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Summary. Fix a family c~ of continuous distributions on the line. Sufficient 
and (different) necessary conditions on ~ are given in order that the sample 
distribution function be an optimal estimator in the asymptotic minimax 
sense. The abstract results are illustrated by a variety of concrete families cg 
that have arisen in the literature; some of these illustrations settle known, 
but previously unsolved, problems. Methods involve systematic consider- 
ation of statistical experiments whose parameter lies in a Hilbert space, and 
the theory of abstract Wiener spaces. 

1. Introduction 

In a pioneering paper, Dvoretsky-Kiefer-Wolfowitz (I-6-1, 1956) proved that the 
sample distribution function is asymptotically minimax among the collection of 
all continuous distributions (see Sects. 2-5 below for the formal definition of this 
concept). This paper has stood for over 20 years as one of the pivotal achieve- 
ments of nonparametric decision theory. Recently, Kiefer and Wolfowitz, moti- 
vated in part by questions arising in reliability theory, reopened the question 
and proved, among many other things, that the sample distribution is asymp- 
totically minimax (a.m.) among the class of all concave distributions ([14], 
1976). This is, of course, harder to prove than the original problem, since the 
collection of concave dfs is much smaller than the collection of all dfs. 

This suggests a general problem: given a collection cg of distributions of the 
line, when is the sample distribution a.m. among the class c( (am ~). This paper 
gives geometric sufficient conditions and some (different) necessary ones on a 
collection ~ in order that the sample df be am ~. In Sect. 6, illustrations of the 
use of these results show that the sample df is am cg if ~ is the class of dfs with 
increasing densities, the class of dfs with increasing failure rate (IFR), the dfs 
with decreasing failure rate (DFR), and the df's star ordered with respect to a 
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given distribution; this list of examples could easily be augmented. Apparently 
Kiefer and Wolfowitz had settled the IFR case some time ago, but, according to 
Professor Kiefer, the DFR case had eluded everyone for some time. Indeed, to 
do the DF R  case, a slight change of point of view must be adopted - one must 
center the argument around a special distribution located well within the class 
in question. 

The geometric criterion on cg forcing the sample df to be am (g can be 
described roughly as follows (complete description is in Sect. 5). Select a 
distribution F0eCg. Distributions "close" to F 0 can be parametrized by points of 
a certain Hilbert space. There are several ways of doing this - see Sect. 4. If cg 
contains some df F o that, relative to this parametrization, is a "cluster point" of 
elements of ~, then the sample df will be am cg. Conversely, the sample df can 
fail to be am c( for a variety of reasons. Two of these are discussed in Sect. 7. The 
gist of the discussion is that if cg is too small then the sample df cannot be am cg. 
Here "small" has to do with dimensionality; it explains, for many of the 
standard families indexed by R k, and for families of symmetric densities (for 
example), why the sample df cannot be asymptotically minimax. 

Acknowledgements.  This paper owes a very great deal to the work and thought of L. LeCam. This is 
perhaps most obvious in the ubiquitous use here of his abstract asymptotic minimax theorem. It has 
long been part of the statistical folklore that much can be gained - particularly in nonparametrics 
by considering, as is done in this paper, experiments indexed by Hilbert spaces. In problems of signal 
detection, Hilbert structure was explicit from the start. In El2], there are examples (implicit) of it in a 
nonparametric setting; the Hilbert structure is explicit, for example, in Beran's papers ([2, 3]) where 
it is applied to both nonparametric and robustness problems. But it has been LeCam more than any 
other, it seems, who by casting it in the framework of Gaussian shift models like those of R k, has 
illuminated the possibilities. Finally, I thank J. Kiefer for extensive and enlightening correspondence. 

2. Decision Theoretic Preliminaries 

The purpose of this section is to introduce some decision theoretic notions and 
to state the basic asymptotic minimax theorem used throughout the paper. 

Let O be an index set. For each 0~O, let P0 be a probability on a measure 
space (S, 5~ The collection E=(P0, 0~O) is called an experiment. A decision 
space will be a measure space (D, 9 ) ;  in all cases treated in this paper, D is a 
separable metric space and ~ its Borel sets. A procedure b is a Markov kernel of 
(S, 5O)/(D, 2) :  

for each xeS, b(x, .) is a probability on (D, 9 )  
for each A e ~ ,  b(., A) is 5o-measurable. 

For each OeO, let l(O; ") be a loss function defined on D - here l(O; .) will always 
be non-negative and lower semicontinuous. In the decision problem (E, D, l) the 
risk function p>=O, defined for OeO and procedures b, is given by 

(2.1) p(O, b)= S ~ l(O; y) b(x, dy) Po(dx). 
s D 

When there are several experiments under discussion, write p(O, b; E) for p(O, b); 
D and l will always be clear from context. 
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Unfortunately the proper general statement of the asymptotic minimax 
theorem requires the notion of 'generalized procedures' - indeed, the result is 
false otherwise. The difficulty can be traced to a lack of compactness in the 
collection of ordinary (Markov kernel) procedures, so this class will now be 
enlarged in the usual manner. Define V o to be the collection of all finite linear 
combinations of the form ~ a~ #~, a i real, where #~ is, for each i, a finite signed 
measure absolutely continuous with respect to some P0,(0~O); define Vto be the 
Banach space obtained by closing V 0 under the variation norm. Let C(D) be the 
Banach space of all continuous bounded real functions on D (supremum norm). 
Define a generalized procedure b to be a positive bilinear functional on Vx 
C(D) such that Hb(#,c)l] < Ir#[I Hell for #ev, ceC(D) and such that b(#, 1)= II#ll 
if #>0 .  An ordinary procedure b(x, dy) is a generalized procedure via 
b (#, c) - ~ c(y) b (x, dy) #(dx), c ~ C(D), #e V. The collection of generalized pro- 
cedures is then compact for the topology of pointwise convergence on V • C(D) 
(it is Alaoglu's theorem !) and it is a simple exercise to show that the procedures 
of Markov kernel type are dense in the collection of generalized procedures. If 
l(O, .) is a loss function, continuous and bounded on D for each 0, then the risk 
of a generalized procedure b can be defined by b(po, l(O, .)) (Po e V, l(O, .)~ C(D)); if 
l(O, ") is only lower semicontinuous, then the risk function of b can be defined by 
sup b(Po, c) where the supremum is computed over all continuous bounded 

c 

functions c with c(.)<l(O,.). This is all there is to the required extension; 
however, to preserve intuitive content, we shall use throughout the Markov 
kernel notation for procedures even though generalized procedures might really 
be the ones used. 

