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Summary. New upper and lower exponential bounds are obtained under a 
more general condition than that of Kolmogorov and these, in turn, elicit 
iterated logarithm laws 

a .s .  
lim (s210g2sn) -~- Xj = Cz(O, oe) 

n ~ o v  j = l  

for a wider class of bounded, mean zero, independent random variables 
{Xn, n>  1}. The constant C need not be the universal number 2 + and may 
depend upon the underlying distributions. Upper and lower bounds are 
provided for C in terms of a parameter. The upper bound is also exploited in 
proving a new strong law of large numbers for independent random vari- 
ables. 

1. Introduction 

One of the most beautiful discoveries of probability theory is the celebrated 
Iterated Logarithm Law. Due in the case of suitably bounded independent 
random variables, to Kolmogorov I-9] this was the culmination of a series of 
strides by Hausdorff, Hardy, Littlewood and Hin~ine. It asserts for independent, 

2 zero mean random variables {Xn, n > 1} satisfying ]X,I _-<cn s,, a.s., n > 1 where c n 
. . . . .  

a n =EX,  that lim (s n log 2 sn) Xj = 2 ~. The = 0  S n = 

i=1 n--* oz j = l  
crucial instruments in the proof are so-called exponential bounds for the 

probability that ~ Xj exceeds 2sn(log 2 s,) �89 Kolmogorov's derivation of the 
j = l  

lower exponential bound involves partitioning an integral into five parts and 
although ingenious is rather involved and adhoc. Here, an improved upper 
bound (Lemma 1) and simplified lower bounds (Lemmas2 and 3) are given 
under the more general condition 

l i m c . ( l o g  2 s,) = a ~ 0 .  
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The derivation of the upper bound is especially simple and may be considered 
an extension and refinement of Lemma 1 of [8] which, in turn, is related to 
[10,7]. The development of the lower bound employs the Esscher transfor- 
mation [5] which has been exploited by Cramer [2]. Feller [6] and more 
recently Bahadur [1]. The initial argument for the lower bound is very close to 
that of Feller [6] who, at a crucial point, introduced assumptions whose nature 
seems difficult to assess. A valiant attempt to concretize these was made in [11] 
but unfortunately the applications there [p. 2107-8] are invalidated by an error. 

Such upper and lower bounds elicit iterated logarithm laws under the prior 
condition lim c~(log 2 s~)}=a>0. The constant need no longer be the universal 

n ~ o o  

number 2 } and when a > 0  will depend on the underlying distributions most 
likely via the value of a. It would be of interest to establish this extended 
universality, if indeed that is the case, or otherwise to negate it by counterex- 
ample. 

( 1 ), 
Under the comparable condition c~ =O ~ Egorov [3] showed that 

n 

2, x, 
lim a.• C < oo 
. ~  ~o s . ( l o g 2  s . )  ~ 

but did not rule out the possibility C=O (when c~a2log2sn) or furnish 
information about C. 1 

2. Upper Exponential Bound 

The inequalities (1), (2), (4) below bear a natural comparison with their Kolmo- 
gorov analogues. For example, Kolmogorov's coefficient of t 2 in the right side of 

(1) is ~ 1+ provided 0 < t c , , < l  and this exceeds g(c,t) under his proviso. 

Likewise, the coefficient of t 2 in the right side of (4) exceeds �89 n t) for 
O<cnt< 1. The probablistic inequality (2) is of especial interest in the cases(i) 
2,-- 2, x n = (log z s,) ~ and (ii) x~ = c, 2, = l o g  2 Sn, b = 2/g  2 although intermediate 
cases are not devoid of interest. 

Lemma 1. Let S,= ~ Xj where {X;, 1 <j<__n} are independent r.v.'s with EXj=O, 
j - 1  

n 

2 e 02. g(x)=x-2(eX- l -x)  and suppose that 0<cjs j{ ,  l<__j<n. Ex~ .  = ~ ,  s .  - y~ j ,  s e t  
1 

