}{a}, 1\right.$ $+g(a)]$, note that the minimizing value b_{0} of $r(b) \equiv b^{-1}+b g(a b)$ satisfies b^{-2} $=a b g^{\prime}(a b)+g(a b)$ and hence also (recall (5)) $b^{2}(a b-1) g(a b)=1-b^{2}$. Consequently, either $1>b_{0}>\frac{1}{a}$ (if $a>1$) or $1<b_{0}<\frac{1}{a}$ (if $a<1$) and so the right side of (10) is bounded by $\min \left[r(1), r\left(\frac{1}{a}\right)\right] . \triangle$

3. Lower Exponential Bound

The form of the lower bound is simplest in the classical case $\lim _{n \rightarrow \infty} c_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}=a$ $=0$ and hence the alternatives $a=0$ and $a>0$ will be dealt with in separate lemmas.

The crucial tool is the Esscher transformation which leads to the basic formula (11). At this juncture Lemma 1 provides indispensable bounds for the logarithm of the moment generating function (m.g.f.) $\psi_{n}(t)$ and its derivatives and the combination yields the desired lower bounds.

For any positive integer n, let $\left\{X_{n, j}, 1 \leqq j \leqq n\right\}$ constitute independent r.v.'s with d.f.'s $F_{n, j}$ and finite moment generating functions $\varphi_{n, j}(t)=\exp \left\{\psi_{n, j}(t)\right\}$ for $0 \leqq t<t_{0}$. Suppose that $S_{n, n}=\sum_{j=1}^{n} X_{n, j}$ has mean 0 , variance one and d.f. F_{n}. For any t in $\left[0, t_{0}\right)$, define associated d.f.'s $F_{n, j}^{(t)}$ by

$$
F_{n, j}^{(t)}(x)=\frac{1}{\varphi_{n, j}(t)} \int_{-\infty}^{x} e^{t y} d F_{n, j}(y)
$$

and let $\left\{X_{n, j}(t), 1 \leqq j \leqq n\right\}$ be (fictitious) independent r.v.'s with d.f.'s $\left\{F_{n, j}^{(t)}\right.$, $1 \leqq j \leqq n\}$. Since the characteristic function (c.f.) of $X_{n, j}(t)$ is $\varphi_{n, j}(t+i u) / \varphi_{n, j}(t)$, setting $\psi_{n}(t)=\sum_{j=1}^{n} \psi_{n, j}(t)$, the c.f. of $S_{n}(t)=\sum_{j=1}^{n} X_{n, j}(t)$ is given by

$$
E e^{i u S_{n}(t)}=\sum_{j=1}^{n} \frac{\varphi_{n, j}(t+i u)}{\varphi_{n, j}(t)}=e^{\psi_{n}(t+i u)-\psi_{n}(t)}
$$

Thus, the mean and variance of $S_{n}(t)$ are $\psi_{n}^{\prime}(t)$ and $\psi_{n}^{\prime \prime}(t)$ respectively and moreover the d.f. of $S_{n}(t)$ is

$$
F_{n}^{(t)}(x)=e^{-\psi_{n}(t)} \int_{-\infty}^{x} e^{t y} d F_{n}(y)
$$

whence for any t in $\left[0, t_{0}\right)$ and real w,

$$
\begin{equation*}
P\left\{S_{n, n}>w\right\}=e^{t / n_{n}(t)-t \psi_{n}^{\prime}(t)} \int_{\frac{w-\psi_{n}^{\prime}(t)}{\sqrt{\psi_{n}^{\prime \prime}(t)}}}^{\infty} e^{-t y \sqrt{\psi_{n}^{\prime \prime}(t)}} d F_{n}^{(t)}\left(y \sqrt{\psi_{n}^{\prime \prime}(t)}+\psi_{n}^{\prime}(t)\right) . \tag{11}
\end{equation*}
$$

If ψ_{n} and its derivatives can be approximated with sufficient accuracy, (11) holds forth the possibility of obtaining a lower bound for the probability that a sum of independent r.v.'s with zero means exceeds a multiple of its standard deviation.
Lemma 2. Let $\left\{X_{j}, 1 \leqq j \leqq n\right\}$ be independent r.v.'s with $E X_{j}=0, E X_{j}^{2}=\sigma_{j}^{2}, s_{n}^{2}$ $=\sum_{1}^{n} \sigma_{j}^{2}$ and $P\left\{\left|X_{j}\right| \leqq d_{j}\right\}=1$ where $0<d_{j} \uparrow$. If $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\lim _{n \rightarrow \infty} \frac{d_{n} x_{n}}{s_{n}}=0$ where $x_{n}>x_{0}>0$ then for every γ in $(0,1)$, some C_{γ} in $\left(0, \frac{1}{2}\right)$ and all large n

$$
\begin{equation*}
P\left\{S_{n}>(1-\gamma)^{\frac{3}{2}} S_{n} x_{n}\right\} \geqq C_{\gamma} e^{-x_{n}^{2}\left(1-\gamma^{2}\right) / 2} . \tag{12}
\end{equation*}
$$

