The Variation of a Stable Path is Stable

Priscilla E. Greenwood

Summary. Let $X(t)$ be a separable symmetric stable process of index α. Let P be a finite partition of $[0,1]$, and \mathscr{P} a collection of partitions. The variation of a path $X(t)$ is defined in three ways in terms of the sum $\sum_{t_{i} \in P}\left|X\left(t_{i}\right)-X\left(t_{i-1}\right)\right|^{\beta}$ and the collection \mathscr{P}. Under certain conditions on \mathscr{P} and on the parameters α and β, the distribution of the variation is shown to be a stable law. Under other conditions the distribution of the variational sum converges to a stable distribution.

1. Introduction

Let $X(t)$ be a separable symmetric stable process on R^{1} of index $\alpha, 0<\alpha \leqq 2$. $X(t)$ has characteristic function $e^{-t|\lambda| \alpha}$. Let P be a finite partition, $\left\{t_{1}<\cdots<t_{k}\right\}$ of $[0,1]$, and \mathscr{P} a collection of such partitions. Let $V(P, \beta)$ denote the variational sum $\sum_{t_{i} \in P}\left|X\left(t_{i}\right)-X\left(t_{i-1}\right)\right|^{\beta}$, where $\beta>0$. The variation of the stable path $X(t)$ can be calculated in at least three ways: as the supremum over \mathscr{P} of $V(P, \beta)$; as the limit as $n \rightarrow \infty$ of the supremum over \mathscr{P}_{n} of $V(P, \beta)$ where $\mathscr{P}_{n}=\{P \in \mathscr{P}$: mesh of $P \leqq 1 / n\}$; if \mathscr{P} is a sequence $\left\{P_{n}\right\}$, as the lim sup as $n \rightarrow \infty$ of $V(P, \beta)$. We give sufficient conditions on \mathscr{P} that the variation, calculated in each of these ways, be a stable random variable of index α / β if $\beta \leqq 1$. The case $\beta>1$ presents special problems, some of which are resolved in Section 5. We use and refine results of Blumenthal and Getoor, and of Bochner $[1,2,3]$.

2. Definitions

We impose closure conditions on \mathscr{P} which are satisfied, for example, by the collection of all finite partitions and by the collection of all finite rational partitions.

If $P=\left\{t_{1}, \ldots, t_{k}\right\} \subset[0,1]$, let $r P+s$ denote the partition

$$
\left\{r t_{1}+s, \ldots, r t_{k}+s\right\} \cap[0,1] .
$$

We say that \mathscr{P} is closed under translation and multiplication by $r=\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ if for each $P \in \mathscr{P}$ some refinement of each of $r P,(1 / r) P, P+r, P-r$ is $\in \mathscr{P}$.

We define \mathscr{P} to be closed under piecing at $r=\frac{1}{2}, \frac{1}{3}$ if whenever P_{1} and P_{2} are in \mathscr{P}, some refinement of the partition $\left(P_{1} \cap[0, r]\right) \cup\left(P_{2} \cap[r, 1]\right) \cup r$ is also in \mathscr{P}.

When we use these conditions with $\beta>1$, we intend that the words "some refinement of" should be omitted.

If \mathscr{P} is a sequence of partitions we require that the closure conditions hold in the forward direction of the sequence, and define \mathscr{P} to be closed with respect to translation, multiplication, and piecing for $r=\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ if whenever P_{n} and P_{m} are in \mathscr{P} there is a refinement further along in the sequence for each of $r P_{n}, 1 / r P_{n}, P_{n}+r$, $P_{n}-r$, and $\left(P_{n} \cap[0, r]\right) \cup\left(P_{m} \cap[r, 1]\right) \cup r$. An example of such a sequence is $P_{n}=$ $\{i / n, i=0, \ldots, n\}$.

Let $X \stackrel{d}{=} Y$ mean that the random variables X and Y have the same distribution. It follows from the form of the characteristic function that for $a>0$, $X(t) \stackrel{d}{=} a^{1 / \alpha} X(t / a)$.