(i) If P {Xj < cj s;} = 1, 1 < j  < n then 

1 As this article was submitted, "On the Law of the Iterated Logarithm" by R. J. Tomkins 
appeared in the February 1978 Ann. of Prob. showing under more restrictive conditions than those 
of Corollary 1 that l imsupS,/s , ( log2s,)*~=F<2~[�89 a.s. where F > 0 ,  g is as in Lemma 1 and, 
in the notation of Corollary 1, v = a 2 } (that v is an upper limit whereas a is either an upper bound or 
limit is irrelevant). The bound for F in (10) of Corollary 1 is at most 1 +g(a) which is less than 2}[�89 
+g(a2~)~ for all a >  1 - ~  where e is a very small positive number 
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EetS~/s"<=e t2g(cnt), t > 0  (1) 

and if, in addition, 0 < c. x. < a, then for all positive 2. and b, 

P{ max S~> 2.x .s .}  <=e -xa~b-b2g(~b~ (2) 
l<=j<=n 

(ii) If P { X j >  -c j s j }  = 1, 1 < j < n  then 

{ I EetS"/S">exp t2g(--Cn t) 1 ~. @ , t > 0  (3) 
$2 j= 1 A 

and if, in addition, 0-1 < c~ s., 1 < j  < n 

[i-~c~] EetSn/s~>=et2g(-tc.)[ 1 t2cgg(-tc~)]>=et2g(-tc")~- 2 , t>0 .  (4) 

Proof. The function g(x) is non-negative, increasing and convex on (_  oo, oo). 
This is obvious for x > 0 but is not apparent when x < 0. The identities 

x g ' ( x ) = ( x - 2 ) g ( x ) + l ,  xg"(x )=(x-3)g ' (x )+g(x)  (5) 

ensure that x 2 g " ( x ) = ( x 2 - 4 x + 6 ) g ( x ) + x - 3 .  Thus to verify convexity and 
monotonicity for x < 0 it suffices to establish that for y > 0 

y + 3  1 
g ( - y ) > y 2 + 4 y + 6  and g ( - y ) > - -  (6) y+2"  

In fact, it suffices to prove the former since this clearly implies the latter. To this 
end, note that for 0 < y < 3 

y2 y3 [ y y2 ] y3 y3 
e Y - I - Y  2 6 1 + ~ + ~ + . . .  < - - < - -  6(1_4) 

and so e y < (y2 + 4y + 6)/(6 - 2y) implying 

e - X - l + y >  1 [ 6 - 2 y  1] y + 3  
g ( - Y ) =  y2 7 [_y2~4y~6 +Y - - - y 2 + 4 y + 6 "  

On the other hand, for y__> 3, 

e - Y -  I + Y  >Y~_21 > 2 Y + 3  
g(--Y)= y2- y --y + 4 y + 6  

completing the proof of convexity and monotonicity. 
The point of departure for (1), (2), (3) is the simple observation 

E e ~xj/~ = 1 + E e ~xj/~ - 1 - t X j] = 1 + t 2 E _~- g (7) 
Sn J S n \ S n /" 

Hence, monotonicity ensures under (i) that if t > 0 

t2 2 
E e txj/s~ ~ 1 + ~ g ( t  c.) < et2g(tcn)~/sa (7') 

Sn 
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and (1) follows via independence. 
If rather (ii) obtains, then (7) in conjunction with the elementary inequality (1 

+ u) e "~ > e ~, u > 0 yields for t > 0 

2 2 ct2 2 124. 4 5 
t (~j , O'j (7"i 2 

EetX'/s">= 1 + ~ - g ( - t c n ) > e x P ~ T f - g ( - t c . ) - T g  ( - tc . )~  
( . sn ) 

whence (3) is immediate. Under the additional hypothesis ~j<c,s,,  l < j < n  

necessarily s~ -4 ~ @<c~ and (41 follows from (3), in view of g(0)---�89 
j = l  

To establish (2), note that via the submartingale inequality and (1), for t >0  

P{ max S~> 2xnsn} = P {  max etS~>e ~' . . . .  } < e  -~' .... Ee 's" 
l <=j<-n l < j < n  

< e - a  . . . .  +,~,~g( .. . .  o (8) 

and so setting t=bxn/S,; b>0,  xn>0 

P { max Sj > 2 x n sn} < e -x2btb b2g(c"x"b)] < e-~tab- b~g(.b)l 
l<=j<=n 

Clearly, nothing precludes 2 being a function of n. A 
The simple inequality of (2) yields a generalization of the easier half of the 

Law of the Iterated Logarithm. 

