The Variation of a Stable Path is Stable

PRISCILLA E. GREENWOOD

Summary. Let X(t) be a separable symmetric stable process of index α . Let P be a finite partition of [0, 1], and \mathscr{P} a collection of partitions. The variation of a path X(t) is defined in three ways in terms of the sum $\sum_{t_i \in P} |X(t_i) - X(t_{i-1})|^\beta$ and the collection \mathscr{P} . Under certain conditions on \mathscr{P} and on the parameters α and β , the distribution of the variation is shown to be a stable law. Under other conditions the distribution of the variational sum converges to a stable distribution.

1. Introduction

Let X(t) be a separable symmetric stable process on R^1 of index α , $0 < \alpha \leq 2$. X(t) has characteristic function $e^{-t|\lambda|^{\alpha}}$. Let P be a finite partition, $\{t_1 < \cdots < t_k\}$ of [0, 1], and \mathscr{P} a collection of such partitions. Let $V(P, \beta)$ denote the variational sum $\sum_{t_i \in P} |X(t_i) - X(t_{i-1})|^{\beta}$, where $\beta > 0$. The variation of the stable path X(t) can be

calculated in at least three ways: as the supremum over \mathscr{P} of $V(P,\beta)$; as the limit as $n \to \infty$ of the supremum over \mathscr{P}_n of $V(P,\beta)$ where $\mathscr{P}_n = \{P \in \mathscr{P} : \text{mesh of } P \leq 1/n\}$; if \mathscr{P} is a sequence $\{P_n\}$, as the lim sup as $n \to \infty$ of $V(P,\beta)$. We give sufficient conditions on \mathscr{P} that the variation, calculated in each of these ways, be a stable random variable of index α/β if $\beta \leq 1$. The case $\beta > 1$ presents special problems, some of which are resolved in Section 5. We use and refine results of Blumenthal and Getoor, and of Bochner [1, 2, 3].

2. Definitions

We impose closure conditions on \mathcal{P} which are satisfied, for example, by the collection of all finite partitions and by the collection of all finite rational partitions.

If $P = \{t_1, \ldots, t_k\} \subset [0, 1]$, let r P + s denote the partition

$$\{r t_1 + s, \ldots, r t_k + s\} \cap [0, 1].$$

We say that \mathscr{P} is closed under translation and multiplication by $r = \frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ if for each $P \in \mathscr{P}$ some refinement of each of rP, (1/r)P, P+r, P-r is $\in \mathscr{P}$.

We define \mathscr{P} to be closed under piecing at $r = \frac{1}{2}, \frac{1}{3}$ if whenever P_1 and P_2 are in \mathscr{P} , some refinement of the partition $(P_1 \cap [0, r]) \cup (P_2 \cap [r, 1]) \cup r$ is also in \mathscr{P} .

When we use these conditions with $\beta > 1$, we intend that the words "some refinement of" should be omitted.

If \mathscr{P} is a sequence of partitions we require that the closure conditions hold in the forward direction of the sequence, and define \mathscr{P} to be closed with respect to translation, multiplication, and piecing for $r = \frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ if whenever P_n and P_m are in \mathscr{P} there is a refinement further along in the sequence for each of rP_n , $1/rP_n$, P_n+r , P_n-r , and $(P_n \cap [0, r]) \cup (P_m \cap [r, 1]) \cup r$. An example of such a sequence is $P_n = \{i/n, i=0, ..., n\}$. Let $X \stackrel{d}{=} Y$ mean that the random variables X and Y have the same distribution. It follows from the form of the characteristic function that for a > 0, $X(t) \stackrel{d}{=} a^{1/\alpha} X(t/a)$.

The mesh μ of a partition P will be the maximum length of the interval between successive points of P.

Finally, we introduce distinguishing notation for the three types of variation which we consider. The supremum over P in \mathscr{P} of the variational sum $V(P, \beta) = \sum_{t_i \in P} |X(t_i) - X(t_{i-1})|^{\beta}$ is denoted by β -var X.

The limit as $n \to \infty$ of the supremum over \mathscr{P}_n of $V(P, \beta)$ where $\mathscr{P}_n = \{P \in \mathscr{P} : m \text{ esh of } P \leq 1/n\}$ is denoted by $\lim \beta \text{-var } X(\mathscr{P}_n)$.

In case \mathscr{P} is a sequence of partitions P_n , the lim sup as $n \to \infty$ of $V(P_n, \beta)$ is denoted by lim sup β -var $X(P_n)$.