Proof. Let $\varphi_{j}(t)$ denote the m.g.f. of X_{j} and set $S_{n, n}=S_{n} / s_{n}=\sum_{j=1}^{n} X_{j} / s_{n}$ and $c_{n}=d_{n} / s_{n}$. Since, in the notation leading to (11), $\varphi_{n, j}(t)=\varphi_{j}\left(t / s_{n}\right), 1 \leqq j \leqq n$ and $g_{1}(x)=x^{-1}\left(e^{x}\right.$ $-1) \uparrow$, it follows for $t>0$ and $1 \leqq j \leqq n$ that

$$
\begin{aligned}
& \varphi_{n, j}^{\prime}(t)=\frac{d}{d t} E e^{t X_{j} / s_{n}}=E \frac{X_{j}}{s_{n}}\left(e^{t X_{j} / s_{n}}-1\right) \leqq t g_{1}\left(\pm t c_{n}\right) \sigma_{j}^{2} / s_{n}^{2}, \\
& \varphi_{n, j}^{\prime \prime}(t)=E \frac{X_{j}^{2}}{s_{n}^{2}} e^{t X_{j} / s_{n}} \leqq e^{ \pm t c_{n}} \sigma_{j}^{2} / s_{n}^{2}
\end{aligned}
$$

and so noting $\varphi_{n, j}(t) \geqq 1,\left(7^{\prime}\right)$ and $\sigma_{j}^{2} \leqq c_{n}^{2} s_{n}^{2}, 1 \leqq j \leqq n$

$$
\begin{align*}
\psi_{n, j}^{\prime}(t)=\frac{\varphi_{n, j}^{\prime}(t)}{\varphi_{n, j}(t)} & \leqq t g_{1}\left(t c_{n}\right) \sigma_{j}^{2} / s_{n}^{2} \\
& \geqq \frac{t g_{1}\left(-t c_{n}\right) \sigma_{j}^{2} / s_{n}^{2}}{1+t^{2} c_{n}^{2} g\left(t c_{n}\right)} \tag{13}
\end{align*}
$$

$$
\begin{aligned}
\psi_{n, j}^{\prime \prime}(t) & =\frac{\varphi_{n, j}^{\prime \prime}(t)}{\varphi_{n, j}(t)}-\left[\psi_{n, j}^{\prime}(t)\right]^{2} \leqq e^{t c_{n}} \sigma_{j}^{2} / s_{n}^{2} \\
& \geqq \frac{\sigma_{j}^{2}}{s_{n}^{2}}\left[\exp \left\{-t c_{n}-t^{2} c_{n}^{2} g\left(t c_{n}\right)\right\}-t^{2} c_{n}^{2} g_{1}^{2}\left(t c_{n}\right)\right] .
\end{aligned}
$$

where g is as in Lemma 1. Hence if $\psi_{n}(t)=\sum_{j=1}^{n} \psi_{n, j}(t)$,

$$
\begin{align*}
\psi_{n}^{\prime}(t)=\sum_{j=1}^{n} \psi_{n, j}^{\prime}(t) & \leqq t g_{1}\left(t c_{n}\right) \tag{14}\\
& \geqq t g_{1}\left(-t c_{n}\right) /\left[1+t^{2} c_{n}^{2} g\left(t c_{n}\right)\right]
\end{align*}
$$

Moreover, since $\left|g_{1}(x)-1\right|<\frac{|x|}{2}\left[1-\frac{|x|}{3}\right]^{-1}$ for $0<|x|<3$ and

$$
\begin{align*}
& g(x)<\frac{1}{2}+\frac{x}{6}\left(1-\frac{x}{4}\right)^{-1} \quad \text { for } 0<x<4, \text { if } \lim _{n \rightarrow \infty} t_{n} c_{n}=0 \\
& \psi_{n}^{\prime \prime}\left(t_{n}\right)=\sum_{j=1}^{n} \psi_{n, j}^{\prime \prime}\left(t_{n}\right)=1+O\left(t_{n} c_{n}\right) \tag{15}
\end{align*}
$$

Thus, via (4), (14), (15) and $g(0)=\frac{1}{2}, g_{1}(0)=1$, for any γ in $(0,1)$ and all large n

$$
\begin{aligned}
& \psi_{n}\left(t_{n}\right)-t_{n} \psi_{n}^{\prime}\left(t_{n}\right) \geqq t_{n}^{2}\left[g\left(-t_{n} c_{n}\right)-t_{n}^{2} c_{n}^{2} g^{2}\left(-t_{n} c_{n}\right)-g_{1}\left(t_{n} c_{n}\right)\right] \geqq \frac{-t_{n}^{2}}{2}(1+\gamma) \\
& v_{n} \equiv \frac{(1-\gamma) t_{n}-\psi_{n}^{\prime}\left(t_{n}\right)}{\sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}}=-\gamma t_{n}(1+o(1)) \leqq \frac{-\gamma t_{n}}{2}
\end{aligned}
$$

Consequently, taking $w=(1-\gamma) t_{n}$ in (11),

$$
\begin{align*}
& P\left\{S_{n}>(1-\gamma) S_{n} t_{n}\right\} \geqq e^{\psi_{n}\left(t_{n}\right)-t_{n} \psi_{n}^{\prime}\left(t_{n}\right)} \int_{v_{n}}^{0} e^{-t y \sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}} d F_{n}^{\left(t_{n}\right)}\left(y \sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}+\psi_{n}^{\prime}\left(t_{n}\right)\right) \\
\geqq & e^{\frac{-t_{n}^{2}}{2}(1+\gamma)} \int_{\frac{\gamma t_{n}}{2}}^{0} d F_{n}^{\left(t_{n}\right)}\left(y \sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}+\psi_{n}^{\prime}\left(t_{n}\right)\right) \geqq C_{\gamma} e^{\frac{-t_{n}^{2}}{2}(1+\gamma)} \tag{16}
\end{align*}
$$

since $\frac{S_{n}\left(t_{n}\right)-\psi_{n}^{\prime}\left(t_{n}\right)}{\sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}} \equiv \sum_{j=1}^{n} Z_{n, j} \xrightarrow{d} N_{0,1}$ in view of

$$
\begin{aligned}
E Z_{n, j} & =0, \sum_{j=1}^{n} E Z_{n, j}^{2}=1 \text { and }\left|Z_{n j}\right|=\left|\frac{X_{n, j}\left(t_{n}\right)-E X_{n, j}\left(t_{n}\right)}{\sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}}\right| \\
& \leqq \frac{2 c_{n}}{\sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}}=o(1) .
\end{aligned}
$$