2 _ _  2 2 Corollary 1. Let {X,, n__>l} be independent r.v.'s with EX,=O, EX n-an, s, 
n 

-- Z o-~ ~ oo. (i) 2 I f %  =o(s 2) and Xn<cns, T, a.s., n > l  where c~>O then 
1 

~X j  
cn l ] / ~ 2 s n ~ O ~  lim j=1 <I~ 

n~oo Sn ~ iOga Sn 
a.s. (9) 

~ X j  
F I  1 

cn ll/~2s ~a~(O, oo ) ~ lim J=' _<min|~+bg(ab)],  a.s. 
n ~ c ~  S n ] / l o g 2 s  n - -  b > 0  L u  A 

o r  

0<co l l /~Sn --<_a (10) 

In particular when a =  1 the minimum in (10) is e -  1. (ii) If IX.I ~c~snL a.s., n ~  1 
n 

where c , ~ - - + a e [ O ,  co)then n~lim ~ Xj/s ,  ll/iog22s,<K, a.s. where K=I / /2  

] [e-2 ] 
i f a = 0 a n d K = m i n  +bg(ab) __<min a +  , l + g ( a )  otherwise. 

b>o a 

Proof If 2>b  -1 +bg(ab) where g(x)=x-2(e x -  1 -x )  then for ~ larger than but 
sufficiently close to one, 2/c~2>b-l+bg(ab). Define an increasing sequence of 

2=0(s2) entails 2 2 necessarily integers {nk, k_>_ 1 } by s,~ < c~ k < s,k + 1- Since a~ s~ + 1 ~ s,, 
s2~+l--sZ,~+azn~+l=s2+~ and so s ~ a  ~. Suppose now that either 
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c ~ ~ - , a  0>0 or O < c . ~ s . = < a .  Then for any a > a  o and all large n, 

necessarily c, x, < a  with x, = t  lo/~g2 s, and so (2) obtains for this choice of x,, a 
and all large n. Thus, replacing )~, by 2/~ 2 in (2), there exists an e>0  such that 
for all large k 

)o ~ 2b b2 g(ab)] s,~} P I  max Sj>..2Snk(log2Snk)-l<=expI--[~ - -  log 2 

1 
< exp { - (1 + s) log 2 s J  < (k log c~) 1 + (~/2) 

whence by the Borel-Cantelli lemma 

p{x,>)~s,(log2s,)LLo.}<p{l, max S,>)~s,~ l(logz s,~_~)~,i.o.} 
nk- 1 <n~?lk 

< P  max S,>~s,~(logzs,~ ) , i.o. --0. 
1 <n<nk 

Consequently, for all b > 0, with probability one 

~ X j  1 
lim J~=k <~+bg(ab). 
n~~ S n ~  n 

This proves (10) when O<c,l/log2sn<a. Under the alternative hypothesis, 
letting aSao, the preceding holds with a replaced by %. If % = 0  then g(0)=�89 

and the right side has a minimum of ]/2. When a o = 1 (or a = 1), (5) reveals that 
g'(1)= 1-g(1)  whence the minimum value e - 1  occurs at b=  1. In case (ii) the 

2 2 hypothesis ensures a,/s, <c2~0 and the conclusion follows by applying (i) to 
both { - X ~ , n > l }  and {X, ,n>l} .  

Finally, to verify that the right side of (10) is bounded by rain r | a+e-2 ,  1 
t a 1 

+g(a)/ ,  note that the minimizing value b 0 of r(b)-b-l+bg(ab) satisfies b -2 

=abg'(ab)+g(ab) and hence also (recall (5)) b2(ab-1)g(ab)=l-b 2. Con- 

sequently, either l > b 0 >1  (if a > 1) or 1 < b o < 1  (if a < 1) and so the right side of 
a a 

bounded by min [r(l), r {ll]. /~ (10) is 
[ \a/ J 

3. Lower Exponential Bound 

The form of the lower bound is simplest in the classical case lim c,(log2sn)~=a 
n ~ o o  

=0 and hence the alternatives a = 0  and a > 0  will be dealt with in separate 
lemmas. 