 β -var X[a, b] denotes the supremum over P in \mathscr{P} of $V(P \cap [a, b], \beta)$.

3. A Method Using the Definition of Stable Random Variable

Theorem 1. Let X(t) be the symmetric stable process on \mathbb{R}^1 of index α , $0 < \alpha \leq 2$, let $0 < \beta \leq 1$, and let \mathscr{P} be a collection of finite partitions of [0, 1], closed under translation and multiplication by $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ and under piecing at $\frac{1}{3}, \frac{1}{2}$. Then the distribution of β -var X is a stable law of index α/β and

i) if $0 < \alpha/\beta < 1$ then the distribution is a proper stable law on $[0, \infty)$;

ii) if $\alpha/\beta = 1$ then β -var X is either a constant with probability one, or is ∞ with probability one;

iii) if $\alpha/\beta > 1$, $P\{\beta$ -var $X = \infty\} = 1$.

Proof. That β -var X is a random variable is established by Blumenthal and Getoor [1]. We will show that $Y = \beta$ -var X satisfies the defining relation for a stable random variable,

$$S_n \stackrel{d}{=} c_n Y$$
, where $S_n = \sum_{i=1}^n Y_i$,

the Y_i are independent and distributed like Y, and $c_n = n^{\beta/\alpha}$. It suffices that the relation hold for n = 2, 3 [4, p. 215]. An equivalent relation is $r^{\beta/\alpha} Y_1 + (1-r)^{\beta/\alpha} Y_2 \stackrel{d}{=} Y$, for $r = \frac{1}{2}, \frac{1}{3}$, where $Y_1 \stackrel{d}{=} Y_2 \stackrel{d}{=} Y$ and Y_1, Y_2 are independent. The proof of this relation is given in three parts: For $r = \frac{1}{2}, \frac{1}{3}$,

$$\beta \operatorname{-var} X = \beta \operatorname{var} X[0, r] + \beta \operatorname{-var} X[r, 1], \tag{1}$$

where the summands are independent;

$$\beta \operatorname{-var}[r, 1] \stackrel{d}{=} \beta \operatorname{-var}[0, 1-r]; \tag{2}$$

$$\beta \operatorname{-var}\left[0,r\right] \stackrel{a}{=} r^{\beta/\alpha} \beta \operatorname{-var}\left[0,1\right],\tag{3}$$

for $r = \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$.

For fixed P and X, since $\beta \leq 1$, the variational sum is only increased if P is replaced by a refinement of $P \cup \{\frac{1}{3}, \frac{1}{2}\}$. Therefore we assume $r \in P$ and write

$$V(P,\beta) = V(P \cap [0,r],\beta) + V(P \cap [r,1],\beta).$$

P.E. Greenwood:

The condition that \mathscr{P} is closed under piecing at $r=\frac{1}{3}, \frac{1}{2}$ enables us to calculate β -var X, for fixed X, by taking the supremum of these two terms separately. Since the random variables β -var X[0, r] and β -var X[r, 1] depend on values of X(t) in non-overlapping time intervals, they are independent, and (1) is proved.

Because the process is stationary,

$$V(P \cap [r, 1], \beta) \stackrel{d}{=} \sum_{t_{i-1}, t_i \in P \cap [r, 1]} |X(t_i - r) - X(t_{i-1} - r)|^{\beta}$$

For each path the supremum over $P \in \mathscr{P}$ of the right side is the same as β -var X[0, 1-r], since \mathscr{P} is closed under translation by r. The supremum of the left side is β -var X[r, 1], so we have (2).

For fixed P, $V(P \cap [0, r], \beta) \stackrel{d}{=}$

$$r^{\beta/\alpha} \sum_{t_{i-1}, t_i \in P \cap [0, r]} |X(t_i/r) - X(t_{i-1}/r)|^{\beta}.$$
 (4)

The closure of \mathscr{P} under multiplication by r enables us to calculate the supremum of (4) over $P \in \mathscr{P}$ for fixed X by taking the supremum of $r^{\beta/\alpha} V(P, \beta)$. Statement (3) follows.