Finally, set $t_{n}=(1-\gamma)^{\frac{1}{2}} x_{n}$ in (16) to obtain (12). \triangle
Remark. If $x_{n} \rightarrow \infty$, then for every γ in $(0,1)$, the constant $C_{\gamma}>\frac{1}{2}-\varepsilon$, all $\varepsilon>0$ provided $n \geqq$ some integer N_{ε}.

Clearly, Lemma 2 may be substituted for Kolmogorov's lower bound in proving the other half of the Law of the Iterated Logarithm. It suffices to follow the main lines of the proof of Theorem 1.

Lemma 3. Let $S_{n}=\sum_{j=1}^{n} X_{j}$ where $\left\{X_{j}, 1 \leqq j \leqq n\right\}$ are independent random variables with $E X_{j}=0, E X_{j}^{2}=\sigma_{j}^{2}, s_{n}^{2}=\sum_{1}^{n} \sigma_{j}^{2}$ and $P\left\{\left|X_{j}\right| \leqq d_{j}\right\}=1$ where $0<d_{j} \uparrow$. Set $h(u)$ $=u^{2}\left[g_{1}(u)-g(-u)+u^{2} g^{2}(-u)\right]$ where $g_{1}(u)=u^{-1}\left(e^{u}-1\right)$ and $g(u)=u^{-2}\left(e^{u}-1\right.$ $-u$). If $x_{n} \rightarrow \infty$ and $d_{n} x_{n} / s_{n} \rightarrow a>0$, then for all γ in $(0,1)$ and all u in $\left(0, u_{0}\right)$

$$
\begin{equation*}
P\left\{S_{n}>\frac{1-\gamma}{a}\left(\frac{1-e^{-u}}{e^{u}-u}\right) s_{n} x_{n}\right\} \geqq\left(\frac{1}{2}+o(1)\right) e^{\frac{-x_{n}^{2}}{a^{2}}[h(u)+o(1)]} \tag{17}
\end{equation*}
$$

Moreover, $u_{0}=0.5347 \ldots$ is the root of the equation $e^{-u}=\left(e^{u}-u\right)\left(e^{u}-1\right)^{2}$.
Proof. Setting $c_{n}=d_{n} / s_{n}$, the lower bound for $\psi_{n, j}^{\prime \prime}$ can be improved via (13), (7^{\prime}) to

$$
\frac{\sigma_{j}^{2}}{\mathrm{~s}_{n}^{2}} e^{t c_{n}} \geqq \psi_{n, j}^{\prime \prime}(t) \geqq \frac{\sigma_{j}^{2}}{s_{n}^{2}}\left[\frac{e^{-t c_{n}}}{1+t^{2} c_{n}^{2} g\left(t c_{n}\right)}-t^{2} c_{n}^{2} g_{1}^{2}\left(t c_{n}\right)\right]
$$

Thus, if $t=u x_{n} / a, u>0$, it follows since $c_{n} x_{n} \rightarrow a$ that

$$
\begin{equation*}
e^{u}+o(1) \geqq \psi_{n}^{\prime \prime}\left(\frac{u x_{n}}{a}\right) \geqq \frac{e^{-u}}{1+u^{2} g(u)}-u^{2} g_{1}^{2}(u)+o(1) \tag{18}
\end{equation*}
$$

and the lower bound is positive for $0<u<u_{0}$ and n sufficiently large. Moreover, recalling (4) and (14)

$$
\begin{align*}
& \psi_{n}\left(\frac{u x_{n}}{a}\right)-\frac{u x_{n}}{a} \psi_{n}^{\prime}\left(\frac{u x_{n}}{a}\right) \\
& \quad \geqq \frac{u^{2} x_{n}^{2}}{a^{2}}\left[g\left(\frac{-u x_{n} c_{n}}{a}\right)-\frac{u^{2}}{a^{2}} c_{n}^{2} x_{n}^{2} g\left(\frac{-u x_{n} c_{n}}{a}\right)-g_{1}\left(\frac{u}{a} x_{n} c_{n}\right)\right] \\
& \quad=-x_{n}^{2} \frac{u^{2}}{a^{2}}\left[g_{1}(u)-g(-u)+u^{2} g^{2}(-u)+o(1)\right] \\
& \quad=-\frac{x_{n}^{2}}{a^{2}}[h(u)+o(1)] \tag{19}
\end{align*}
$$

Furthermore, if $w=\frac{(1-\gamma) a^{-1} u g_{1}(-u)}{1+u^{2} g(u)} x_{n}$, then via (14)

$$
w-\psi_{n}^{\prime}\left(\frac{u}{a} x_{n}\right) \leqq w-\frac{u a^{-1} x_{n} g_{1}\left(-x_{n} c_{n} u / a\right)}{1+u^{2} a^{-2} x_{n}^{2} c_{n}^{2} g\left(x_{n} c_{n} u / a\right)}=\frac{x_{n}}{a} \frac{u g_{1}(-u)}{1+u^{2} g(u)}[-\gamma+o(1)]
$$