The crucial tool is the Esscher transformation which leads to the basic 
formula (11). At this juncture Lemma 1 provides indispensable bounds for the 
logarithm of the moment generating function (m.g.f.) O,(t) and its derivatives 
and the combination yields the desired lower bounds. 
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For any positive integer n, let {X,,j, l < j < n }  constitute independent r.v.'s 
with d.f.'s Fn, J and finite moment generating functions (pn,j(t)=exp{0nd(t)} for 

0 < t < t  o. Suppose that S,,n= ~ Xn, J has mean 0, variance one and d.f. F n. For 
? l  

j = l  

any t in [0, to) , define associated d.f's E ~t). by n~J 

(t) 1 i etY dF, d(Y) F ' . , ( x ) -  ~o. , ( t )  _ 

and let {Xn,j(t), l<j<n}  be (fictitious) independent r.v.'s with d.f.'s (F (t). t -  n,d~ 

l<j<n}.  Since the characteristic function (c.f.) of Xn,j(t ) is (G,j(t+iu)/(pn,j(t), 

setting On(t)= ~ Ond(t), the c.f. of Sn(t ) = ~ Xnd(t ) is given by 
j = l  j = l  

E e iuS"(t) = ~ (Pn'j(t-}- i U) - e O " ( t  +iu)-oMt).  

Thus, the mean and variance of Sn(t ) are 0'n(t) and 0~'(t) respectively and 
moreover the d.f. of Sn(t ) is 

F~t)(x) =e-v'"(t) i etYdFn(Y) 
-co  

whence for any t in [0, to) and real w, 

P {S,, n > w} = e O~(t)  --t~h(t) 

w - O;,(t) 
e - "  ~ dF2 ~ (y 1/O." (t) + O; (t)). (11) 

If 0n and its derivatives can be approximated with sufficient accuracy, (11) 
holds forth the possibility of obtaining a lower bound for the probability that a 
sum of independent r.v.'s with zero means exceeds a multiple of its standard 
deviation. 

Lemma2.  Let {Xi, l < j < n  } be independent r.v.s' with EXj=O, EX i2=aj,2 s,2 

=~a~ and P{IX~I<dj}=I where 0<dj] ' .  I f S , =  Xz and lira d"x"=o where 
1 i= 1 n~oo S n 

xn>xo>O then for every 7 in (0, 1), some C7 in (0, �89 and all large n 

P{S, > ( 1 - 7 )  5 s,x,} > C~e -x~O-~z)/2 (12) 

Proof Let ~0j(t) denote the m.g.f, of Xj and set S,,,=S,/s,= ~ X/s ,  and G=djs, .  
j = l  

Since, in the notation leading to (11), (G,j(t)= qoj(t/G), 1 <j < n and gl(x)=x-l(e  x 
- 1) ]', it follows for t > 0 and 1 < j  < n that 
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d X j  <=t 
' t cn) ~ j / s . ,  (p. , j ( t )=~EetX;S.=E (etX/s._l) gl(+_ 2 2 

s n > 

X 2 <_ + 
, l  j tcn 2 1  2 cp.,j(t)=Ez~-etXJ/~>e aj/s n 

o n 

and so noting ~o.,j(t)=> 1, (7') and aj2 < Cn2 S.2, 1 <=j <= n 

~t~,j(t)=CP'n,J(t) ~ t g l ( t C n )  2 2 r n ~Onu(t) 
G j / S n  >_tgl(_tc.)  2 2 

- l + t  2c 2g(tc . )  ' 

tbj, j( t)  -- r ' 2 <_ etC. 2 2 [<u(t)] O'j /S n ~.u(t) 
a 2 

> - J  [ e x p { -  2 2 t c . - t  cng(tcn)}--t 2 2 2 = ~ c. g~(t c03 
Sn 

(is) 

where g is as 

n 

~'(t) = j_2 

n 

in Lemma 1. Hence if 0n( t )=~.  O.,a(t), 
j = l  

<tgl( tc . )  
O"j(tl T t gl ( - t  c.)/[ -}- t 2 c2 g(tc.)] (14) 

Moreover, since  l,x, 1 1 x and 

l x (  
g ( x ) < ~ + ~ -  1 -  for 0 < x < 4 ,  if l i m t .  cn=0  

< ' ( t . )  = ~ <'j( t . )= 1 + O(t. cn). (15) 
j = l  

Thus, via (4), (14), (15) and g(0)=�89 g l ( 0 ) = l ,  for any 7 in (0, 1) and all large n 
- - t  2 