Fix now a sequence of experiments En={P0 n, 0~O}, P0 n defined on (S,, ~),  
say. Single out 00EO for special attention and compute the Radon-Nikodym 
derivatives dPo'/dpo~o=-~"o of the part of P0 n that is absolutely continuous with 
respect to P0~. Let E={PO, 0cO} be another experiment, with P0 absolutely 
continuous with respect to POo, and set 40 = dPo/dPoo. The experiments E" are said 
to converge weakly to E if, for each 0, the P," distribution of ~ converges to the 0o 

P0o distribution of ~0. This notion of convergence is quite adequate for the 
purposes of this paper, despite obvious defects; for a better definition, see 
LeCam [16]. 

The following basic theorem is due, in its present form, to Hajek [11] and 
LeCam [16]. Fix l, D as above. 

Proposition 2.1 (Hajek-LeCam asymptotic minimax theorem). Let E"= {Po ~, 0~0} 
be a sequence of experiments converging weakly to E= {Po, OeO}. Then 

(2.2) lim inf sup p (0, b; E") > inf sup p (0, b; E). 
n b 0 b 0 

Early versions of this go back to the mid 1950's - see the survey [4]. Hajek's 
version assumed P0 normal with mean vector OeRk; LeCam's is completely 
general. Our use essentially will be to replace R k by R ~ in Hajek's formulation. 
We will make great use, however, of the fact that O is quite arbitrary. The 
appendix (Sect. 8) contains a very simple proof of this proposition that avoids 
the delicate calculations of Hajek's and which does not draw on LeCam's theory 
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of experiments either; that it is a simple consequence of LeCam's version [16] is 
easily seen. 

Obviously, if the infimum on the left side of (2.2) is replaced by an infimum 
over kernel procedures, the result still holds; in many applications, such as those 
of this paper, the limit experiment is nice enough to allow one to dispense with 
the generalized procedures there too. 

3. Gaussian Experiments 

In this paper, all sequences of experiments studied converge weakly to a 
Gaussian experiment whose parameter set O is a subset of some Hilbert space. 
This section sets forth the basic facts about such experiments. 

Let H be a separable Hilbert space with inner product <., .> and norm ]-[ 2 
=<. , .>.  The standard normal distribution on H is a cylinder probability 
measure on H whose characteristic functional is 

(3.1) (p(z)=exp{-�89 a} 

for zEH*, the dual of H (see [8, 15, 24]). If H is infinite dimensional, it is well 
known that this cylinder measure is finitely additive but not countably additive. 
The theory of abstract Wiener spaces ]-9] provides a procedure for dealing with 
this inconvenience. 

Briefly, one searches for a separable Banach space B and a map 

v : H ~ B  

such that (i) z(H) is dense in B (ii) ~ is linear, bounded, one-to-one (iii) the image 
in B of the standard normal on H is countably additive. Basic theory asserts that 
such a r must be obtainable [5] via a "measurable norm" on H, but the 
statistical applications are so simple that we can avoid this theory: the particu- 
lar (% H, B) used throughout is given below. Nevertheless, derivations of various 
statements are facilitated by the general formulation. 

Given (z, H, B) as above, let Po be the image on B of the standard normal of 
H. Then for fixed xeB, the translate 

(3.2) A ~ P o ( A + x  ), A~Borel sets o r b  

is a probability absolutely continuous with respect to Po iff x = vh for some hell. 
Denote by Pn the measures on B given by 

(3.3) ~(A)=Po(A+zh ). 

In this case 

(3.4) (dPh/dPo)(X)=ex p {Lh(x)-�89 2} 

where L h, h~H is a linear process on B, indexed by H, and defined by 

Lh=<Z,'>B if h=z*z 
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and extended to all of H by a limiting argument. Here (. ,-)B is the duality 
relation between B* and B, zeB*, and r* is the adjoint of r. See [7, 10, 15, 24] 
for further details. The experiments {Ph, h~H} are then the basic experiments for 
this paper. 

The concrete examples of this set up used in this paper are variants of the 
following classical case. Take H to be the Hilbert space of real functions on the 

1 1 

unit interval such that ~h(s)ds=O and ~h2(s)ds<oo. Let B 0 be the Banach 
0 0 

space of all continuous real functions x on [0, 1] such that x(0)=x(1)=0 
(supremum norm). Define r: H---,B o by 

(3.5) rh(t)- h(s) ds. 
0 

Then, as is well known, Po is the distribution of {W~ 0 < t < l } ,  the standard 
Brownian bridge (readers unfamiliar with this fact can easily check it by 
computing characteristic functionals; the ch.f. of P0 is evidently (p(z* y), y~B*, (p 

as in (3.1)). Moreover, Ph is the distribution of W~ h(s)ds , and L h has a 

representation as the stochastic integral gh= ~ h dW. Proceeding to the slightly 
greater generality required below, let F be a continuous df on the line. Define 
the Hilbert space H(F) of real functions h by 

(3.6) H(F)={h: yh2(s)dF(s)< oo, yh(s)dF(s)=O}. 

Here one can take B to be the Banach space (supremum norm) of continuous 
functions x on the line such that x(t)=xo(F(t)), t in the support of F, for some 
xo~B o, B o as defined above for the classical case. If r is taken to be the evident 
analogue of (3.5), it is then easy to see that Po is the distribution of the process 
{W~ and that Ph, d~/dPo have descriptions analogous to those of the 
classical case. 