Thus, taking $t=t_{n}=u x_{n} / a$ in (11)

$$
\begin{aligned}
P\left\{S_{n}>w s_{n}\right\} \geqq & \exp \left\{\psi_{n}\left(\frac{u x_{n}}{a}\right)-\frac{u x_{n}}{a} \psi_{n}^{\prime}\left(\frac{u x_{n}}{a}\right)\right\} \\
& \cdot \int_{\frac{w-\psi_{n}\left(u x_{n} / a\right)}{\sqrt{\psi_{n}^{\prime \prime}\left(u x_{n} / a\right)}}}^{0} d F_{n}^{\left(u x_{n} / a\right)}\left(y \sqrt{\psi_{n}^{\prime \prime}\left(\frac{u x_{n}}{a}\right)}+\psi_{n}^{\prime}\left(\frac{u x_{n}}{a}\right)\right)
\end{aligned}
$$

whence (17) follows via (19), the Central Limit Theorem and the fact that the lower limit of integration $\rightarrow-\infty$. The CLT obtains for $0<u<u_{0}$ since

$$
\left|\frac{X_{n j}\left(t_{n}\right)-E X_{n j}\left(t_{n}\right)}{\sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}}\right| \leqq \frac{2 c_{n}}{\sqrt{\psi_{n}^{\prime \prime}\left(t_{n}\right)}}=o(1) \text { recalling (18) }
$$

It may be noted that $h(u)$ is increasing for $u>0$. In fact via the identities $g_{1}^{\prime}(u)$ $=g_{1}(u)-g(u)$ and $u g^{\prime}(-u)=(u+2) g(-u)-1, u>0$ it follows readily that for $u>0$

$$
\begin{aligned}
h^{\prime}(u)= & 2 u\left[g_{1}(u)-g(-u)+u^{2} g^{2}(-u)\right] \\
& +u^{2}\left[g_{1}^{\prime}(u)+g^{\prime}(-u)+2 u g^{2}(-u)-2 u^{2} g(-u) g^{\prime}(-u)\right] \\
= & 2 u\left[g_{1}(u)-g(-u)+u^{2} g^{2}(-u)\right] \\
& +u^{2}\left[g_{1}(u)-g(u)+2 u g^{2}(-u)-2 u^{2} g(-u) g^{\prime}(-u)\right] \\
& +\left(u^{2}+2 u\right) g(-u)-u \\
= & u^{2}\left[g_{1}(u)-g(-u)+u^{2} g^{2}(-u)\right] \\
& +u\left[2 g_{1}(u)-1\right]+2 u^{3} g(-u)[1-u g(-u)]>0
\end{aligned}
$$

since all three bracketed expressions are non-negative for $u>0$.
Moreover, $\frac{1-e^{-u}}{e^{u}-u}$ is increasing for $0<u<0.75$ and a fortiori for u in $\left(0, u_{0}\right)$ where $u_{0}=0.5347 \ldots$ is as in Lemma 3.

Theorem 1. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ where $\left\{X_{n}, n \geqq 1\right\}$ are independent random variables satisfying $E X_{n}=0, E X_{n}^{2}=\sigma_{n}^{2}, s_{n}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2} \rightarrow \infty$ and $P\left\{\left|X_{n}\right| \leqq d_{n}\right\}=1, n \geqq 1$ with $d_{n} \uparrow$
and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{d_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}}{s_{n}}=a \tag{20}
\end{equation*}
$$

(i) If $a \geqq \sqrt{h\left(u_{0}\right)}=0.5215 \ldots$ where u_{0} is the root of $e^{-u}=\left(e^{u}-u\right)\left(e^{u}-1\right)^{2}$, then

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{s_{n}\left(\log _{2} s_{n}\right)^{\frac{2}{2}}} \geqq \frac{1-e^{-u_{0}}}{a\left(e^{u_{0}}-u_{0}\right)}=\frac{0.3533 \ldots}{a}, \quad \text { a.s. } \tag{21}
\end{equation*}
$$

(ii) If rather, $a=\sqrt{h}(u)$ for some u in $\left(0, u_{0}\right)$, then

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{S_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}} \geqq \frac{1}{a}\left(\frac{1-e^{-u}}{e^{u}-u}\right), \quad \text { a.s. } \tag{22}
\end{equation*}
$$

Proof. The hypothesis ensures that $\sigma_{n}^{2} / s_{n}^{2} \leqq d_{n}^{2} / s_{n}^{2}=o(1)$ whence as in the proof of Corollary 1 there exists a sequence of integers $\left\{n_{k}, k \geqq 1\right\}$ with $s_{n_{k}} \sim \alpha^{k}, \alpha>1$. Choose positive quantities c, γ, u such that

$$
\begin{align*}
& c=a\left(1-\frac{1}{\alpha^{2}}\right)^{-\frac{1}{2}}, \quad h(u)<a^{2} \\
& \gamma<\min \left[1, \frac{c^{2}}{h(u)}-1\right] \tag{23}
\end{align*}
$$

and then define independent events

$$
A_{k}=\left\{S_{n_{k}}-S_{n_{k-1}}>\frac{1-\gamma}{c}\left(\frac{1-e^{-u}}{e^{u}-u}\right) g_{k} h_{k}\right\}, \quad k \geqq 1
$$

where

$$
\begin{aligned}
& g_{k}^{2} \equiv s_{n_{k}}^{2}-s_{n_{k}-1}^{2} \sim s_{n_{k}}^{2}\left(1-\frac{1}{\alpha^{2}}\right) \\
& h_{k}^{2} \equiv \log _{2} g_{k} \sim \log _{2} s_{n_{k}}<(1+\gamma) \log k
\end{aligned}
$$

