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Asymptotically Minimax Tests of Composite Hypotheses 
L. WEISS "k and J. W O L F O W I T Z * *  

Summary. X1, .. . ,  2(, are independent, identically distributed random variables with common  
density function f(x[01 . . . . .  Ok, Ok+O, assumed to satisfy certain s tandard regularity conditions. The 
k +  1 parameters are unknown, and the problem is to test the hypothesis that  Ok+~ =b  against the 
alternative that 0 k +1 = b + c n -~. 01,. . . ,  Ok are nuisance parameters. For this problem, the following 
artificial problem is temporarily substituted. It is known that [01- ai[ <= n -~ M(n) for i = 1, . . . ,  k, where 
al, . . . ,  ak are known, and M(n) approaches infinity as n increases but n -~ M(n) approaches zero as n 
increases. A Bayes decision rule is constructed for this artificial problem, relative to the a priori distri- 
but ion which assigns weight A to O k + 1 : b, and weight 1 - A to O k + 1 = b + c n -  ~z, in each case the weight 
being spread uniformly over the possible values of 01, . . . ,  0~ in the artificial problem. An analysis of 
the structure of the Bayes rule shows that if estimates of 01, ...,  Ok are substituted for al, ... ,  a k respec- 
tively, the resulting rule is a solution to the original problem, and this rule has the same asymptotic 
properties as a solution to the artificial problem as the Bayes rule for the artificial problem, no matter  
what the values al, ... ,  ak are. 

1. Introduction 

In several papers ([1, 2], and the papers cited therein) we have developed a 
general theory of asymptotically efficient estimators which solves hitherto unsolved 
problems and includes the maximum likelihood theory as a special case. In the 
present paper we apply the basic method, which was so successful in the case of 
estimators, to a study of asymptotic tests of composite hypotheses. Of course, 
objections made to the theory of testing hypotheses on practical grounds (e. g., [4]) 
are as valid in the asymptotic case as in the finite sample case. However, the 
present application can once again serve as an illustration of the power and sim- 
plicity of our method. It may also suggest other applications to the reader. This 
paper is self-contained and no prior familiarity with [1] or [2] is required for 
its comprehension. 

2. A Preliminary Artificial Problem 

Let X 1 . . . .  , X n be independent, identically distributed chance variables, with 
the common density function f ( .  10~ For  simplicity we assume that Xi is one- 
dimensional, since the extension of our results to the case where Xi is of any finite 

o o dimension is immediate. The parameter 0~176 Ok+l), where 0,  is the k-vector 
(0 ~ . . . .  ,0 ~ and k>  1. Let a=(a l  . . . . .  ak) be a given k-vector, b a given constant, 
and c a given positive constant. We shall first consider the following artificial 
problem: Let H o be the (null) hypothesis that 0~ and H I the (alternative) 
hypothesis that 0~ b + c n --~. The statistician does not know 0~ but does know 
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that 

(2 .1 )  [O~ i=1, k, and 0 ~ - b  or b+cn  -~, �9 " ,  k + l - -  

and wishes to test H o against H a. Here M(n) is a positive function of n such that 
M(n) ~oo, n-~M(n)-~ O. Of course, the relation (2.1) implies that 0 ~ may depend 
upon n. We do not exhibit this now explicitly in our notation because it would 
simply complicate things unnecessarily. 

What makes this problem more artificial than the usual problem of testing 
hypotheses is that it is being assumed that the statistician knows a. This assumption 
will be removed in Section 4. 

We make the following "regular" assumptions, the last two of which are 
themselves the consequences of assumptions standard in the literature for the 
so-called "regular" case: 

(2.2) The second derivatives 

82 logf(x[O) 
i , j=l  .. . .  , ( k+ l )  

~0i 00j 

exist and are uniformly continuous in 0 for all real x and all 0 in some neighborhood 
of 0 = (a, b). 

(2.3) The expressions 

J(i, j l0 ~ ) = - E  ~72 logc0if(Xas0j 10~ } 

exist and are continuous in 0 ~ in a neighborhood of 0, for i,j= 1, ..., (k+ 1). Write 
J(i,j) =J(i,j[ 0). The (k x k) matrix 

J={J(i,j)} i , j=l,  . . . ,k  

and the ((k + 1) x (k + 1)) matrix 

J*={J(i,j)} i , j=l,  ..., (k+l)  

are non-singular. 