Now combining (1) and (2) and applying (3) to each term we have

$$\beta \operatorname{-var} X \stackrel{d}{=} \beta \operatorname{-var} X[0, r] + \beta \operatorname{-var} X[0, 1-r]$$
$$\stackrel{d}{=} r^{\beta/\alpha} \beta \operatorname{-var} X + (1-r)^{\beta/\alpha} \beta \operatorname{-var} X,$$

where the terms on the right are independent random variables. This is the relation we wished to prove. Note that only the proof of (1) requires that $\beta \leq 1$.

Let F be the distribution of $Y=\beta$ -var X. Since Y is nonnegative, either F is concentrated at a single point, possibly ∞ , or the Laplace transform of F is $e^{-c\lambda^{\gamma}}$ where $0 < \gamma < 1$, [cf. 4, p. 424]. In the latter case $\gamma = \alpha/\beta$.

Suppose F is concentrated at a. The supremum is 0 only with probability 0, so a>0, and F*F is concentrated at 2a. But $Y_1 + Y_2 \stackrel{d}{=} 2^{\beta/\alpha} Y$, so a is ∞ except possibly when $\beta/\alpha = 1$. We conclude that when $\beta/\alpha < 1$, F is concentrated at ∞ , whereas if $\beta/\alpha = 1$, F may be concentrated at any point of $[0, \infty]$. This concludes the proof of (ii) and (iii).

In case $0 < \alpha/\beta < 1$ the above argument does not tell us whether F is the proper stable law of index α/β on $[0, \infty)$ or whether F is concentrated at ∞ . The following theorem of Blumenthal and Getoor [1] gives the answer.

Theorem A. Let X(t) be the symmetric stable process in \mathbb{R}^n of index α , $0 < \alpha \leq 2$, and let $\mathscr{P}' = \{$ all finite partitions of $[0,1] \}$. Then $P \{\beta$ -var $X = \infty \} = 1$ or 0 according as $\beta \leq \alpha$ or $\beta > \alpha$.

We use only the second half of this theorem. (The above includes an independent proof of the result for $\beta < \alpha$.) If $\mathscr{P} \subset \mathscr{P}'$ then β -var X over $\mathscr{P} \leq \beta$ -var X over \mathscr{P}' . Therefore if $\beta > \alpha$, $P\{\beta$ -var $X = \infty\} = 0$ for any collection of finite partitions and F is not concentrated at ∞ . We conclude that F is the proper stable law on $[0, \infty)$.

If \mathscr{P} is a sequence of partitions, closed under translation and multiplication by $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$, and piecing at $\frac{1}{3}, \frac{1}{2}$, which proceeds by refinements, and $\beta \leq 1$, then lim sup

142

 β -var $X(P_n) = \liminf \beta$ -var $X = \beta$ -var X, the supremum over the sequence \mathscr{P} regarded as a set, so that Theorem 1 applies. If \mathscr{P} does not proceed by refinements, the identity $\limsup \beta$ -var $X(P_n) \stackrel{d}{=} \beta$ -var X, for $\beta \leq 1$, $\beta \neq \alpha$ follows from Theorem 2, which can also be proved as an easy corollary to Theorem 1.

Theorem 2. Let \mathscr{P} be a sequence of finite partitions of [0, 1], closed with respect to translation and multiplication by $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ and piecing at $\frac{1}{3}, \frac{1}{2}$. Let $\beta \leq 1$. Then Theorem 1 holds with β -var X replaced by $\lim \sup \beta$ -var $X(P_n)$.

Proof. The proof parallels the proof of Theorem 1 with the obvious modifications. In place of Theorem A we need to know that $P\{\limsup \beta \text{-var } X = \infty\} = 0$ if $\beta > \alpha$. This follows easily from Theorem A. As a set, $\mathcal{P} \subset \mathcal{P}'$ so that

 $\limsup \beta \operatorname{-var} X(P_n) \leq \beta \operatorname{-var} X \text{ over } \mathscr{P} \leq \beta \operatorname{-var} X \text{ over } \mathscr{P}'.$

4. A Method Using Laplace Transforms

When \mathscr{P} is a sequence we expect that the distribution of the variation can sometimes be established by showing that the distributions of $Y_n = \sum_{t_i \in P_n} |X(t_i) - X(t_{i-1})|^{\beta}$

converge to a stable law, while the random variables Y_n converge almost surely. An example is given by Theorem 3, which differs from Theorem 2 in allowing $\beta > 1$ and in restricting the mesh of the partitions. We require the following lemma:

Lemma. Let X_n be a sequence of random variables and let $\limsup_{n \to \infty} X_n = X$. Let F_n be the distribution of X_n , and suppose the F_n converge to a limit distribution F. Let G be the distribution of X. Then $G(y) \leq F(y)$ for every y. If X_n converges to X almost surely, then G = F.