for all large k. Via (20)

$$
\frac{d_{n_{k}} h_{k}}{g_{k}} \sim \frac{d_{n_{k}}\left(\log _{2} s_{n_{k}}\right)^{\frac{1}{2}}}{s_{n_{k}}\left(1-\frac{1}{\alpha^{2}}\right)^{\frac{1}{2}}} \sim \frac{a}{\left(1-\frac{1}{\alpha^{2}}\right)^{\frac{1}{2}}}=c
$$

and so taking $x_{n_{k}}=h_{k}$ in Lemma 3 and recalling (23)

$$
\begin{aligned}
P\left\{A_{k}\right\} & \geqq \frac{1}{3} \exp \left\{\frac{-h_{k}^{2}}{c^{2}}[h(u)+o(1)]\right\} \\
& \geqq \frac{1}{3} \exp \left\{-\left[\frac{[1+\gamma) h(u)}{c^{2}}+o(1)\right] \log k\right\} \geqq \frac{1}{3 k}
\end{aligned}
$$

for all large k. Thus, by the Borel-Cantelli lemma

$$
\begin{equation*}
P\left\{A_{k}, \text { i.o. }\right\}=1 \tag{24}
\end{equation*}
$$

Next, choose α so large that

$$
\frac{1-\gamma}{a}\left(1-\frac{1}{\alpha^{2}}\right) \frac{\left(1-e^{-u}\right)}{e^{u}-u}-\frac{2 K}{\alpha}>\frac{(1-\gamma)^{2}}{a} \frac{\left(1-e^{-u}\right)}{e^{u}-u}
$$

and set $t_{n}=\left(\log _{2} s_{n}\right)^{\frac{1}{2}}$, whence for all large k

$$
\begin{aligned}
& \frac{1-\gamma}{c}\left(\frac{1-e^{-u}}{e^{u}-u}\right) g_{k} h_{k}-2 K s_{n_{k-1}} t_{n_{k-1}} t_{n_{k-1}} \\
& \quad \sim\left[\frac{(1-\gamma)}{a}\left(1-\frac{1}{\alpha^{2}}\right) \frac{\left(1-e^{-u}\right)}{e^{u}-u}-\frac{2 K}{\alpha}\right] s_{n_{k}} t_{n_{k}}>\frac{(1-\gamma)^{2}}{a} \frac{\left(1-e^{-u}\right)}{e^{u}-u} s_{n_{k}} t_{n_{k}} .
\end{aligned}
$$

Hence, if $B_{k}=\left\{\left|S_{n_{k-1}}\right| \leqq 2 K s_{n_{k-1}} t_{n_{k-1}}\right\}$ where $K=\min _{b>0}\left[b^{-1}+b g(a b)\right]$, then

$$
A_{k} B_{k} \subset\left\{S_{n_{k}}>\frac{(1-\gamma)^{2}}{a} \frac{\left(1-e^{-u}\right)}{e^{u}-u} s_{n_{k}} t_{n_{k}}\right\}
$$

again for all large k. However, (ii) of Corollary 1 guarantees $P\left\{B_{k}^{c}\right.$, i.o. $\}=0$ which in conjunction with (24) entails

$$
P\left\{S_{n_{k}}>\frac{(1-\gamma)^{2}}{a} \frac{\left(1-e^{-u}\right)}{e^{u}-u} S_{n_{k}} t_{n_{k}}, \text { i.o. }\right\} \geqq P\left\{A_{k} B_{k} \text {, i.o. }\right\}=1 .
$$

Thus, with probability one

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{s_{n} t_{n}} \geqq \varlimsup_{k \rightarrow \infty} \frac{S_{n_{k}}}{S_{n_{k}} t_{n_{k}}} \geqq \frac{(1-\gamma)^{2}}{a} \frac{\left(1-e^{-u}\right)}{e^{u}-u} . \tag{25}
\end{equation*}
$$

If, as in case (i), $a^{2} \geqq h\left(u_{0}\right)$, then (25) holds for all $u<u_{0}$ and all small, positive γ whence (21) obtains as $u \uparrow u_{0}$ and $\gamma \downarrow 0$. If rather $0<a^{2}=h(u)<h\left(u_{0}\right)$, then in analogous fashion (22) follows from (25).

A combination of Theorem 1, Corollary 1 and the Kolmogorov zero-one law yields.

Theorem 2. Let $S_{n}=\sum_{j=1}^{n} X_{j}$ where $\left\{X_{n}, n \geqq 1\right\}$ are independent random variables satisfying $E X_{n}=0, E X_{n}^{2}=\sigma_{n}^{2}, s_{n}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2} \rightarrow \infty$ and $P\left\{\left|X_{n}\right| \leqq d_{n}\right\}=1, n \geqq 1$ with $d_{n} \uparrow$ and $\lim _{n \rightarrow \infty} \frac{d_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}}{s_{n}}=a \geqq 0$. Then

$$
P\left\{\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{s_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}}=C\right\}=1
$$

where

$$
\begin{aligned}
\frac{0.3533}{a} & \leqq C \leqq \min \left[b^{-1}+b g(a b)\right] \\
& \leqq \min \left[a+\frac{e-2}{a}, 1+g(a)\right] \text { if } a \geqq \sqrt{h\left(u_{0}\right)}=0.5215
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{a}\left(\frac{1-e^{-u}}{e^{u}-u}\right) & \leqq C \leqq \min _{b>0}\left[b^{-1}+b g(a b)\right] \\
& \leqq \min \left[a+\frac{e-2}{a}, 1+g(a)\right] \text { if } 0<a=\sqrt{h(u)}<\sqrt{h\left(u_{0}\right)} .
\end{aligned}
$$