(2.4) The joint distribution of the chance variables 

n - ~  81~176 i=1, ..., (k+l )  
l=1 ~Oi ' 

approaches the normal distribution, with means zero and covariance matrix J*, 
uniformly for 0 ~ which satisfy (2.1) (i. e., uniformly for any sequence 0 ~ (n), n = 1, 2 . . . . .  
such that, for each n, O~ satisfies (2.1)). 

(2.5) The chance variables 

i~ 2 log f(X110 o) 
--n -1 i , j=l  . . . . .  (k+l) ,  

t=i 00i00~ ' 

converge stochastically to J(i,j), uniformly for 0 ~ which satisfy (2.1). 
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We shall employ the well-known notation Op, O v. For example, op(t i tj) means 
the following: Let 0 <  ~ < 1 and 3 > 0 be arbitrary. Then, for n sufficiently large, 

n (l(ti t~)-: op(ti tj)l <~}  > l - e .  

The symbols 0p and 0p will mean that the relationship in question holds uniformly 
for 0 ~ which satisfy (2.1). An accent over a vector or a matrix will denote its trans- 
pose. 

Write t i=lfn(O~ i=1 . . . .  , k, and let t be the (row) vector (t: . . . .  , tk). Let A 
be the vector whose i th element (i = 1 . . . . .  k) is the chance variable 

(2.6) A(i) = n -~ ~, (3 log f(X, [ 0) 
l=: ~Oi 

For n sufficiently large we have, when (2.1) holds, 
n 

logf(Xi[O ~ b+c n-~) 
1 

log f(Xi[ O)+ t A ' - ~ t  J t' + ~ Ov(ti tj) 
(2.7) : i,j c 2 

+ c A ( k + l ) - ~ - J ( k + l ,  k + l ) - c  ~ t~J(i, k+l ) .  

We note that (2.7) also holds if one sets c = 0 in both members. 

Suppose temporarily that the ti (i= 1 . . . .  , k) are independent chance variables 
with the uniform distribution over the interval [-M(n) ,M(n)] ,  and that 
P {Ho} = c(, P {HI } = 1 -  ~. When this is so the solution of this Bayes problem is as 
follows: Let S = S1/$2 be the statistic defined by 

n 

(2.8) S~ = ~ I~ f (X~ l Yl . . . . .  Yk, b + c n- ~) dy: ... dyk, 
1 

n 

(2.9) $2 = f [ I  f (Xi [ Y, . . . . .  Yk, b) dy, ... dyk, 
a 

the limits of integration in both cases being from a i -n -~M(n)  to a~+n-~M(n) 

for all variables. W h e n S > q _  ~ the statistician accepts H:, w h e n S < - ] ~  he 

(% 
accepts Ho, and when S=~_c~  he takes either action at pleasure. 

In (2.8) and (2.9) we perform the transformation z~=l~(yl -ai ) .  Let z =  
(z 1 . . . . .  Zk). Making use of (2.7), we cancel all factors which do not involve the zi; 
they will not appear in S because they are the same in S~ and S z . Calling the result- 
ing expressions S~ and S~, we have that 

(2.10) S*=~ exp { z A ' - I z J z ' + ~  ~p(Z~ z~)} dZl.., dZk, 
i , j  

S~ = ~ exp {z A ' - l  :J  z' q-i2,j Op(zi zj) 

} + c A ( k + l ) - 2 - - J ( k + l , k + l ) - c z J ' ( k + l )  dz~.. .dzk, 
(2.11) 
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where J(k + 1) is the k-vector with ith element J(i, k + 1), and all the limits of inte- 
gration are from - M ( n )  to M(n). Completing the square we have that 

(2.12) 

S* =exp  _{ AJ-1A'2 -} 

�9 S exp { - � 8 9  -1) J ( z ' -J -JA ' )+ Z ~ zj)} dzl.. ,  dz k, 

(2.13) 

C2 
S*=exp  c A ( k + l ) - ~ - J ( k + l ,  k + l )  

+ I [ A  - cJ(k + 1)] J-~ [A ' -  cJ'(k + 1)] t 
./ 

" S exp{--�89 [ z - ( A - c J ( k + l ) ) J  -1] J [ z - ( A - c J ( k + l ) ) j - 1 ]  ' 

+Z  p(zi . . .  a z k  

with the same limits of integration. Since M(n)--* oo we would like to conclude 
that the integrals in (2.12) and (2.13) approach the same limit, (2re) k/2 [J[-5, whether 
H o or H~ holds. Then the limiting distribution of the statistic log S would be the 
same as that of 

(2.14) 

C 2 
S*= 2-  [J(k+l) J -aJ ' ( k+l ) -J (k+l ,  k+l ) ]  

+ c [A(k + 1 ) - J ( k  + 1)J- aA']. 