Theorem 3. Let X(t) be a symmetric stable process on \mathbb{R}^1 with index α , $0 < \alpha < 2$. Let \mathscr{P} be a sequence of partitions P_n such that P_n contains n points and the mesh μ_n of P_n goes to 0 as n goes to ∞ . Let $Y_n = \sum_{t_i \in P_n} |X(t_i) - X(t_{i-1})|^{\beta}$. Then

i) if $\beta > \alpha$, the distribution of Y_n converges to the one-sided stable law of index α/β . If in addition $\beta \leq 1$ and P_n proceeds by refinements then $Y_n \rightarrow Y$ almost surely, where Y is distributed by the limiting distribution;

ii) if $\alpha/2 < \beta < \alpha$, the distribution of Y_n converges to 0 on $[0, \infty)$ and

$$P\{\limsup_{n\to\infty} Y_n = \infty\} = 1;$$

iii) if $\alpha = \beta$ then (ii) holds.

Proof. Let *H* be the distribution of *X*(1). That $x^{\alpha}(1 - H(x)) \rightarrow b$, a constant >0 as $x \rightarrow \infty$ is a well-known property of stable laws [c. f. 4, p. 547]. Since *H* is symmetric, the distribution of $|X(1)|^{\beta}$ is $G(x) = 2H(x^{1/\beta}) - 1$ on $[0, \infty)$, and

$$x^{\alpha/\beta}(1-G(x)) \to 2b$$
 as $x \to \infty$. (5)

The distribution of $|X(t_i) - X(t_{i-1})|^{\beta}$ is the same as that of $|X(1)|^{\beta}(t_i - t_{i-1})^{\beta/\alpha}$ and the terms of the sum Y_n are independent. Denoting $(t_i - t_{i-1})$ by Δt_i , the distribution of Y_n is

$$G(\Delta t_1^{-\beta/\alpha} x) * G(\Delta t_2^{-\beta/\alpha} x) * \cdots * G(\Delta t_n^{-\beta/\alpha} x).$$

P.E. Greenwood:

Let $\varphi = \mathfrak{L}G$. Then the Laplace transform of the convolution is $\prod_{i=1}^{n} \varphi(\lambda \Delta t_i^{\beta/\alpha})$, and that of the distribution with density 1 - G is $(1 - \varphi(\lambda))/\lambda$. Therefore (5) implies

$$(1 - \varphi(\lambda))/\lambda \sim c \lambda^{\alpha/\beta - 1}$$
 as $\lambda \to 0$ [4, p. 424]. (6)

For fixed λ consider

$$-\log\prod_{i=1}^{n}\varphi(\lambda \Delta t_{i}^{\beta/\alpha}) = -\sum_{i=1}^{n}\log[\varphi(\lambda \Delta t_{i}^{\beta/\alpha}) - 1 + 1].$$
(7)

We use the inequality $|\log(1+x)-x| \leq \frac{1}{2}x^2$, for small |x|, with $x = \varphi - 1$. Given $\varepsilon > 0$, let *n* be large enough so that $1 - \varphi(\lambda \Delta t_i^{\beta/\alpha}) \leq (c+\varepsilon)(\lambda \Delta t_i^{\beta/\alpha})^{\alpha/\beta}$ for i = 1, ..., n. Then

$$\sum_{i=1}^{n} \left| \log \left(\varphi \left(\lambda \, \Delta t_i^{\beta/\alpha} \right) - 1 + 1 \right) - \left(\varphi \left(\lambda \, \Delta t_i^{\beta/\alpha} \right) - 1 \right) \right| \\ \leq \frac{1}{2} \sum_{i=1}^{n} \left| 1 - \varphi \left(\lambda \, \Delta t_i^{\beta/\alpha} \right) \right|^2 \leq \frac{1}{2} n \, \lambda^{2 \, \alpha/\beta} \sum \Delta t_i^2 \, (c' + \varepsilon)^2 \\ \rightarrow 0 \quad \text{as} \quad n \to 0 \quad \text{since} \quad \max_{i=1, \dots, n} \Delta t_i \to 0.$$

It follows that

$$-\sum_{i=1}^{n} \log \varphi(\lambda \, \Delta t_i^{\beta/\alpha}) \sim \sum_{i=1}^{n} 1 - \varphi(\lambda \, \Delta t_i^{\beta/\alpha}).$$