Fix now a (r, H, B) and the corresponding Gaussian experiment {Ph, h~H}. 
All decision theoretic problems in this paper will be of the following sort. The 
decision space will be B itself. A non-negative function I on B is subconvex if 
{x: l(x)<a} is closed, convex and symmetric for every real number a. If B=Bo, 
then, for example, l(x)=suplx(t)p= JFxl[,/(x)=~ Ix(t)l 2 dr, l(x)=I{x: NxJr >c} and 

t 
so forth are all subconvex. Evidently such a function is lower semi continuous; 
in fact, there is even a sequence of uniformly continuous subconvex functions l, 
with l, Tl, a technical convenience in some proofs. In addition, for every c, 
rain {l, c} is again subconvex. Loss functions on the parameter set H and the 
decision space will have the form 

l(h, x) = l(x -rh). 

In these circumstances, the following evaluation of the minimax value was 
pointed out to me by L. LeCam (private communication). In LeCam~ version, 
integration theory is developed for finitely additive Gaussian measures on the 
Hilbert space H; l is defined on H. This approach is no doubt preferable for a 
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general theory, but it involves a bit of work, and the following simpler variant 
suffices for the purposes of this paper. The appendix contains a proof for the 
convenience of the reader. 

Proposition 3.1. Let {Ph, h~H} be a Gaussian experiment. Then 

(3.7) infsup ~S l(x-zh) b(y, dx) Ph(dy)= ~ l(x) Po(dx). 
b h~H 

4. Experiments Indexed by a Hilbert Space 

In this section are exhibited sequences of experiments converging weakly to the 
Gaussian experiments of Sect. 3. 

Fix a distribution function F 0 on the line. There are several ways of 
parametrizing 'neighborhoods' of Fo, some more convenient than others accord- 
ing to the problem at hand. Here are two parametrizations to be used later; 
such parametrizations have been used in the literature before, e.g. by Beran [2] 
and LeCam [181. 

For the first, assume F 0 has a density fo with respect to a probability # on 
the line. I f f  is another probability density with respect to #, then f ~  and fo  are 
elements of L2(d#). The orthogonal decomposition of f~  into a multiple of f o  
and an orthogonal piece suggests the following parametrization of such f:  define 
f (h; x) by 

-~[hl )~fj +h/2 (4.1) f~(h;x)=(1 1 2-1 -~ 

where h~H*(Fo), the Hilbert space given by 

(4.2) H*(Fo)= {h~L2(d#): h orthogonal to fo}. 

Notice that not all elements of H*(Fo) can be used in this parametrization (Ihl 
must be less than 2, for example). Let H' denote the subset of such h that work; 
one can then parametrize by all of H* by the trivial device of (say) defining 
f(h; x) for hsH*-H'  byf (h ;  x)=f(nh; x) where n is a mapping of H* -H '  to H' 
(e.g., a projection). We assume that such trivial completions of the para- 
metrization have been carried out when they are clearly needed. Let H~ denote 
the collection of heH*(Fo) such thatf(hn ~; x), defined via (4.1), is a probability 
density. Evidently, H,, + 1 ~ H~, and ~ H n = H* (Fo). 

The parametrization (4.1) gives reasonably full neighborhoods of F o. The 
second method, to which we now turn, is rather narrower (e.g., no measure with 
a component singular to F o can arise); its simplicity, however, makes it useful. 
For F o, fo as in the previous parametrization, define 

(4.3) f(h; x)=(1 +h(x))fo(X) 

where h~H(Fo) (defined in (3.6)) is chosen so that (4.3) gives a true density. 
Again only part of H(Fo) is used in the parametrization, but the definition can 
be extended to all of H as before if necessary. Analogues of H n here satisfy 
H~+ 1 ~ H~, U H~ dense in H(Fo). 
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Each of these parametrizations can be used to construct a convergent 
sequence of experiments. For example, let us consider f(h; x) defined by (4.3). 
Define Ph" to be the probability on R n having density 

n 

(4.4) I]f(hn-~; xi). 
i=1 

Standard asymptotic methods (e.g., short Taylor expansion of l og ( l+u )  and 
estimation of remainder) yield an asymptotic expansion for log dPh~/dPg: 

n 

(4.5) logl]f(hn-~;xi)/fo(Xi)-n --~ h(xi)+�89 
1 i = i  

It is then immediate that the experiments Ph; h~H(Fo) converge weakly to the 
Gaussian experiment indexed by H(Fo). 

Similarly, if f (h; x) is given by (4.1), one can again define probabilities Ph n by 
(4.4). Restricting attention only to h with support contained in that o f f0  , one 
can again obtain an expansion for log dPfl/dP~: 

tl 

(4.6) log l-I f (hn-~; x~)/Jo(Xi)-n -~ k h(xi)/f~(x~) + �89 2 ~O(Pg). 
1 i = l  

To see this one may, for example, approximate logf(hn-~;xz)/fo(Xi) by 
f~(h n-~; xz)/fo (xi)- 1 as in [20]. For the special h in H* (F0)just introduced, the 
trivial reparametrization of replacing h by h/f o and # by f0 d/~ reveals this 
sequence of experiments to be essentially asymptotically equivalent to that of 
the preceding paragraph. For future convenience, denote by H;(Fo) the Hilbert 
subspace of H*(Fo) consisting of h with support in that offo.  

5. Sufficient Conditions that the Sample Distribution 
be Asymptotically Minimax 

Let (g be some collection of continuous distribution functions on the line. Take 
n independent, identically distributed observations, and let /~ be the sample 
distribution function, constructed piecewise linear and continuous. If F is a df, 
let F" be the probability on R" defined by 

",2 
(5.1) F~ 11 F(dxi). 

i=1 

Fix a subconvex loss function 1 on the space of continuous functions, f .  is 
asymptotically minimax in (g (am (g) if 

sup ~ l(n~(f, -F))F"(dx) 
(5.2) lira w~ = 1. 