~ln(tn)__tn~/j(tn)~ 2 2 2 2 ' tn[g(--tnCn)__tn --tncn) cng ( - g l ( t .  c n ) ] > ~ ( l + ? ) ,  

(1- -~)  t n - ~ ; ( t n )  - -~  t n 
v . -  = - 7  tn(1 +o(1)) < - -  

' ~  = 2 

Consequently,  taking w = ( 1 -  7)tn in (11), 

0 

P {S n > (1 - 7) s. t.} > e ~~ ~ e-tY ~ dF(,.)(y ]/g,j(t .)  + 0.' (t.)) 
On 

>e ~ dFff")(Y +~( t . ) )>Cye  ~ -  (16) 
7tn 
2 
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S.(t.)-~(,(t.) n 

- ~ Z . , s ~ N o ,  1 in view of since " t 
j = l  

EZ.,s=O, ~ 2 _  X. , s ( t . ) -  EX.,s(t.) 
EZn, j -  1 and [Z,s I = 

,=1 I I 

2C n 
-<--O;]/ "(t.) - o(1). 

Finally, set t , = ( 1 - 7 ) ~ x ,  in (16) to obtain (12). A 

Remark. If x - ~ o %  then for every 7 in (0,1), the constant C~>�89 all e > 0  
provided n > some integer N c 

Clearly, Lemma 2 may be substituted for Kolmogorov's lower bound in 
proving the other half of the Law of the Iterated Logarithm. It suffices to follow 
the main lines of the proof of Theorem 1. 

Lemma 3. Let S ,= ~ Xj  where {Xj, 1 <j<n}  are independent random variables 
j = l  

n 

2__ 2 2=E(Y2 and P{IXjI<=dj}=I where 0<dj~. Set h(u) with EX;=O, EXj  - a j, s. 
i 

= u 2 [ g l ( u ) - g ( - u ) + u 2 g Z ( - u ) ]  where g l ( u ) = u - l ( e " - l )  and g ( u ) = u - 2 ( e " - i  
- u). I f  x.-+ oo and d.x./s.---~a > O, then for all 7 in (0, 1) and all u in (0, Uo) 

{ ~ / 1 - e - " \  ] ~ e~u--u ) --a--X2Zn[h(u)+o(1)] 
P S ,> s ,x , ;>( �89 (17) 

Moreover, u0=0.5347..,  is the root of  the equation e -"=(e" -u ) (e  " -  1) 2. 

Proof Setting c, = dn/s,, the lower bound for 4/',i can be improved via (13), (7') to 

2 a Z i  e-~C. ] ~s e~Co >_ O~,s(t ) >-~ _ t~ -- = 2 l+tZc2g( tc . )  c. g2(te.) " 
S n S n 

Thus, if t=ux, /a ,  u>0,  it follows since c , x , - , a  that 

e" +o(1 )>  0" > uZgZ(u)+o(1) (18) 
= 1 + u z g (u) 

and the lower bound is positive for 0 <u  <u  o and n sufficiently large. Moreover, 
recalling (4) and (14) 

u2xZ[g - - u x ~ c .  u 2  2 2 U 

> a 2 

U 2 
_ -  _ x  n z ~ [ g l ( u ) - g ( - u ) + u z  gz( -u)+o(1)]  

2 
- -  X n  a2 [h(u) + o(1)] (19) 
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( 1 - 7 ) a  l ug l ( -u )  
Fur thermore ,  if w = 1 Jr-1/2 g(u) x,,  then via (14) 

,(u ) ua lxngl(--XnCnU/a)-2 2 2 _ G  u g l ( - - U ) [ - - 7 + O ( 1 ) ] .  
W--~(, aX. <w l+u2 a x~c.g(x.c.u/a) a l + u 2 g ( u )  

Thus, taking t = t . = u x j a  in (11) 

p { S , > w s , } > e x p I ~ , l u x  \ ux, , tT) k 

v (,1/< (9)) w- Oh(ux,,/a) \ a ! 

whence (17) follows via (19), the Central  Limit  Theorem and the fact that the 
lower limit of integration -~ - oo. The CLT obtains for 0 < u < u o since 

X.;(t.)-EX.;(t.) < 2 G =o(1)  recalling (18). A 

I=r 
It may be noted that  h(u) is increasing for u >0.  In fact via the identities g'~(u) 