Now choose *n* so large that

$$(c-\varepsilon)\,\lambda^{\alpha/\beta}\,\Delta t_i \leq 1-\varphi\,(\lambda\,\Delta t_i^{\beta/\alpha}) \leq (c+\varepsilon)\,\lambda^{\alpha/\beta}\,\Delta t_i, \qquad i=1,\ldots,n.$$

Summation over *i* yields

$$(c-\varepsilon) \lambda^{\alpha/\beta} \leq \sum_{i=1}^{n} 1 - \varphi(\lambda \Delta t_i^{\beta/\alpha}) \leq (c+\varepsilon) \lambda^{\alpha/\beta},$$

i.e.

$$\sum_{i=1}^{n} 1 - \varphi \left(\lambda \, \varDelta t_i^{\beta/\alpha} \right) \to c \, \lambda^{\alpha/\beta} \quad \text{as} \quad n \to \infty \, .$$

Combining this with (7) we have

$$-\log\prod_{i=1}^{n}\varphi(\lambda\,\Delta t_{i}^{\beta/\alpha})\to c\,\lambda^{\alpha/\beta},$$

or

$$\prod_{i=1}^{n} \varphi(\lambda \, \varDelta t_{i}^{\beta/\alpha}) \to \exp(-c \, \lambda^{\alpha/\beta}).$$

It follows from the continuity theorem for Laplace transforms that the distribution of Y_n converges to F where $\mathfrak{L}F = \exp(-c \lambda^{\alpha/\beta})$.

If $\beta \leq 1$ and \mathscr{P} proceeds by refinements then for each sample path the sequence Y_n is nondecreasing and therefore converges. The last statement of (i) now follows from the Lemma.

144

If $\beta < \alpha$ we use a similar argument. Since $1 - G(x) \sim 2b x^{-\alpha/\beta}$ and $\alpha/\beta > 1$, $F(x) = \int_{0}^{x} 1 - G(y) \, dy \to c$ as $x \to \infty$, where $0 < c < \infty$. It follows that $\mathfrak{Q}F(\lambda) = [1 - \varphi(\lambda)]/\lambda \to c$ as $\lambda \to 0$, i.e. $1 - \varphi(\lambda) \sim c \lambda$.

Proceeding as in case (i), given $\varepsilon > 0$ we have as $n \to \infty$,

$$\sum_{i=1}^{n} |1 - \varphi(\lambda \, \varDelta t_i^{\beta/\alpha})|^2 \leq (c+\varepsilon)^2 \, \lambda^2 \sum \varDelta t_i^{2\beta/\alpha} \to 0$$

if $2\beta/\alpha > 1$, so that again

$$-\sum_{i=1}^{n}\log\varphi(\lambda\,\varDelta t_{i}^{\beta/\alpha})\sim\sum_{i=1}^{n}1-\varphi(\lambda\,\varDelta t_{i}^{\beta/\alpha}).$$

For large enough n,

$$(c-\varepsilon)\,\lambda\sum_{i=1}^{n}\Delta t_{i}^{\beta/\alpha} \leq \sum_{i=1}^{n}1-\varphi\,(\lambda\,\Delta t_{i}^{\beta/\alpha}).$$

Since $\beta/\alpha < 1$ and $\max_{i=1,...,n} \Delta t_i \to 0$ the left side $\to \infty$, and so does $-\log \prod_{i=1}^n \varphi(\lambda \Delta t_i^{\beta/\alpha})$. Therefore $\prod_{i=1}^n \varphi(\lambda \Delta t_i^{\beta/\alpha}) \to 0$ as $n \to \infty$ for each λ , and the continuity theorem implies that the distribution of Y_n converges to 0 for each x in $[0, \infty)$. It follows from the Lemma that $P\{\limsup_{n\to\infty} Y_n = \infty\} = 1$.

If $\beta = \alpha$, then $y(1 - G(y)) \rightarrow b$ as $y \rightarrow \infty$, and $F(x) = \int_{0}^{x} 1 - G(y) \, dy \sim b \log x$. A Tauberian theorem [4, p. 421] implies that $[1 - \varphi(\lambda)]/\lambda \sim c \log(1/\lambda)$ as $\lambda \rightarrow 0$.