. . . .  inf sup ~ l(n~(y-F)) b(x, dy)F'(dx) 
b F~Cg 
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Here the basic decision space is the entire collection of continuous dfs. The 
main result of this section is a sufficient condition on a collection (g that forces 
Fn to be am cg. 

To state this sufficient condition, first recall the definition of the Hilbert 
space H(F) from (3.5). Let F o be a df with density f0 with respect to a probability 
g. Define F o to be a radial cluster point of (g if there are subsets Hn of H(Fo) such 
that H~ c H ,  + 1 and 

(5.3a) if h~H,,, then f (hk-~;  x ) = ( l + h ( x )  k-~)fo(x) is a probability density in 
(g for all k > n, 

(5.3b) U H,  is dense in H(Fo). 

Fix now F0eCg, radial cluster point; let B be the Banach space of continuous 
functions associated with H(Fo) as in Sect. 3. Let 1 be a real function, defined on 
all continuous functions, subconvex on B, and satisfying 

(5.4) S l(n-~(f,--F))dF ~ is distribution free over (g and converges to El(W ~ 
=El(W~ as n ~ o o .  

This condition is much more restrictive than necessary - it was given so that the 
coming proof can be quick and unencumbered. Loss functions l that satisfy the 
condition (5.4) are those which are nice functions of IIxll (i.e., ones that measure 
loss between F and its estimator in terms of the Kolmogorov distance); see 
Remark  5 for a formulation covering a wider variety of cases, and for which the 
following proposition still holds. 

Proposition 5.1. Let cg be a collection of continuous distribution functions admit- 
ting F o as a radial cluster point. Then the sample distribution function is asymptoti- 
cally minimax in off. 

Examples of the use of this result are given in Sect. 6. 

Remark 1. One can prove a variant of this using the parametrization (4.3) as well 
- this offers a slightly greater variety of h's. To carry out the proof  one considers 
first 11 < l, 11 uniformly continuous, and lets ll increase to l (the Eq. (5.6) here will 
be only an approximation but the uniform continuity of I~ permits passage to 
the local experiments much as before). 

Remark 2. One can write a variant of this result in which densities f0(1 + hn ~) 
are not in cg but are 'sufficiently close' to ones of cg. Since none of the 
applications discussed in Sect. 6 require this, we omit it; see, however, Sect. 7 for 
a possible formulation in terms of Hellinger distances. 

Remark 3. Simple variants of the argument here can often be used to prove other 
statistics are asymptotically minimax in a given class, even when the sample df is 
not. See Example 6e, Sect. 6, for an illustration, and Proposition 5.2 below. 

Remark 4. The classical minimax theorem of Dvoretsky-Kiefer-Wolfowitz [6] is 
of course immediate from Proposition 5.1. Here G is all continuous dFs, and F o 
is, e.g., the uniform distribution on [0, 1]; it is obvious that F 0 is a radial cluster 
point of ~g: H ,  can be taken to be {h~H(Fo): sup [h(x)l <n~}. 

0 < x _ < l  



Asymptotic Minimax Theorems for the Sample Distribution Function 241 

Remark 5. To extend the result to a greater number of common situations, one 
can weaken the hypotheses (5.4) on the loss function by making them true only 
asymptotically. A particular case, for example, that does not satisfy (5.4) exactly 
is the situation where after n observations one uses a loss function 1,,(F, ~o) which 
is a fixed function of the normalized Cramer-von Mises 'distance' ~n[F(t) 
-q)(t)]  2 dF(t). Here is a formulation to cover such situations. Let 1, be a loss 
function, used at stage n, and let F o be a radial clusterpoint. Assume 

(5.4a) 1,(F; Fn) , under F", is distribution free for FeCg, 

(5.4b) there is a subconvex function l, defined on the usual Banach space of 
continuous functions associated with H(Fo) such that 

l,(F ; F,) dF"--,E l(W~ 

(5.4c) for the experiments (4.4) and h in finite subsets H o of the dense subset of 
H(Fo) specified in Definition (5.3) 

lira inf sup ~ ln(F (hn- ~ ; "), q)) b(x, d qo) dF"(hn- �89 ; x) 
n ~  on b he l lo  

__> inf sup ~ l((p - z  h) b (x, d ~o) dP h. 
b he l lo  

If ln(F, ~o) is a nice function G of n ~ sup I~o(t)-F(t)l =n ~ II~0-Fbl then one takes 
t 

l ( x )  = G(llxll); if l,(F; qo) is a nice function G of ~ n[F(t)-~o(t)] 2 dE(t), then in the 
situation above l would be G(~lx(t)12dFo(t)). With these assumptions the 
conclusion of Proposition 5.1 continues to hold (the definition of asymptotic 
minimax being adjusted to the present situation) and extends to loss functions of . 
the Cramer-von Mises variety (for example); only minor modifications in the 
argument are needed to carry the proof through again. 

Proof of Proposition 5.1. The numerator in (5.2) converges, by hypothesis, to 
El(W~ To prove the result, it suffices to show that, in the limit, the de- 
nominator is at least as big as El(W~ Let F o be a radial cluster point of cg. Fix 
n, and let k>n; if F is any dr, F" is defined by (5.1). Then, the denominator of 
(5.2) is bigger than 

(5.5) lim inf sup ~ l(k -~(y - F (h k-  ~; .))) b (x, dy) F k (h k ~; dx). 
k~oo  b hEHn 

Since F(hk-~; .) is the integral offo(1 +hk ~), the argument of 1 in (5.5) is 

(5.6) k~(y -Fo)+(Fo-F(hk  ~; . ) )k-~=k~(y-Fo)-zh  

so (5.5) is equal to 

(5.7) l iminfsup~l(~o- 'ch)b(x ,  dcp)Fk(hk ~;dx) 
k ~  b herin 

>inf  sup ~ l((p -'oh)b(x, dcp) Ph(dX) 
b herin 

by Proposition 2.1 and (4.4); here {Ph, heH(Fo)} is the standard normal shift 
associated with the Hilbert space H(Fo) as in Sect. 3. Let now n ~  oo; since H~ 
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increases to a dense subset of H(Fo) and since Ph is continuous in h, it follows 
from (5.7) that the denominator of (5.2) exceeds 

(5.8) inf sup ~Sl(qo-rh)b(x,d(P)Ph(dX ) 
b h~H(Fo) 

=~ l(x)Vo(dx ) (Prop. 3,1) 

=~l(W~ 

Since EI(W~ ~ by assumption, the denominator of (5.2) is indeed at 
least EI(W~ QED 

There is a variant of Proposition 5.1, occasionally useful, which provides 
asymptotically minimax procedures when the sample df fails. 