= g l ( u ) - g ( u )  and u g ' ( - u ) = ( u + 2 ) g ( - u ) - l ,  u > 0  it follows readily that for 
u > 0  

h'(u) = 2u [-gl (u) - g ( - u )  + u  2 g 2 ( _  u)] 

+uZ[g',(u)+g'(-u)+ 2uge(-u) -2uZ g(-u)g ' ( -u)]  

=2u[gl(u)--g(--U)+u2 g2(--u)] 

+u2[gl(u)--g(u)+2ug2(--u)--2u 2 g(--u)  g '(--  U)] 

+(u2 + 2u) g(--u)--u 

= u  2 Egl (u) -  g ( - -  b/)-~- U 2 g 2 ( - -  U)] 

+uE2gl(u ) - 1] + 2 u  s g ( - u )  [1 - u  g ( -  u)] > 0  

since all three bracketed expressions are non-negative for u > 0. 
1 - e  - u  

M o r e o v e r , - -  is increasing for 0 < u < 0 . 7 5  and a fortiori  for u in (0, Uo) 
e u - -  U 

where u o =0.5347 ... is as in L e m m a  3. 

Theorem 1. Let S,= ~ Xi where {X,, n >  1} are independent random variables 

satisfying EX,=O, E X  n2 = Gn ,2 Sn2 _ r and P{IX, I<d,}=I, n> l with d,~ 
and i= 1 

lim d"(l~ s")~ = a .  (20) 
n~ oo S n 
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(i) If a > l / h ~ o ) = 0 . 5 2 1 5  ... where u o is the root  of e-U=(eU-u)(e u -  1) 2, then 

S n > 1 - e  -u~ 0.3533... 
lim sn(log2 ~=  ,o - , a.s. (21) ~o~ s.) a(e -Uo) a 

(ii) If rather, a = ] fh  (u) for some u in (0, Uo) , then 

S. >-1 ( 1 - e - " ]  
lim s,(log2s,)}=a ~ eU-u ], a.s. (22) 

n ~ o o  

Proof The hypothesis ensures that  2 2 2 2 %/s, <d,/s, =0(1)  whence as in the proof  of 
Corol lary  1 there exists a sequence of integers {nk, k > l }  with s , ~ c r  k, cr 
Choose positive quantities c, 7, u such that  

( _ 1 ~  -~ h(u)<a 2 
c=a 1 0~2] , 

and then define independent  events 

Ak= ] gk hk , k > l 

where 

;) gk = S n k  n k -  1 n k  - -  ' 

h2 =- l~ gk ~ l~ s.k < (1 + 7) log k 

for all large k. Via (20) 

dnh k d.k(log2 s.~)~ ~ a 
a ~ C  

and so taking x,k = h k in Lemma  3 and recalling (23) 

1 ~" - h2 + o(1)]1 P{Ak} > g e x p  ~ - -  [h(u) 
d 

>�89 - [  c2 +o(1)  logk  > 

for all large k. Thus, by the Borel-Cantell i  lemma 

P {Ak, i.o.} = 1. 

(23) 

(24) 
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Next, choose ~ so large that 

( 1 ) ( I - e - " )  2 K > ( 1 - 7 ) 2 ( 1 - e  -~) 
1_-7a 1 - ~  e"-u c~ a e~-u 

and set t. = (log 2 s.) �89 whence for all large k 

1 -  7 (1 -e -~  t 
c \ e " - u  ] gkhk-2Ks"~-' t~_ t,~ 1 

[ ( 1 ~ / 1  1 ] ( l - e - " )  2K] ( 1 - 7 ) 2 ( 1 - e  -") 
k a \ - ~ ]  ~ o~ J " S"kt~k>--a e u -u  s, t , .  

Hence, if B k = {[S . . . .  1<2Ks,~ 1 t,~ 1} where K =min[b-1 + bg(ab)], then 
b > 0  

AkBkc{  Snk>(1-~/)2 (1-e-u) e u -u  Snk tnk 

again for all large k. However, (ii) of Corollary 1 guarantees P{B~, i.o.} =0 which 
in conjunction with (24) entails 

P{S,  > (1-7)2a (1-e-")s"~t"~'e" - u i'~ >P{AkBk'i'O'}=l" 

Thus, with probability one 

lim S~ >l im S,~ >(1-7)  2 (1-e-U) (25) 
n~oo Sntn--k~o~ Snk tnk  ~ a eU-u 

If, as in case (i), a2>h(uo), then (25) holds for all u<u o and all small, positive 
7 whence (21) obtains as uyu o and ?~0. If rather O<a2=h(u)<h(uo), then in 
analogous fashion (22) follows from (25). /h 

A combination of Theorem 1, Corollary 1 and the Kolmogorov zero-one law 
yields. 