Again proceeding as in case (i), given $\varepsilon > 0$, as $n \to \infty$,

$$\sum_{i=1}^{n} |1 - \varphi(\lambda \, \Delta t_i)|^2 \leq (c + \varepsilon)^2 \, \lambda^2 \sum_{i=1}^{n} \left(\Delta t_i \log \frac{1}{\lambda \, \Delta t_i} \right)^2$$
$$\leq \sum_{i=1}^{n} \Delta t_i^2 \, (\lambda \, \Delta t_i)^{-2\varepsilon} \to 0.$$

For large enough n,

$$(c-\varepsilon) \lambda \log\left(\frac{1}{\lambda \max_{i=1,\dots,n} \Delta t_i}\right) \sum \Delta t_i \leq (c-\varepsilon) \lambda \sum \Delta t_i \log\left(\frac{1}{\lambda \Delta t_i}\right)$$
$$\leq \sum_{i=1}^n 1 - \varphi(\lambda \Delta t_i).$$

As $n \to \infty$, the left side and consequently also the right side $\to \infty$. As in case (ii) we conclude that the distribution of Y_n converges to 0, and $P\{\limsup_{n \to \infty} Y_n = \infty\} = 1$.

Brownian motion, the stable process with index $\alpha = 2$ can also be investigated by the method of Theorem 3. In the notation used there, $F(x) \rightarrow c > 0$ as $x \rightarrow \infty$ for every $\beta > 0$. This leads to the result that if $\mu_n \rightarrow 0$ as $n \rightarrow \infty$, the distribution of Y_n converges to a distribution concentrated at ∞ if $\beta < 2$, at 0 if $\beta > 2$, and at a number d > 0 if $\beta = 2$. We conclude that Y_n does not converge to a stable random variable in the case $\beta > \alpha = 2$. Some information about the rate of growth of the variational sum if $\alpha = \beta < 2$ and $P_n = \{i/n, i = 0, ..., n\}$ is given by Theorem 4.

Theorem 4. Let X(t) be a symmetric stable process of index α , $0 < \alpha < 2$. The distribution of $Z_n = \sum_{i=1}^n |X(i/n) - X((i-1)/n)|^{\alpha}/\log n$ converges to a distribution concentrated at $c, 0 < c < \infty$.

Proof. Let G be the distribution of $|X(1)|^{\alpha}$ and $F(x) = \int_{0}^{x} 1 - G(y) dy$. The distribution of Z_n is $G^{n^*}(x(n \log n))$. As in part (iii) of Theorem 3, $y(1 - G(y)) \rightarrow b$ as $y \rightarrow \infty$, $F(x) \sim b \log x$, and $[1 - \varphi(\lambda)]/\lambda \sim c \log 1/\lambda$, where $\mathfrak{L}G = \varphi$. As $n \rightarrow \infty$,

$$-\log \varphi^n (\lambda/(n\log n)) \sim n \left[1 - \varphi (\lambda/(n\log n)) \right] \sim n c (\lambda/(n\log n))$$

 $\cdot \log((n \log n)/\lambda) = c \lambda [\log n + \log \log n + \log 1/\lambda]/\log n \to c \lambda.$

Therefore $\varphi^n(\lambda/(n \log n)) \to e^{-k\lambda}$. It follows from the continuity theorem for Laplace transforms that $G^{n^*}((n \log n) x)$ converges to the distribution concentrated at c.

5. Corollaries Using the Method of Section 3 and Results of Section 4

Corollary 1. Let X(t) be a symmetric stable process of index α , $0 < \alpha < 2$, and let $\mathcal{P}_n = \{ all \text{ finite partitions of } [0, 1] \text{ of mesh } \mu \leq 1/n \}$. Let Y_n be the supremum over $P \in \mathcal{P}_n$ of $V(P, \beta)$, $\beta > \alpha$. Then the variation $\lim_{\beta \to \alpha} \beta$ -var $X(\mathcal{P}_n)$ defined by $Y = \liminf_{n \to \infty} Y_n$ is a proper stable random variable of index α/β .

Proof. The proof follows that of Theorem 1. Statements (2) and (3) hold just as in Theorem 1. We must show that (1) holds.

Let A be the set of paths which are continuous at r. Since the stable process has no fixed discontinuities, $P\{A\} = 1$. For each path in A, $Y_n \leq Y_n[0, r] + Y_n[r, 1] + \sup_{P \in \mathscr{P}_n} |X(t_j) - X(t_{j-1})|^{\beta}$, where t_{j-1} and t_j are the points of P neighboring r, or $t_{j-1} = t_j = r$ if $r \in P$. As $n \to \infty$, $t_j - t_{j-1} \to 0$, and so does $\sup_{P \in \mathscr{P}_n} |X(t_j) - X(t_{j-1})|^{\beta}$.