As $a=\sqrt{h(u)} \rightarrow 0$ (that is, $u \rightarrow 0$) it follows easily from $h(u) \sim \frac{u^{2}}{2}$ that the lower bound for C approaches $\sqrt{2}$ which coincides with the upper bound when $a=0$. Remark. The requirement that $d_{n} \uparrow$ is inessential in Theorems 1 and 2. Since b_{n} $=s_{n} /\left(\log _{2} s_{n}\right)^{\frac{1}{2}} \uparrow \infty$ (for all large n), the hypothesis $d_{n} / b_{n} \rightarrow a$ ensures that $d_{n}^{\prime} \equiv \max _{1 \leqq i \leqq n} d_{i}$ likewise satisfies $d_{n}^{\prime} / b_{n} \rightarrow a$ in view of

$$
a \leftarrow \frac{d_{n}}{b_{n}} \leqq \frac{d_{n}^{\prime}}{b_{n}} \leqq \frac{1}{b_{n}} \max _{1 \leqq i \leqq m} d_{i}+\max _{m \leqq i \leqq n} \frac{d_{i}}{b_{i}} \xrightarrow{n \rightarrow \infty} \sup _{i>m} \frac{d_{i}}{b_{i}} \xrightarrow{m \rightarrow \infty} a
$$

Thus, even if d_{n} is not monotone, Lemmas 1, 2 and 3 apply for all large n since $\left|X_{j}\right| \leqq d_{j}^{\prime} \uparrow, 1 \leqq j \leqq n$, a.c.

4. A Strong Law of Large Numbers

It is well known that independent, random variables $\left\{X_{n}, n \geqq 1\right\}$ with $E X_{n}=0$, $E X_{n}^{2}=\sigma_{n}^{2}, s_{n}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2} \rightarrow \infty$ satisfy the strong law

$$
\begin{equation*}
\frac{S_{n}}{s_{n}\left(\log S_{n}\right)^{\delta}} \xrightarrow{\text { a.s. }} 0 \tag{26}
\end{equation*}
$$

for $\delta>\frac{1}{2}$. It is less well known but follows from results of $[4,12]$ that (26) obtains even when $\delta>0$ provided (as is necessary) $\sum_{n=1}^{\infty} P\left\{\left|X_{n}\right|>\varepsilon s_{n}\left(\log s_{n}\right)^{\delta}\right\}<\infty, \varepsilon>0$.

Conditions under which (26) can be strengthened to

$$
\begin{equation*}
\frac{S_{n}}{s_{n}\left(\log _{2} s_{n}\right)^{\delta}} \xrightarrow{\text { a.s. }} 0 \tag{27}
\end{equation*}
$$

appear in
Theorem 3. Let $\left\{S_{n}, n \geqq 1\right\}$ be the partial sums of independent random variables $\left\{X_{n}, n \geqq 1\right\}$ with $E X_{n}=o, E\left|X_{n}\right|^{\alpha} \leqq a_{n, \alpha}, A_{n} \equiv A_{n, \alpha}=\left(\sum_{i=1}^{n} a_{i, \alpha}\right)^{\frac{1}{\alpha}} \rightarrow \infty$ where $1<\alpha \leqq 2$ and $A_{n+1, \alpha} / A_{n, \alpha} \leqq \gamma<\infty$, all $n \geqq 1$. If for some β in $\left[0, \frac{1}{\alpha}\right)$ and positive quantities δ, c

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left\{\left|X_{n}\right|>\delta A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}\right\}<\infty \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{A_{n}^{2}\left(\log _{2} A_{n}\right)^{2(1-\beta)}} E X_{n}^{2} I_{\left[c A_{n}\left(\log _{2} A_{n}\right)^{-\beta}<\left|X_{n}\right| \leqq \delta A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}\right]}<\infty \tag{29}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{S_{n}}{A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}} \xrightarrow{\text { a.s. }} 0 . \tag{30}
\end{equation*}
$$

Proof. Set $Y_{n}=X_{n} I_{\left[\left|X X_{n}\right| \leqq c A_{n}\left(\log _{2} A_{n}\right)^{-\beta}\right]}, \quad W_{n}=X_{n} I_{\left[\left|X X_{n}\right|>\delta A_{n}\left(\log _{2} A_{n}\right)^{1}-\beta_{]}\right]}, \quad V_{n}=X_{n}-Y_{n}$ $-W_{n}$. Now since $\beta<1 / \alpha$,

$$
\begin{aligned}
\left|\sum_{i=1}^{n} E W_{i}\right| & \leqq \sum_{i=1}^{n}\left(E\left|X_{i}\right| I_{\left[\delta A_{i}\left(\log _{2} A_{i}\right)^{-\beta}\right.}-\left|X_{i}\right| \leqq A_{n}\left(\log _{2} A_{n}\right)^{-\beta_{]}}+E\left|X_{i}\right| I_{\left[\left|X_{i}\right|>A_{n}\left(\log _{2} A_{n}\right)^{-\beta}\right]}\right) \\
\leqq & A_{n}\left(\log _{2} A_{n}\right)^{-\beta} \sum_{i=1}^{n} P\left\{\left|X_{i}\right|>\delta A_{i}\left(\log _{2} A_{i}\right)^{1-\beta}\right\} \\
& +\frac{\left(\log _{2} A_{n}\right)^{\beta(\alpha-1)}}{A_{n}^{\alpha-1}} \sum_{i=1}^{n} E\left|X_{i}\right|^{\mid \alpha} I_{\left[\left|X_{i}\right|>A_{n}\left(\log _{2} A_{n}\right)^{-\beta}\right.} \\
= & o\left(A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}\right)
\end{aligned}
$$

and so, in view of (28)

$$
\frac{1}{A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}} \sum_{i=1}^{n}\left(W_{i}-E W_{i}\right) \xrightarrow{\text { a.s. }} 0 .
$$