The first of these terms is, incidentally, a constant, say - -  
- c 2 K  

3. Asymptotic Distribution of S* 

The integrals in (2.12) and (2.13) are functions of A and hence chance variables. 
We will prove that, for sufficiently large n, with any probability less than one, 
each of the integrals is within an arbitrary positive e of their common limit 
(2 n) k/2 [J[ -*~, provided that, for 1-< i-< k, 

(3.1) IO~ < = n--L(n), 

where 0 <  L(n)<M(n) will be defined suitably below, and will also satisfy 

(3.2) L(n) ~ 1. 
M(n) 

We leave it to the reader to confirm the easily verifiable fact that the 8p(Z~ z j) 
terms will not change the limit, and delete them henceforth. Our result will follow 
if we prove that, with probability approaching one, 

(3.3) m(n) -  max li th component of A J -  11 --* oo 
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when (3.1) holds. We have, for l < i < k + l ,  

n 
A(i) = n -~ Z 0 logf(Xj]  0 ~ b + c n -~) 

j=~ ~0~ 
(3.4) k 

- ~ h(l+Sp(1))J(i, I)+cJ(i, k+l ) ,  
/=1 

when H 1 holds. Call the first term of the right member C(i). By (2.4) the C(i)'s 
are @(1). The contribution to A J -1  of the third term of (3.4) for 1_< i_< k is O(1), 
and of the second term is at most 

(3.5) lfn (1 + 0p (1)) max l a~ - 0~ < (1 + ~p (1)) L(n) 

since (3.1) holds. Let em ~ 0 as m ~ oo and 7 (m, n') be an upper bound on the largest 
of the k quantities 0p(1) for sample size > n' and probability 1 -  s,,, so that, for 
fixed m, y (m, n')--* 0 as n ' ~  ~ ;  its existence is the meaning of 0p(1). We now define 
s(n) as follows: s(n)=y(1, 1) for n > l  until n=n'~, where n] is the first integer such 
that y(2, hi)<�89 t). Thereafter s(n)=y(2, n[) until the first integer n~ such that 
y(3, n2) t , ' <z7(2,  n0, etc. We now choose L(n) such that (3.2) holds and so that 

(3.6) M (n)-(1 + s(n)) L(n) ~ oo . 

This is surely possible (eg., L ( n ) = ( l + e ( n ) ) - l [ M ( n ) - M l ~ ) ] ) .  From (3.6) and 
(3.5) we obtain (3.3), thus proving the desired result when/ /1  holds. The proof 
when H o holds is essentially the same; one sets c--0. The relation (3.2) was not 
used and will only be used after Theorem 1 is proved. 

An examination of the preceding proof shows easily the following fact of 
importance later: The approach of log S to S* is uniform in the probability sense 
for all 0 ~ which satisfy (3.1). 

We now consider the asymptotic distribution of 

(3.7) A (k + 1) - J(k + 1)J-  aA' 

when H I holds. Let C be the vector C(1) . . . . .  C(k). From (3.4) we obtain that the 
expression in (3.7) has (uniformly) the same asymptotic distribution as the expres- 
sion 

C(k + l ) - t J ' ( k  + l )+cJ (k  + l, k + l )  

- J(k + 1) J - ~ ( C -  t J +  cJ(k + 1))' 

(3.8) = C ( k + l ) - t J ' ( k + l ) + c J ( k + l ,  k + l )  

- J (k+ 1)J-~ C' + J ( k +  1) t ' - c J ( k +  1)J -~ J '(k+ 1) 

= C(k + 1) -  C J - ~ J ' ( k + l ) - c [ J ( k + l ) J - i j ' ( k + l ) - J ( k + l ,  k +  1)]. 

Now the asymptotic distribution of C(1), ..., C(k + 1) is given in (2.4). Hence we 
have proved part of the following theorem: 

Theorem 1. The asymptotic distribution of  S* is normal with the same variance 
c2 K, where 

K = J ( k  + l , k  + l ) - J ( k  + l )J -a  J'(k + l), 
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when either H o or H 1 holds. The mean of the asymptotic distribution is - ( c2 /2 )K  
when H o holds and (c2/2)K when H 1 holds. When (3.1) also holds the distribution 
of S* approaches, uniformly in 0 ~ the same limit as that approached, also uniformly 
in 0 ~ by the distribution of the test statistic log S. 