Let (d be a collection of distributions satisfying the following conditions: 

(5.9a) there is FoECg with density fo and a subspace Ho~H~(Fo) such that 
every F ~  has density f that is given by 

f ~ = ( 1 - l h [ 2 ) ~ f o + h  

for some h~H o (H*(F) was defined below (4.6)), 

(5.9b) if h belongs to a dense subset of H o then 

(1 - Ih l  2 n- 1)~f~+hn--~ 

is a density of ~ for all sufficiently large n. 

If (z,H*(F),B) is as in Sect. 3, let 7c be a continuous projection of B to the 

closure in B of zH o, say rHo ;  for 7z to exist we must assume that zH o is a 
complemented subspace. As usual,/7, is the sample df. 

Proposition 5.2. I f  cd satisfies (5.9) then F o + ~ ( F , - F 0 )  is an asymptotic minimax 
estimator of distributions in cd and the asymptotic minimax value is ~ l(Tzx) Po(dx). 

The proof is sufficiently similar to that of Proposition 5.1 that it can be 
omitted. 

Remarks. (a) The Remarks 1-5 to Proposition 5.1 apply here too. 
(b) The df estimator Fo+rc(F,-Fo) need not be a df itself. The worried 

reader has several time-worn recourses available; the simplest is to let G, be the 
smallest positive increasing function bigger than Fo+~z(f,-Fo) and take as 
estimator the df G,/x 1 - this will not increase the loss if the loss is a function of 
the Kolmogorov distance, and so the revised estimator will be asymptotically 
minimax too. Other recourses are available, depending on l; sometimes no 
adjustments are necessary, as in Example 6e. 

6. Examples 

In using Proposition 5.1, the strategy is to choose an F o which 'strictly' satisfies 
the conditions defining the class cd; it is then a matter of fussing (often with 
some tedium) to show that one can fit 'around'  F o lots of other elements of c#. 
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6a. Decreasing Densities on [0, oo) 

Proposition 6.1. Let cg be the collection of all distributions F supported on [0, oo) 
and having a decreasing density with respect to Lebesgue measure. Then the sample 
df is am cg. 

Remark. This obviously implies that F, is asymptotically minimax among the 
concave distributions on [0, oo), since the latter is a larger class than the one of 
Proposition 6.1. This case was treated by another method in [141, where much 
more is proved. 

Proof Take F 0 to be the probability with density fo(x)=e -x, x>__O. It suffices to 
show c~ radially dense at F 0. Densities of the form fo(1 +hn -~) will belong to 
if they are decreasing. This will be ensured, for example, if h has a derivative h' 
and the derivative of (1 +hn 4)fo is negative: 

f~(1 + hn- ~)+ foh' n- ~ <O. 

Of course, (1 + hn-~)fo will be a density if y h(x)e -x d x = 0 and sup Ih(x)n-2'1 < �89 
Accordingly if we define x 

H.={h:~h(x)e-Xdx=O, suplh(x) n-~ =2,<! h'(x)n ~<�89 
x 

then ( l + h k - + ) f o ~  for h~H,,, k>n and U H .  is dense in H(Fo); that is, c~ 
admits F o as a radial cluster point. 

6b. Increasing Failure Rate 

A distribution F on the line with density f is said to have increasing failure rate 
(IFR) if f (x)(1-F(x))-1 is increasing in x for x in the support o f f  Properties of 
such distributions and their applications to reliability theory are discussed, for 
example, in [,11. 

Proposition 6.2. The sample distribution is asymptotically minimax among the class 
of IFR distributions. 

Proof I f f  is any density with a derivative everywhere, then f(x)/(1 -F(x)) will be 
increasing if 

(6.1) [ f ' (1-F)+f2]__>0 (on support F). 

Take fo to be the uniform density on [,0, 11; then densities of the form fo(1 
+hn -~) will be IFR if they satisfy (6.1) - i.e., if 

(6.2) [-f;(1 +hn-~)+fo h'l(1-F0)+fo2(1 +hn-4)2=>0. 

If 

Hn= h:Sh(x)dx=O, sup Ih(x)ln ~<!=2, sup Ih'(x)ln-~< 
0 0 < x < l  0 < x < l  



244 P.W. Millar 

then (6.2) will hold for any h~H,. Since 0 H n  is dense in H(Fo), Fo=uniform 
distribution, it is clear that the IFR class admits F o as a radial cluster point. 

6c. Decreasing Failure Rate 

A distribution function F with density f has decreasing failure rate (DFR) if 
f(x)(1 -F(x)) ' is decreasing in x for x in the support of f ;  see [1] for properties 
and applications. 

Proposition 6.3. The sample df is asymptotically minimax among the class of 
distributions which have DFR. 

Proof. If F o is a distribution with density fo, then any distribution with density 
fo(1 +hn  -~) will be DFR if it satisfies (6.2) with the inequality reversed. Choose 
fo (t) = �89 exp ( - t~), t > 0 so 1 - F o (t) = (t ~ + 1) exp ( - t~). One may check that F o is 
a radial cluster point for the DFR distributions by choosing H n to be (for 
example): 

~h" ~ h (t) exp ( - t ~) d t = 0, support h c [0, log log n], Hn o } 
sup I h(x)l (log n) 2 n- ~ < 1/8, sup Ih'(x)] < n-~(log log n)- 1/16 . 

x x 

The verification is slightly tedious; again Q)/-/n is dense and so F n is asymptoti- 
cally minimax. 