Almost surely, then,

limit $Y_n \leq \text{limit } Y_n[0, r] + \text{limit } Y_n[r, 1].$

To obtain the reverse inequality we write for each point in A,

$$Y_n + \sup_{P \in \mathscr{D}_n} (|X(t_j) - X(r)|^{\beta} + |X(r) - X(t_{j-1})|^{\beta}) \ge Y_n[0, r] + Y_n[r, 1],$$

and apply a similar argument. We conclude that (1) holds.

As in Theorem 1, Y satisfies the defining relation for a stable random variable. Let F be the distribution of Y. F is either concentrated at a point, possibly ∞ , or is the proper one-sided stable law of index α/β . Since $\alpha < \beta$, as in Theorem 1 F cannot be concentrated at a point of $(0, \infty)$. Theorem A implies, again, that F is not concentrated at ∞ . That F is not concentrated at 0 follows from Theorem 3. Let $\{P_n\}$ be a sequence of partitions such that P_n has n points and the mesh of P_n decreases to 0 as $n \to \infty$. Then Theorem 3 part (i), together with the Lemma, implies that the distribution G of lim sup β -var $X(P_n)$ is bounded by a proper

146

one-sided stable law; in particular G(0)=0. For each sample path, $\lim \beta$ -var $X(\mathscr{P}_n) \ge \limsup \beta$ -var $X(P_n)$. We conclude that F(0)=0.

We note that this proof does not extend to Brownian motion since for $\alpha = 2$, $\beta > \alpha$, and P_n becoming dense in [0, 1], lim sup β -var $X(P_n) = 0$ almost surely.

Corollary 2. Let $\mathscr{P} = \{all \text{ finite partitions of } [0, 1]\}, 0 < \alpha < 2, \beta > \alpha, and \beta \text{-var} X = \sup_{P \in \mathscr{P}} V(P, \beta).$ Let G be the distribution of β -var X. Then G is in the domain of normal attraction of the stable law F of Corollary 1, and $1 - G(x) \sim c x^{-\alpha/\beta}$ as $x \to \infty$.

Proof. First we introduce some notation in addition to that of Corollary 1. If P is a finite partition, let $\mathscr{P}_n \cup P = \{ \text{partitions in } \mathscr{P}_n \text{ which include the points of } P \}$. Let F_n denote the distribution of Y_n , $F_n(P)$ the distribution of the supremum of $V(Q, \beta)$ over Q in $\mathscr{P}_n \cup P$, and F(P) the limit as $n \to \infty$ of $F_n(P)$. Since the collection of partitions $\mathscr{P}_n \cup P$ decreases with increasing n, the supremum of $V(Q, \beta)$ is nonincreasing, $F_n(P)$ is nondecreasing, and F(P) is the distribution of the limiting random variable.

Let $r \in [0, 1]$. From Corollary 1 we have limit $Y_n = \text{limit } Y_n[0, r] + \text{limit } Y_n[r, 1]$ almost surely. In terms of the new notation, if we regard $\{r\}$ as a partition, F = F(r). More generally, if P is any finite partition $F = F(P) = \lim F_n(P)$. Since $\mathscr{P}_n \supset \mathscr{P}_n \cup P$ and $F_n(P)$ is nondecreasing as n increases, we have $F_n \leq F_n(P) \leq F$. This inequality holds, in particular, when P is P_n , the regular partition of mesh 1/n. We conclude that $F_n(P_n)$ converges to F. But $\mathscr{P}_n \cup P_n = \mathscr{P} \cup P_n$, so $F(P_n)$ converges to F.

Now $F(P_n)$ is the *n*-fold convolution of the distribution of β -var X[0, 1/n] which, as we saw in Section 1, is distributed like $n^{-\beta/\alpha}\beta$ -var X; i.e. $F(P_n) = [G(n^{\beta/\alpha}x)]^{n^*}$ converges to the stable law F. By definition, then, G is in the domain of normal attraction of F. The accompanying asymptotic relation is well known [4].

The next corollary is an extension of Theorem 3 part (i). Its proof uses Corollary 1 as well as previous results.