Theorem 2. Let S.= ~ Xj where {X~, n> 1} are independent random variables 
j = l  

satisfying EX.=O, EX.2 = fin,2 Sn2____ ~,, 0.2~00 and P{JX.I<d.}=I , n> l with d.~ 
j - - 1  

and lim d"(l~ Then 
n ~  oo S n 

s,(log 2s.)5 C =1 

where 

0.3533 
< C<min [b l+bg(ab)] 

b > 0  

< m i n [  a+e-2a ' l+g(a) ]  / fa>  hl/~o)=0.5215. 
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1 {1-e-" t<_C<_min[b_l+bg(ab)  ] 
a \ e~-u  ] b>o 

U 2 

As a =  h l ~  -+0 (that is, u-+0) it follows easily from h ( u ) ~  that the lower 

bound for C approaches 1 ~  which coincides with the upper bound when a =0. 

Remark. The requirement that d,T is inessential in Theorems 1 and 2. Since b n 
=sj(log2s,)~'Foo (for all large n), the hypothesis d,/b,-+a ensures that 

d', =- max d i likewise satisfies d',/b,-~ a in view of 
l <=i <=n 

a d . < d ' . < l  dl  n~oo d i m--o~ 
- -  max d~+ max -- ~ sup ~a 
b~=b.=b.  1<=i<=~ ,.<=i<=. b~ i>m 

Thus, even if d. is not monotone, Lemmas 1, 2 and 3 apply for all large n since 
[XjI <d)T, 1 <=j<=n, a.c. 

4. A Strong Law of  Large Numbers  

It is well known that independent, random variables {X., n > l }  with EX.=0 ,  

satisfy the strong law EX.Z = an2, Sn2 ~ ~ 2  ~ (30 

i = 1  

S . . . . .  ,0  (26) 
s. (log s.) ~ 

for ~>�89 It is less well known but follows from results of [4, 12] that (26) obtains 

even when c~ > 0 provided (as is necessary) ~ P {[X.] > e s.(log s.) 6} < 0% e > 0. 
n = I  

Conditions under which (26) can be strengthened to 

S . . . . .  ,0  (27) 
sn(log 2 sn) ~ 

appear in 

Theorem 3. Let {S., n>= 1} be the partial sums of independent random variables 

{Xn, n__>l} with EX,=o,E[X,[~<=a .... A , -An ,~= ai,~ u oo where 1<cr 
i 

A,+l,jA~,~<=7<oo, all n>l .  I f  for some f l in  [ 0 , ~ ) a n d  positive quantities and 

(~, c 

P{[X.] >flA.(log 2 A.) 1 ~} < 0% (28) 
n = l  
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1 X2  o9 (29) 
, AZ(log2 74n)2(1 _ f l )  E n I [cAn( log2An) -3  < IXn[ <_OAn(log2An) 1 l~] < 

n = l  

then 

S, ~.s. O. 
An (log 2 A,) 1 -P 

Proof  Set Yn=Xnl[lXnl<cAn(log2A.)-3], Wn----Xnl[lx.l>6a.(log2A.)l-l~], 
--W,. Now since 3 < 1/cr 

n n 

i~1 EW~ __< i_~ (g IXil I[aA/(logaA~lZ ~ < IXd _-<a.(log2A.)-~1-t- E IX~l/[IXil > A.(log2A.)-31) 

<A.(log2 An) -~ ~ P{IX~I > (SAi(log2 A~) ~-~} 
i = 1  

(log 2 A.)~(~- 1) @ ~I 
-t 7_., E IXi] [iXi[>An(log2An)-3] AT, -1 ~=1 

= o ( A , ( l o g z A , )  1 ~) 

and so, in view of (28) 

1 
( W _ E W  3 .... , 

A,(log2 An) 1-~ i= 1 O. 