6d. Transformations of a Given Distribution 

Fix a continuous distribution G on the line, and let ~ be a collection of 
monotone transformations g. A basic class cg of distributions is of the form 

cg={F:F=Gog for some g ~ } .  

Classes ~ that have arisen in the statistical literature are 

={convex functions} and ~={star-shaped functions} 

(see Eli for example). 
In order to show that the sample distribution is asymptotically minimax for 

such c~, one seeks, for a fixed g ~ ,  a dense collection of h~H(Gog) and 
functions g,,hE~ such that 

(6.3) Gog,,h(t)= y ( l+h(s )n  --~) dGog(s). 

Such a g,,h evidently must be given by 

t 

(6.4) g,,h(t)=G-l{y(l +h(s)n ~)dGog(s)}. 
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From (6.4) it is clear that if G is reasonably smooth and if ~ contains a fairly full 
neighborhood of g, then such gn, h will exist and so the sample df will be am cg. 
Evidently this problem is better attacked via Remark 2 of Sect. 5; until general 
statistical need arises, we shall not bother (it is pretty messy). 

To illustrate a simple case, however, fix a G and let ~ be the collection of 
dfs of the form Go g, where g is convex and increasing on the support of G. 
Assume G is twice differentiable, and G 1 continuous and differentiable. The 
function gn, h of (6.4) will belong to ~ (i.e., will be convex) if, for example, its 
second derivative is positive. If h is bounded, with bounded first derivative, and 
if g is chosen (for example) to have a second derivative that is bounded away 
from 0 (so take g(t)= e t -  1 if support G is [0, oo)), then routine calculation shows 
that gn, h will have positive second derivative. Imposing the further condition 
that (1 +hn  -r dG o g be a probability, we obtain the required dense subset of 
H(Gog). This shows that, for ' smooth '  G, the sample df is asymptotically 
minimax among the collection of dfs G o g, g convex; afort iori ,  it is am among 
the dfs obtained with g assumed "starshaped." 

6e. Symmetric Density 

Let cg be the class of dfs on [-0, 1] having a symmetric density f with respect to 
lebesgue measure: f (x )=f (1-x) ,  0 < x  < 1. It turns out that the sample df is not 
asymptotically minimax here - see Sect. 7, Example 1. If f0 is the uniform 
density on [-0, 1], then every density f in ~ has a representation 

f ~ = ( 1  -[hla)~ fo  +h 

with hEH*(fo), h symmetric. The natural parameter space here is stable under 
multiplication by small positive constants. Accordingly, the argument of Pro- 
position 5.1 may be repeated (with the relevant Hilbert space being the sym- 
metric functions of H*(Fo) ) to show that the symmetrized sample dr, �89 1 
-Fn (1 -x ) ) ,  is amCg. Here the process that arises is not the Brownian bridge 
W~ but rather the process l(W~ One could use Proposition 
5.2 as well, zE here being the projection (zcx)(t)=�89 

6 f. Density Estimation 

There is a vast literature on the problem of producing good estimators fn of a 
density f. See [-23] for a partial survey. If one has a good density estimator f , ,  it 
might be tempting to use the integral o f f ,  as an estimator for the distribution 
function. Usually such 'good'  density estimators are shown to exist under 
conditions specifying several derivatives of f ,  compact support, boundedness of 
f'(x)/f~(x) and so forth. However such classes of densities are so broad that they 

t 

contain radial cluster points. Accordingly, within such a class, ~f, as a df 

estimator can be no better (in the asymptotic minimax sense) than the sample dr. 
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Therefore, whether such estimators are actually as good (even within the class in 
question) remains to be proved, and cannot be taken for granted. The same cave 
at obviously applies to df estimators constructed from estimators of failure rates. 

7. Necessary Conditions 

According to the results of Sect. 5 and the examples of Sect. 6, very little appears 
to be required of a family of dfs in order to force the sample df to be am within 
the given class: the class in question need 'only'  contain a distinguished 
distribution F o that is a radial cluster point, and very few members of the class 
are needed to force F 0 into this role. This section is devoted to an assertion to 
the effect that, on the other hand, if cg is ' too small', the sample df cannot be am 
cg; since we insist here on forcing the problem into a geometric mold, smallness 
will have something to do with dimensionality. 

Consider a class of continuous dfs g'={Fo, 0~O}; assume each F o is ab- 
solutely continuous with respect to some sigma finite measure #. Then each F o 
has a density )Co which can be expressed, for any fixed 0 o, by 

(7.1) fo1=(1-lhol2)~foo+ho, 

where ho~H*(Foo ) (defined after (4.6)). Essentially the result of this section says 
that if the closed linear span of the ho's that arise in this manner is a proper 
subspace of H~, then the sample df cannot be asymptotically minimax in cg. Of 
course, if foo were a radial cluster point for ~, then the span just mentioned 
would be all of/-/*. Replacing the exact class of ho's that arise in (7.1) by their 
span is very crude but the result nevertheless covers a number of standard 
situations - see the examples later on. 

The formulation just given is sometimes inconvenient for asymptotic pur- 
poses, and so will be replaced by an asymptotic variant. Here are the necessary 
assumptions and definitions for the rest of this section. 

(7.2a) Assume c~= {F(0; .), 0~O} is a family of distributions indexed by a cone 
O: if a > 0, then a O = O (if O does not have this property, it is often very easy to 
reparametrize or to extend the parameter set so that it does). 

(7.2b) Let F 0 be a continuous df with density fo with respect to some sigma 
finite measure /~; write F(h; dx) for the df with density fo(h; x) given by (4.3). 
Assume that for each 0~O there is an ho~H*(Fo) such that 

n~ ~(f(On ~; ), F(hon--~; ))~0. 

Here ~(P, (2) is the Hellinger distance between probabilities P, Q: 

 2(p, (2)= S ar 2. 
The vectors h arising in (b) have, under the mapping v of Sect. 3, images in a 

Banach space B of continuous functions. Let sp{ho} denote the linear span in 
H*d(Fo) of the ho, and sp{vho} the closure in B of the image of sp{ho} under r. 
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Proposition 7.1. If  sp{zho} is a complemented subspace of B, then the sample 
distribution is not asymptotically minimax in c~= {Fo, 0~0}. 