The mesh μ of a partition P will be the maximum length of the interval between successive points of P.

Finally, we introduce distinguishing notation for the three types of variation which we consider. The supremum over P in \mathscr{P} of the variational sum $V(P, \beta)=$ $\left.\sum_{t_{i} \in P}\left|X\left(t_{i}\right)-X\left(t_{i-1}\right)\right|\right|^{\beta}$ is denoted by β-var X.

The limit as $n \rightarrow \infty$ of the supremum over \mathscr{P}_{n} of $V(P, \beta)$ where $\mathscr{P}_{n}=\{P \in \mathscr{P}$: mesh of $P \leqq 1 / n\}$ is denoted by $\lim \beta$-var $X\left(\mathscr{P}_{n}\right)$.

In case \mathscr{P} is a sequence of partitions P_{n}, the limsup as $n \rightarrow \infty$ of $V\left(P_{n}, \beta\right)$ is denoted by lim sup β-var $X\left(P_{n}\right)$.
β-var $X[a, b]$ denotes the supremum over P in \mathscr{P} of $V(P \cap[a, b], \beta)$.

3. A Method Using the Definition of Stable Random Variable

Theorem 1. Let $X(t)$ be the symmetric stable process on R^{1} of index $\alpha, 0<\alpha \leqq 2$, let $0<\beta \leqq 1$, and let \mathscr{P} be a collection of finite partitions of $[0,1]$, closed under translation and multiplication by $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ and under piecing at $\frac{1}{3}, \frac{1}{2}$. Then the distribution of β-var X is a stable law of index α / β and
i) if $0<\alpha / \beta<1$ then the distribution is a proper stable law on $[0, \infty)$;
ii) if $\alpha / \beta=1$ then β-var X is either a constant with probability one, or is ∞ with probability one;
iii) if $\alpha / \beta>1, P\{\beta-\operatorname{var} X=\infty\}=1$.

Proof. That β-var X is a random variable is established by Blumenthal and Getoor [1]. We will show that $Y=\beta$-var X satisfies the defining relation for a stable random variable,

$$
S_{n} \stackrel{d}{=} c_{n} Y, \quad \text { where } S_{n}=\sum_{i=1}^{n} Y_{i}
$$

the Y_{i} are independent and distributed like Y, and $c_{n}=n^{\beta / \alpha}$. It suffices that the relation hold for $n=2,3$ [4, p. 215]. An equivalent relation is $r^{\beta / \alpha} Y_{1}+(1-r)^{\beta / \alpha} Y_{2} \stackrel{d}{=} Y$, for $r=\frac{1}{2}, \frac{1}{3}$, where $Y_{1} \stackrel{d}{=} Y_{2} \stackrel{d}{=} Y$ and Y_{1}, Y_{2} are independent. The proof of this relation is given in three parts: For $r=\frac{1}{2}, \frac{1}{3}$,

$$
\begin{equation*}
\beta-\operatorname{var} X=\beta \operatorname{var} X[0, r]+\beta-\operatorname{var} X[r, 1] \tag{1}
\end{equation*}
$$

where the summands are independent;

$$
\begin{align*}
& \beta-\operatorname{var}[r, 1] \stackrel{d}{=} \beta-\operatorname{var}[0,1-r] \tag{2}\\
& \beta-\operatorname{var}[0, r] \stackrel{d}{=} r^{\beta / \alpha} \beta-\operatorname{var}[0,1] \tag{3}
\end{align*}
$$

for $r=\frac{1}{2}, \frac{1}{3}, \frac{2}{3}$.
For fixed P and X, since $\beta \leqq 1$, the variational sum is only increased if P is replaced by a refinement of $P \cup\left\{\frac{1}{3}, \frac{1}{2}\right\}$. Therefore we assume $r \in P$ and write

$$
V(P, \beta)=V(P \cap[0, r], \beta)+V(P \cap[r, 1], \beta)
$$

The condition that \mathscr{P} is closed under piecing at $r=\frac{1}{3}, \frac{1}{2}$ enables us to calculate β-var X, for fixed X, by taking the supremum of these two terms separately. Since the random variables β-var $X[0, r]$ and β-var $X[r, 1]$ depend on values of $X(t)$ in non-overlapping time intervals, they are independent, and (1) is proved.