It remains to prove the statements in Theorem 1 which apply when Ho holds. 
Then we have, for 1< i-< k + 1, 

n 
A (i) = n-  ~ ~ ~ log f (Xj l  0 ~ b) 

j = l  ~Oi 
(3.9) k 

- ~ h(l+Sp(1))d(i, l). 
/=1 

Write D(i) for the first term of the right member of (3.9) and D for the vector 
(D(1) . . . .  D(k)). Then the expression (3.7) has the same limit distribution, when H 0 
holds, as 

D(k + l ) - t J ' ( k  + l ) - J ( k  + l ) j - l ( D - t J )  ' 
(3.1o) 

= D ( k +  1 ) ' D J - ~ J ' ( k +  1). 

The proof of Theorem 1 is easily completed by using (2.4). 
The asymptotic test would break down if K = 0. This cannot happen since J* 

is non-singular. 
For the sake of clarity we now write the sequence {0~ n = l ,  2 . . . .  } such 

that O~ satisfies (3.1), and either H o or H~ always holds. Let Z o and Z1 be, 
respectively, the totalities of these two kinds of sequences. By proper choice of 
we can achieve that, for any sequence in Z0 we have 

(3.11) lira P{H o is rejected by the S test} =fl, say, 

uniformly in Zo, where/3 is any given number such that 0 < fl < 1. Let 7 then be 
the limit, uniformly in Z1, of 

(3.12) P{H1 is rejected by the S test}. 

Since the test based on S is the particular Bayes test that it is, we have proved 

Theorem 2. Let T(1), T(2), ... be any sequence of tests for which 

(3.13) lim P{ H i is rejected by T(n)} = (pi({0~ 
n~oo 

where the limits, which are functions of the sequence {0~ are approached uni- 
formly in Zi, i = O, 1. Then 

(3.14) 

implies 

(3.15) 

max q~o </~ 
Zo 

max qh > 7. 
Zt 

In a different context, that of estimators, one of us ([3]) has argued that the 
approach, to its limit, of the distribution of an estimator in its asymptotic appli- 
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cation, should be uniform. The same arguments apply here. Hence, in a very 
reasonable sense, the test based on S* is asymptotically minimax for all 0 ~ which 
satisfy (3.1). 

4. Removal of the Artificial Assumption. Various Remarks 

The artificial assumption we made was that the statistician knew a and hence J*. 
Suppose that the statistician can estimate J* and the components  of a to within 
O,(n-~), when either Ho or H 1 holds. This will surely be so in the so-called "regular" 
case (the one usually treated in the literature), when these quantities can be 
estimated by maximum likelihood estimators. Instead of the statistic S* we employ 
the statistic S**, obtained from S* by replacing J* and a by their estimators. 
Since (3.8) and (3.10) are independent of t, the asymptotic distribution of S** 
is the same as that of S*, and is approached uniformly for 0 ~ which satisfy (2.1) 
when either H o or H 1 holds. 

The statistic S* was obtained by Neyman [-5] by a very ingenious and com- 
pletely different argument. The latter limits himself to statistics of the special form 

(4.1) g ( X , ,  ... , x , ) -  VA',  

where A is as above, V i s a  k-vector and g a function of the arguments exhibited, 
and g and Vare to satisfy certain conditions which are essentially such that, when 
the unknown parameters  are replaced by estimators to within @(n-~),  the asymp- 
totic distribution of (4.1) will be unchanged. He then concludes that an optimal 
choice among g and Vwhich satisfy these conditions is g = A (k + 1), V= J(k  + 1) J - 1. 
(We note that J ( k + l ) J - 1 A  ' is the regression of A(k+ l )  on A.) Thus Neyman 
was interested in a special class of asymptotically similar tests, and Le Cam ([6]) 
proved that, under certain conditions, the test based on S** is optimal in a larger 
class of asymptotically similar tests. 

Our own approach is completely different. We do not restrict ourselves to 
a special class of tests, but proceed at once to the Bayes problem. The argument 
in Section 3 proves that the asymptotic distribution of the test criterion (under 
(3.1)) does not depend on 0 ~ The same argument proves that S** has the same 
distribution as S*. Since size and power are asymptotically constant the fact 
that the statistic S* was obtained as the solution of a Bayesian problem implies 
that the test is asymptotically minimax. 

Bartoo and Puff ([7]) extended Neyman's  results to nonidentically distributed 
X's, and Buhler and Puri [8] to the case where 0k+l is multidimensional. Our 
method applies to these cases, as well as to some cases where the X's  are not 
independent. 
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