Secondly, (29) and Kronecker's lemma guarantee

$$
\frac{1}{A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}} \sum_{i=1}^{n}\left(V_{i}-E V_{i}\right) \xrightarrow{\text { a.s. }} 0 .
$$

Thus, since $E X_{n}=0$, it suffices to verify that

$$
\begin{equation*}
\frac{1}{A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}} \sum_{i=1}^{n}\left(Y_{i}-E Y_{i}\right) \xrightarrow{\text { a.s. }} 0 \tag{31}
\end{equation*}
$$

To this end, note that if $n_{k}=\inf \left\{n \geqq 1: A_{n} \geqq \gamma^{k}\right\}$

$$
A_{n_{k}} \leqq \gamma A_{n_{k}-1}<\gamma^{k+1} \leqq A_{n_{k+1}}
$$

and so $\left\{n_{k}, k \geqq 1\right\}$ is strictly increasing. Moreover, for all $k \geqq 1$

$$
\frac{A_{n_{k}}}{A_{n_{k}-1}}<\frac{\gamma^{k+1}}{\gamma^{k-1}}=\gamma^{2}>1 .
$$

Therefore, setting $U_{n}=\sum_{i=1}^{n}\left(Y_{i}-E Y_{i}\right)$, for all $\varepsilon>0$

$$
\begin{align*}
& P\left\{U_{n}>2 \gamma^{2} \varepsilon A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}, \text { i.o. }\right\} \\
& \quad \leqq P\left\{\max _{n_{k}-1<n \leqq n_{k}} U_{n}>2 \gamma^{2} \varepsilon A_{n_{k}-1}\left(\log _{2} A_{n_{k}-1}\right)^{1-\beta}, \text { i.o. }\right\} \\
& \quad \leqq P\left\{\max _{1 \leqq n \leqq n_{k}} U_{n}>\varepsilon A_{n_{k}}\left(\log _{2} A_{n_{k}}\right)^{1-\beta} \text {, i.o. }\right\} . \tag{32}
\end{align*}
$$

Now, $\left|Y_{n}-E Y_{n}\right| \leqq c_{n} t_{n}$ where $c_{n}=\frac{2 c A_{n}\left(\log _{2} A_{n}\right)^{-\beta}}{t_{n}}$ and

$$
\begin{align*}
t_{n}^{2} & =E U_{n}^{2} \leqq \sum_{i=1}^{n} E X_{i}^{2} I_{\left[\left|X_{i}\right| \leqq c A_{i}\left(\log _{2} A_{i}\right)^{-\beta_{]}}\right.} \\
& \leqq \frac{c^{2-\alpha} A_{n}^{2-\alpha}}{\left(\log _{2} A_{n}\right)^{\beta(2-\alpha)}} \sum_{i=1}^{n} E\left|X_{i}\right|^{\alpha}=\frac{c^{2-\alpha} A_{n}^{2}}{\left(\log _{2} A_{n}\right)^{\beta(2-\alpha)}} . \tag{33}
\end{align*}
$$

Consequently, setting

$$
\lambda_{n}=\frac{\varepsilon A_{n}^{2}\left(\log _{2} A_{n}\right)^{1-2 \beta}}{t_{n}^{2}}, \quad x_{n}=\frac{t_{n}\left(\log _{2} A_{n}\right)^{\beta}}{A_{n}}
$$

it follows that

$$
\begin{aligned}
& \lambda_{n_{k}} x_{n_{k}}^{2}=\varepsilon\left(\log _{2} A_{n_{k}}\right) \rightarrow \infty, \\
& c_{n_{k}} x_{n_{k}}=2 c, \quad \lambda_{n_{k}} x_{n_{k}} t_{n_{k}}=\varepsilon A_{n_{k}}\left(\log _{2} A_{n_{k}}\right)^{1-\beta}, \\
& x_{n_{k}}^{2}=\frac{t_{n_{k}}^{2}\left(\log _{2} A_{n_{k}}\right)^{2 \beta}}{A_{n_{k}}^{2}} \leqq c^{2-\alpha}\left(\log _{2} A_{n_{k}}\right)^{\beta \alpha}=o\left(\log _{2} A_{n_{k}}\right)=o\left(\lambda_{n_{k}} x_{n_{k}}^{2}\right)
\end{aligned}
$$

recalling (33) and $\beta<1 / \alpha$. Thus, taking $b=3 / \varepsilon$ in (2) of Lemma 1

$$
P\left\{\max _{1 \leqq n \leqq n_{k}} U_{n}>\varepsilon A_{n_{k}}\left(\log _{2} A_{n_{k}}\right)^{1-\beta}\right\} \leqq e^{-2 \log _{2} A_{n_{k}}} \leqq \frac{1}{(k \log \gamma)^{2}}
$$

and so (32) and the Borel-Cantelli lemma ensure

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{U_{n}}{A_{n}\left(\log _{2} A_{n}\right)^{1-\beta}} \leqq 0, \quad \text { a.s. } \tag{34}
\end{equation*}
$$