Proof. Let Ph, heH*(Fo) be the usual Gaussian shift family on B. For any df F, 
define F" by (5.1); let l be a uniformly continuous subconvex loss function. By 
arguments given in the proof of Proposition 5.1 

(7.3) lim inf sup yy ((n+(y-x)) b(x, dy) F"(dx) 
n ~ o s  b F c o n t  

-- lim inf sup ~ l(n~(y-x)) b(x, dy) F'(hn-~; dx) 
n~oo b heH~(Fo) 

= l(x) Po(dx)  

and this last number is achieved by the sample df. On the other hand, since O is 
a cone, similar considerations show 

(7.4) lim infsup~ S l(n~(y-Fo) b(x, dy)'F"(O; dx) 
n~oo b OEO 

= lim infsup ~ l(n-~(y - F(On- ~))) b (x, dy) fn(On - {; dx) 
n ~  ov b OeO 

< lim inf sup ~ l (n~(y- f (hn ~; "))) b(x, dy) F"(hn-~; dx) 
n~oo b hEsp{ho} 

=inf  sup ~ l (y-zh)  b(x, dy) b(x, dy) Ph(dx). 
b hesp{ho} 

Here condition (7.2b) forced the experiments F"(On -~) and F"(hon -~) to be 
asymptotically equivalent; the uniform continuity of l, together with (7.2b), 
permitted the replacement of F(On-~) by F(h o n-~) in the argument of I. Let n be 
a projection of B to sp{zho}. Then 

(7.5) inf sup ~ l ( y - z h ) b ( x ,  dY)Ph(dX ) 
b hesp{ho} 

= sup ~(nx-zh)Ph(dX ) 
h~sp{ho} 

= ~ l(nx) Po(dx) (see Proposition 5.2). 

Accordingly, the sample df will fail to be asymptotically minimax for any l such 
that 

(7.6) ~ l(nx) Po(dx)< ~ l(x) Po(dx ). 

However, since sp{zho} is a proper closed subspace, it has measure 0 under Po. 
This can be deduced, for example, from the fact (e.g., [13]) that the support of a 
Gaussian measure on C is the closure of its reproducing kernel Hilbert space, 
plus standard results on perpendicularity of Gaussian measures; more direct 
proofs are also possible. Strict inequality (7.6) will then hold whener l satisfies 

('7.7) l(rcx)<I(x), x~B-sp{zho}.  

Of course (7.6) is much weaker than (7.7) so other choices of 1 are possible too. 
The result extends beyond the uniformly continuous l as well. Indeed, assume 
that I is subconvex loss for which there exist uniformly continuous subconvex 
1 n > l, l n $ I o, ~ ln(x )dP o < oe and Po (x:l(nx)= 1 o(nx)) = 1. Then it is easy to see that 
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the result continues to hold for l; this permits one to bring in the usual 
discontinuous I such as l(x)=indicator  of the set of y~B such that 
HYJl>c. QED 

Abstractly, the point here is nearly the same as realizing that the minimax 
risk available in a normal experiment on R k+ 1 is strictly bigger than that on R k. 
Here are two examples of its use. 

Example 1. Symmetric densities. 
Let ~ be the distributions on [0, 11 with symmetric densities f : f (x )=f(1  

- x ) ,  0 < x  < 1. Take f0 to be the uniform density on [0, 1]. Every f in the class in 
question has a representation 

(7.8) f~=(1-phlZ)~fo+h. 

The only h which arise, however, are symmetric h on [0, 11. Proposition 7.1 then 
easily implies that the sample df is not am here. Of course this fact can also be 
proved be direct calculation: indeed, Sect. 6 showed that, for the class of 
symmetric densities, the symmetrized sample df is a.m. and it is easy to see that 
here it is better (strictly) than the sample df. 

Example 2. Families parametrized by R k. 
Let {F o, OEO} be a family of continuous distributions where O is an open 

subset of Rk; assume 0~O for convenience. Let F o have density f(O; ) with 
respect to a probability/~. Assume the quadratic mean derivative of 0-~f-~(0; x) 
exists at 0 = 0  and is given by the vector V(x)~R k. (See [201, [111 regarding 
criteria for q.m. differentiation and discussion of its statistical relevance). It is 
then clear that 

n~(f(On ~; .), g(hon-~; "))~0 

where g(hon-~; )=(1-1hof2n-1)�89 fo +hon ~ with ho=(O, V) (brackets denote 
inner product of Rk). Under further mild, well-known conditions 

logf(On ~; x~)/f(O; xi) - n  ~ ~ (0, V(xi))fo ~(xi) +�89 V) 2 ~0 .  
1 

The linear span sp{ho} is the span of the (0, V(-)), 0~O and this is evidently 
finite dimensional. Proposition 7.1 then shows that the sample df cannot 
possibly be a.m. in the class {Fo, 0~0}. The afficionado of parametric estimators 

n o  doubt can produce an alternative argument to show this; however, the point 
is that here the result follows simply, with no calculations, from the geometry of 
the parameter set. 

Example 3. Other finite dimensional problems. 
Let {F o, 0 > 0}, be the uniform distributions on [0, 01. Here the linear span of 

the ho's that arise in (7.1) is the entire Hilbert space, so Proposition 7.1 yields no 
information. Nevertheless, the sample df is still not a.m. One possible expla- 
nation runs as follows. Whenever {F o, 0~0} is a family of dfs indexed by a finite 
dimensional O, there are excellent estimators 0, of 0; in fact, 0, may be chosen 
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so that n~(F(O,,; ), F(O; )) remains bounded in probability (see [21]). The loss 
functions 1 used in this paper may be chosen to measure the Kolmogorov 
distance between two measures. Accordingly, if the Hellinger distance between 
Fo, F o is an order of magnitude greater than the Kolmogorov distance, then the 
estimate F(O,; ) ofF(0;  ) should converge to F o (Kolmogorov sense) an order of 
magnitude faster than the sample distribution. In such circumstances, the sample 
df will clearly not be a.m. This is indeed what happens in the uniform [0, 0] 
case. In the standard asymptotic normal situation (cf., Example 2) the Hellinger 
and Kolmogorov distances are comparable, so it is not quite so trivial to dismiss 
the sample df. 