Because the process is stationary,

$$
V(P \cap[r, 1], \beta) \stackrel{d}{=} \sum_{t_{i-1}, t_{i} \in P \cap[r, 1]}\left|X\left(t_{i}-r\right)-X\left(t_{i-1}-r\right)\right|^{\beta} .
$$

For each path the supremum over $P \in \mathscr{P}$ of the right side is the same as β-var $X[0,1-r]$, since \mathscr{P} is closed under translation by r. The supremum of the left side is β-var $X[r, 1]$, so we have (2).

For fixed $P, V(P \cap[0, r], \beta) \stackrel{d}{=}$

$$
\begin{equation*}
r^{\beta / \alpha} \sum_{\left.t_{i-1}, t_{i} \in \boldsymbol{P}_{\cap} \cap 0, r\right]}\left|X\left(t_{i} / r\right)-X\left(t_{i-1} / r\right)\right|^{\beta} \tag{4}
\end{equation*}
$$

The closure of \mathscr{P} under multiplication by r enables us to calculate the supremum of (4) over $P \in \mathscr{P}$ for fixed X by taking the supremum of $r^{\beta / \alpha} V(P, \beta)$. Statement (3) follows.

Now combining (1) and (2) and applying (3) to each term we have

$$
\begin{gathered}
\beta-\operatorname{var} X \stackrel{d}{=} \beta-\operatorname{var} X[0, r]+\beta-\operatorname{var} X[0,1-r] \\
\stackrel{d}{=} r^{\beta / \alpha} \beta-\operatorname{var} X+(1-r)^{\beta / \alpha} \beta-\operatorname{var} X,
\end{gathered}
$$

where the terms on the right are independent random variables. This is the relation we wished to prove. Note that only the proof of (1) requires that $\beta \leqq 1$.

Let F be the distribution of $Y=\beta$-var X. Since Y is nonnegative, either F is concentrated at a single point, possibly ∞, or the Laplace transform of F is $e^{-c \lambda \gamma}$ where $0<\gamma<1$, [cf. 4, p. 424]. In the latter case $\gamma=\alpha / \beta$.

Suppose F is concentrated at a. The supremum is 0 only with probability 0 , so $a>0$, and $F * F$ is concentrated at $2 a$. But $Y_{1}+Y_{2} \stackrel{d}{2} 2^{\beta / \alpha} Y$, so a is ∞ except possibly when $\beta / \alpha=1$. We conclude that when $\beta / \alpha<1, F$ is concentrated at ∞, whereas if $\beta / \alpha=1, F$ may be concentrated at any point of $[0, \infty]$. This concludes the proof of (ii) and (iii).

In case $0<\alpha / \beta<1$ the above argument does not tell us whether F is the proper stable law of index α / β on $[0, \infty)$ or whether F is concentrated at ∞. The following theorem of Blumenthal and Getoor [1] gives the answer.

Theorem A. Let $X(t)$ be the symmetric stable process in R^{n} of index $\alpha, 0<\alpha \leqq 2$, and let $\mathscr{P}^{\prime}=\{$ all finite partitions of $[0,1]\}$. Then $P\{\beta-\operatorname{var} X=\infty\}=1$ or 0 according as $\beta \leqq \alpha$ or $\beta>\alpha$.

We use only the second half of this theorem. (The above includes an independent proof of the result for $\beta<\alpha$.) If $\mathscr{P} \subset \mathscr{P}^{\prime}$ then β-var X over $\mathscr{P} \leqq \beta$-var X over \mathscr{P}^{\prime}. Therefore if $\beta>\alpha, P\{\beta-\operatorname{var} X=\infty\}=0$ for any collection of finite partitions and F is not concentrated at ∞. We conclude that F is the proper stable law on $[0, \infty)$.