Secondly, (29) and Kronecker ' s  lemma guarantee 

1 ~E, (v~-ev,) .... ,0. 
An(log2 A,) 1 

Thus, since E X ,  = 0, it suffices to verify that 

1 
( yi  __ E y//) . . . .  ) 0. (31) 

A.(Iog2 An) 1-~ i= 1 

To this end, note  that  if n k = inf{n > 1 : A.__> 7 k} 

A,k <= 7 A ~ _  i < 7 k + 1 <= A~ k + ~ 

and so {nk, k >  1} is strictly increasing. Moreover ,  for all k >  1 

An k 7k + 1 
_ <7 k - T = 7 2 >  1" 

A n k  1 

Therefore,  setting U,= ~ (Y i -EYi ) ,  for all e > 0  
i = 1  

P { U~ > 272 e A,(log 2 A~) 1 -~, i.o.} 

< P {  max U~>272eA~_~(log2 A . . . .  )1-3, i.o.} 
nk-  l <n<--nk 

< P {  max U,>eA,,~(log2A,~)~-a,i .o.}.  (32) 
1 <<-n~nk 

(30) 

vo=x . -  Y. 
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2cAn(log 2 A.) -p 
Now, I Y n - E Y ~ I ~ c n t  n where cn= 

tn 

t z = E U 2  <= ~ EX2 I[IXd$ca,(log2Ai)-~] 
i = 1  

2 - - c ~ - - 2 - - ~  ~ ,  2 - e - - 2  
< C A n C A n 

= (log 2 An)~(2_~) z=a E IX~l ~ -  (log a An)a(2_~). 

Consequently,  setting 

e A2(log2 A.) 1 - 2a t .(log 2 An)# 
*)~n ~ 2 X n - -  

t. ' A n 

it follows that 

and 

(33) 

2.k x 2  = e(log2 A.k)--+ ~ ,  

cnk x,k  = 2 c, 2n k X, k tn k = ~ Ank(1og 2 Ank)1 - ~, 

2 t2~(l~ = o ( l o g 2 A n ~ ) = o ( 2 n x 2 )  xn~ - A2 - ~(log2 An~)~: 
?1 k 

recalling (33) and fl < 1/co Thus, taking b = 3/e in (2) of Lemma  1 

1 
P{ max Un>eAn~( log2A,~)  l - p }  <_e-2X~ <=(klog 

1 <=n<=nk - -  7 )  2 

and so (32) and the Borel-Cantelli  lemma ensure 

lira U. 
n~ ~ A.(log2 An) 1 -~ < 0, a.s. (34) 

Since { - ( Y n - E Y n ) , n > l }  have the same bounds and variances as {Yn 
- E Y , ,  n >  1}, (34) likewise obtains with - U ,  replacing U n thereby proving (31) 
and the theorem. A 

Corollary 2. Let  {X., n > 1} be independent  r andom variables with E X  n = O, E X ~  
n 

2 = a,  2, s, = E a~ z ~ oo and s n + 1/Sn ~ ~; < GO, Y/~ 1. If for some fi in [0, �89 and some 
i 

positive c, 6 

~ P{IX.I > 6s.(log2 s.) 1 -e} < m,  
n = l  

.=~ s a(log 2 1Sn)2(1 _#)EX 2 I [ c sn ( logz sn )_~  <,Xn]<=gjSn(log2sn) 1 fl] ~ (30 

then 

S . . . . .  - ,0.  
s.(log 2 s.) a -~ 

(35) 

(36) 

(37) 
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N o t e  tha t  C o ro l l a ry  2 p rec ludes  /3=�89 In  fact, (35) a n d  (36) w h e n  /3=�89 

c o m p r i s e  two of  the  three  c o n d i t i o n s  for the  Law of  the  I t e ra ted  L o g a r i t h m  in 

T h e o r e m  1 of [13].  

Coro l l a ry  3. I f  {Xn, n > l }  are independent random variables with EX,,=O, EX 2 
n 

2 2 _%,_ 2 s _ ~ a i - - , o Q  and [Xnl<=C~sn(log2Sn) -IJ, a.s., n > l  where 0 < ] 3 < � 8 9  c ~ > 0  
t 

then (37) obtains provided in the case/~=0 that s,+ 1 = O ( s , ) .  
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