8. Appendix 

This section provides proofs of Propositions 2.1 and 3.1. 
(a) Proof of Proposition 2.1. 

Let 1 be a lsc loss function, bounded from below. Let (E, D, l) be a statistical 
decision problem as in Sect. 2. Let ~ ( O )  be the collection of all probability 
measures on O supported by a finite number of points. Set 

p(~; E)=inf~p(O, b; E)#(dO), i~eJ[(O). 
b 

Then by a standard minimax theorem (the fact that the collection of generalized 
procedures is compact, convex as well as the lower semicontinuity of the 
map b--,p(O, b) is used at this point): 

(8.1) m=-inf sup p(O, b; E)= sup p(#;E). 
b 0 uedr 

If E ~ is a sequence of experiments converging weakly to E as in Sect. 2, then for 
each # ~ ( O )  

(8.2) li_~m p(#, E") >__ p(#, E). 
n ~ v o  

Assuming (8.2), Proposition 2.1 is immediate since if e>0  and if / l o e J ( O  ) 
comes within e of achieving (8.1), then 

sup p(It, E")> p(#o, E")>m-  2s 

for all sufficiently large n. 
To establish (8.2), f ix/~e~(O),  let Oo be the support of~t and let/~0 =~t{0}. If 

xeR  ~176 let x o denote the 0 th co-ordinate of x. Define measures Q=  ~ P0 and 
0 c O o  

similarly Q". The vector process {dPo/dQ, 0eOo} takes its values in the subset of 
R ~176 consisting of points x with xo>O, ~ x o = l .  Denote by Qo (resp. Q~) the 
distribution of this process on R ~176 Let q=l iminfp( /%,E");  extract a sub- 
sequence (which we continue to denote by {n}) such that p(#,E")~q. The 
hypothesis implies that dPo"/dP(~ converges weakly to dPo/dP o for each 0eOo; 
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extract a further subsequence (still to be denoted by {n}) so that the vector 
process {dPon/dPo ", 0eO0} converges in distribution. Then Q~ converges weakly 
to Qo. 

Moreover, 

(8.3) p (/~, E)= inf ~ #0 ~ l(O, y) b (x, d y) dP 
b 0 

= i n f ~  ~0 ~ l( O, y) b(x, d y) x o Qo(dx) 
b 0 

=inf  ~ ~, #0 l( O, y) x o b(x, d y) Qo(dx) 
b 0 

= ~ in f (~  #o l(O, y) Xo) Qo(dx) 
y~D 0 

and similarly for p(#, En). The functions x ~ I z  o l(O, y)x o are (for each y) linear 
0 

on R ~176 so their infimum over y is concave and continuous. If this concave 
function is denoted by h, then 

(8.4) p(#, E)=~ h(x) Qo(dx)=lim ~ h(x) Q'~(dx)---lim p(/~, E'), 

proving the result. QED 

(b) Proof of Proposition 3.1. 
Let m denote the left side of (3.6). It is clear that m<~ l(x)Po(dx), since the 

procedure b(x, dy)=unit mass at {x} produces the latter. To show equality, 
notice first that if l is subconvex on B, then there is a sequence of real functions 
I k on R k and a sequence {zi}, zi~B*, such that lk((zl, x),  ..., (Zk, X)), x~B, is 
subconvex on B and increases to l(x). This is easily proved by standard 
approximations, together with the fact that a closed convex set in B is a 
countable intersection of hyperplanes containing it. If z* is the adjoint of z, then 
the z i may be chosen, moreover, so that ei=z* z~, i > l  forms an orthonormal 
basis of H. If k is fixed, evidently 

(8.5) m>infsup  ~ lk(x-rh)  b(y, dx) Ph(dy). 
b h 

If H k is the subspace spanned by e I, . . . , e  k and if A k is the collection of 
procedures for the decision space ZHk, then by looking at (8.5) and l~, 

(8.6) m>  inf s u p ~  Ik(x-zh)  b(y, dx)Ph(dy). 
b~Ak hEHk 

k 

However, each h~H k has an expansion h = ~ a~ % (a~, ..., ak)eR k, and for such h 
1 

(8.71 d /dVo=eXp 

where the L~, described in Sect. 3, are i.i.d. N(0, 1) random variables on B. From 
this it is immediate that the experiment {Ph, h~Hk}, reparametrized in the 
obvious way_ by points of R k, is equivalent to the standard normal shift 
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experiment on R k, {pk, aeRk}. Here Pa k is the normal distribution on R k, with 
mean vector a, covariance the identity. Moreover, if beak, then such a b 
effectively chooses a point in R k. Hence the quantity on the right in (8.6) is 
exactly equal to the minimax risk of the standard normal experiment on R k, 
when the decision space is R k itself and when the loss function is the subconvex 
function Ik(al, ..., ak) on R k. But the minimax risk for the R k problem just 
mentioned is 

(8.8) S lk(x) P0 (dx); 
this can be established in the standard way by taking normal priors on R k with 
covariance nI, using Anderson's famous lemma (Proc. Amer. Math. Soc. 6, 170 
76, 1956), and letting n ~ c ~ .  However the quantity in (8.8) is equal to 

k 

and so this, of course, is equal to the quantity on the right in (8.6). Since B is 
k 

obtained via a measurable norm, if k'F 0% ~ (~:ei)(x)~x in Po probability. Using 
1 

this, the lower semi continuity of Ik, and the fact that lk((zl, x), ..., (zk, x))T l(x), 
one shows m> ~ l(x)Po(dx) by letting k--+ oo. QED 
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