Corollary 3. Let X(t) be a symmetric stable process of index α , $0 < \alpha < 2$, and let \mathscr{P} be a sequence of partitions P_n of [0, 1] such that P_n contains n points and $\mu_n =$ mesh of P_n decreases to 0 as $n \to \infty$. Then the distribution of $\limsup \beta$ -var $X(P_n)$ is bounded between two proper stable laws of index α/β , for every $\beta > \alpha$.

Proof. With \mathcal{P}_n as in Corollary 1, for each path

 $\lim \beta \operatorname{-var} X(\mathscr{P}_n) \geq \limsup \beta \operatorname{-var} X(P_n).$

If F and G are the distributions of these two random variables in the order written, then $F \leq G$. Corollary 1 says F is a proper stable law of index α/β . On the other hand Theorem 3 part (i), together with the Lemma, says G is bounded above by such a stable law.

6. Discussion

The restriction $\beta \leq 1$ in Theorem 1 was imposed in order to allow $\frac{1}{2}$ and $\frac{1}{3}$ to be included in all partitions. If \mathscr{P} is all finite partitions of [0, 1], it is possible that the distribution of β -var X remains unchanged if $\frac{1}{2}$ or $\frac{1}{3}$ is added to every partition. If this is the case then the method of Theorem 1 will give a new proof of Theorem A whenever $\beta \leq \alpha$ and will specify that β -var X is distributed by a stable law when $\beta > \alpha$.

The scaling relation (3) can be shown to hold for each t in [0, 1]. When β -var X is distributed by a proper stable law with Laplace transform $\exp(-c \lambda^{\alpha/\beta})$ it follows from (3) that the transform of the law of β -var X [0, t] is $\exp(-t c \lambda^{\alpha/\beta})$. It now follows from the stationary and Markov properties of the stable process X(t) that β -var X [0, t] can be viewed as a one-sided stable process or stable subordinator of index α/β . In fact an alternative approach to Theorem 1 is to show that β -var X [0, t] is a differential process which satisfies (3) for each t. Blumenthal and Getoor have observed this in a slightly different context [2, p. 509].

It is not clear what happens in Theorem 3 part (ii) if $\beta \leq \alpha/2$. If P_n is the sequence $P_n = \{i/n, i=0,...,n\}$, however, the method of Theorem 4 leads to the result $P\{\limsup \beta \text{-var } X = \infty\} = 1$ for every $\beta < \alpha < 2$.

The earliest results of this type appear to be those of *P*. Lévy [5] on the 2-variation of the Brownian path. Lévy showed that if \mathscr{P} is all finite partitions then 2-var $X = \infty$ almost surely, whereas if \mathscr{P} is an increasing sequence of partitions which become dense in [0, 1], i.e. the mesh goes to 0, then $\lim 2-var X = c > 0$ with probability 1. The method of Theorem 1 indicates that two such possibilities exist when $\alpha = \beta \leq 1$. However we can conclude from part (iii) of Theorem 3, together with Theorem A, that Brownian motion is the *only* stable process of the family for which the two types of α -variation have different distributions. If $0 < \alpha < 2$, then both the supremum of $\sum_{t_i \in P} |X(t_i) - X(t_{i-1})|^{\alpha}$ over all finite partitions

and the lim sup through a sequence of partitions which become dense, are almost surely infinite.

There remains the possibility that for α in (0, 2], $\beta > 1$ and $\beta > \alpha$, the distribution of β -var X may differ from that of lim sup β -var $X(P_n)$ when the limit is taken through a sequence of partitions which become dense. However Corollaries 2 and 3 indicate that for $0 < \alpha < 2$, the two distributions have similar asymptotic behavior.

The author wishes to thank Prof. J. Chover for several helpful suggestions.

References

- 1. Blumenthal, R. M., Getoor, R. K.: Some theorems on stable processes. Trans. Amer. math. Soc. **95**, 263-273 (1960).
- 2. Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493-516 (1961).
- 3. Bochner, S.: Harmonic analysis and the theory of probability. Berkeley and Los Angeles: Univ. of California Press 1955.
- 4. Feller, W.: An introduction to probability theory and its applications, vol. II. New York: Wiley 1966.
- 5. Lévy, P.: Le Mouvement Brownien plan. Amer. J. Math. 62, 487-550 (1940).

P. E. Greenwood Dept. of Mathematics The University of British Columbia Vancouver 8, Canada

(Received October 7, 1968)