Since $\left\{-\left(Y_{n}-E Y_{n}\right), n \geqq 1\right\}$ have the same bounds and variances as $\left\{Y_{n}\right.$ $\left.-E Y_{n}, n \geqq 1\right\}$, (34) likewise obtains with $-U_{n}$ replacing U_{n} thereby proving (31) and the theorem. \triangle

Corollary 2. Let $\left\{X_{n}, n \geqq 1\right\}$ be independent random variables with $E X_{n}=0, E X_{n}^{2}$ $=\sigma_{n}^{2}, s_{n}^{2}=\sum_{i}^{n} \sigma_{i}^{2} \rightarrow \infty$ and $s_{n+1} / s_{n} \leqq \gamma<\infty, n \geqq 1$. If for some β in $\left[0, \frac{1}{2}\right)$ and some positive c, δ

$$
\begin{align*}
& \sum_{n=1}^{\infty} P\left\{\left|X_{n}\right|>\delta s_{n}\left(\log _{2} s_{n}\right)^{1-\beta}\right\}<\infty, \tag{35}\\
& \sum_{n=1}^{\infty} \frac{1}{s_{n}^{2}\left(\log _{2} s_{n}\right)^{2(1-\beta)}} E X_{n}^{2} I_{\left[c s_{n}\left(\log _{2} s_{n}\right)^{-\beta}<\left|X_{n}\right| \leqq \delta s_{n}\left(\log _{2} s_{n}\right)^{1-\beta_{1}}<\infty\right.} \tag{36}
\end{align*}
$$

then

$$
\begin{equation*}
\frac{S_{n}}{s_{n}\left(\log _{2} s_{n}\right)^{1-\beta}} \xrightarrow{\text { a.s. }} 0 . \tag{37}
\end{equation*}
$$

Note that Corollary 2 precludes $\beta=\frac{1}{2}$. In fact, (35) and (36) when $\beta=\frac{1}{2}$ comprise two of the three conditions for the Law of the Iterated Logarithm in Theorem 1 of [13].
Corollary 3. If $\left\{X_{n}, n \geqq 1\right\}$ are independent random variables with $E X_{n}=0, E X_{n}^{2}$ $=\sigma_{n}^{2}, s_{n}^{2}=\sum_{1}^{n} \sigma_{i}^{2} \rightarrow \infty$ and $\left|X_{n}\right| \leqq c_{\beta} s_{n}\left(\log _{2} s_{n}\right)^{-\beta}$, a.s., $n \geqq 1$ where $0 \leqq \beta<\frac{1}{2}, c_{\beta}>0$ then (37) obtains provided in the case $\beta=0$ that $s_{n+1}=O\left(s_{n}\right)$.

References

1. Bahadur, R.R.: Some Limit Theorems in Statistics. SIAM J. Numer. Anal. (1971)
2. Cramér, H.: Sur un nouveau théoreme-limite de la theorie des Probabilités. Actualités Scientifiques, 736 (Colloque consacré a la théorie des probabilités. Vol. 3, 5-23. Paris (1938)
3. Egorov, V.A.: On the law of the iterated logarithm. Theor. Probability Appl. 14, 693-699 (1969)
4. Egorov, V.A.: On the Strong Law of Large Numbers and the Law of the Iterated Logarithm for Sequences of Independent Random Variables. Theory Probability Appl. 15, 509-514 (1970)
5. Esscher, F.: On the probability function in the collective theory of risk. Skand. Aktuarietidskr. 15, 175-195 (1932)
6. Feller, W.: Limit theorems for probabilities of large deviations. Z. Wabrscheinlichkeitstheorie verw. Gebiete 14, 1-20 (1969)
7. Freedman, D.: On tail probabilities for martingales. Ann. Probability 3, 100-118 (1975)
8. Klass, M., Teicher, H.: Iterated logarithm laws for asymmetric random variables barely with or without finite mean. Ann. Probability 5, 861-874 (1977).
9. Kolmogorov, A.: Über das Gesetz des itierten Logarithmus. Math. Ann. 101, 126-135 (1929)
10. Steiger, W.: A best possible Kolmogorov-type inequality for martingales and a characteristic property. Ann. Math. Statist. 40, 764-769 (1969)
11. Stratton, H.H.: Feller's parametric equations for laws of the iterated logarithm. Ann. Math. Statist. 43, 2104-2109 (1972)
12. Teicher, H.: Some New Conditions for the Strong Law. Proc. Nat. Acad. Sci. USA 59, 705-707 (1968)
13. Teicher, H.: On the Law of the Iterated Logarithm. Ann. Probability 2, 714-728 (1974)

Received March 20, 1978

[^0]: ${ }^{1}$ As this article was submitted, "On the Law of the Iterated Logarithm" by R. J. Tomkins appeared in the February 1978 Ann. of Prob. showing under more restrictive conditions than those of Corollary 1 that $\lim \sup S_{n} / s_{n}\left(\log _{2} s_{n}\right)^{\frac{1}{2}}=\Gamma \leqq 2^{\frac{1}{2}}\left[\frac{1}{2}+g(v)\right]$, a.s. where $\Gamma>0, g$ is as in Lemma 1 and, in the notation of Corollary $1, v=a 2^{\frac{1}{2}}$ (that v is an upper limit whereas a is either an upper bound or limit is irrelevant). The bound for Γ in (10) of Corollary 1 is at most $1+g(a)$ which is less than $2^{\frac{1}{2}}\left[\frac{1}{2}\right.$ $\left.+g\left(a 2^{\frac{1}{2}}\right)\right]$ for all $a>1-\varepsilon$ where ε is a very small positive number