If \mathscr{P} is a sequence of partitions, closed under translation and multiplication by $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$, and piecing at $\frac{1}{3}$, $\frac{1}{2}$, which proceeds by refinements, and $\beta \leqq 1$, then lim sup
β-var $X\left(P_{n}\right)=$ limit β-var $X=\beta$-var X, the supremum over the sequence \mathscr{P} regarded as a set, so that Theorem 1 applies. If \mathscr{P} does not proceed by refinements, the identity $\lim \sup \beta$-var $X\left(P_{n}\right) \stackrel{d}{\Omega} \beta$-var X, for $\beta \leqq 1, \beta \neq \alpha$ follows from Theorem 2, which can also be proved as an easy corollary to Theorem 1.

Theorem 2. Let \mathscr{P} be a sequence of finite partitions of $[0,1]$, closed with respect to translation and multiplication by $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ and piecing at $\frac{1}{3}, \frac{1}{2}$. Let $\beta \leqq 1$. Then Theorem 1 holds with β-var X replaced by $\lim \sup \beta$-var $X\left(P_{n}\right)$.

Proof. The proof parallels the proof of Theorem 1 with the obvious modifications. In place of Theorem A we need to know that $P\{\lim \sup \beta-\operatorname{var} X=\infty\}=0$ if $\beta>\alpha$. This follows easily from Theorem A. As a set, $\mathscr{P} \subset \mathscr{P}^{\prime}$ so that
$\lim \sup \beta$-var $X\left(P_{n}\right) \leqq \beta$-var X over $\mathscr{P} \leqq \beta$-var X over \mathscr{P}^{\prime}.

4. A Method Using Laplace Transforms

When \mathscr{P} is a sequence we expect that the distribution of the variation can sometimes be established by showing that the distributions of $Y_{n}=\sum_{t_{i} \in P_{n}}\left|X\left(t_{i}\right)-X\left(t_{i-1}\right)\right|^{\beta}$ converge to a stable law, while the random variables Y_{n} converge almost surely. An example is given by Theorem 3, which differs from Theorem 2 in allowing $\beta>1$ and in restricting the mesh of the partitions. We require the following lemma:

Lemma. Let X_{n} be a sequence of random variables and let $\limsup _{n \rightarrow \infty} X_{n}=X$. Let F_{n} be the distribution of X_{n}, and suppose the F_{n} converge to a limit distribution F. Let G be the distribution of X. Then $G(y) \leqq F(y)$ for every y. If X_{n} converges to X almost surely, then $G=F$.

Theorem 3. Let $X(t)$ be a symmetric stable process on R^{1} with index $\alpha, 0<\alpha<2$. Let \mathscr{P} be a sequence of partitions P_{n} such that P_{n} contains n points and the mesh μ_{n} of P_{n} goes to 0 as n goes to ∞. Let $Y_{n}=\sum_{t_{i} \in P_{n}}\left|X\left(t_{i}\right)-X\left(t_{i-1}\right)\right|^{\beta}$. Then
i) if $\beta>\alpha$, the distribution of Y_{n} converges to the one-sided stable law of index α / β. If in addition $\beta \leqq 1$ and P_{n} proceeds by refinements then $Y_{n} \rightarrow Y$ almost surely, where Y is distributed by the limiting distribution;
ii) if $\alpha / 2<\beta<\alpha$, the distribution of Y_{n} converges to 0 on $[0, \infty)$ and

$$
P\left\{\limsup _{n \rightarrow \infty} Y_{n}=\infty\right\}=1
$$

iii) if $\alpha=\beta$ then (ii) holds.

Proof. Let H be the distribution of $X(1)$. That $x^{\alpha}(1-H(x)) \rightarrow b$, a constant >0 as $x \rightarrow \infty$ is a well-known property of stable laws [c.f. 4, p. 547]. Since H is symmetric, the distribution of $|X(1)|^{\beta}$ is $G(x)=2 H\left(x^{1 / \beta}\right)-1$ on $[0, \infty)$, and

$$
\begin{equation*}
x^{\alpha / \beta}(1-G(x)) \rightarrow 2 b \quad \text { as } \quad x \rightarrow \infty \tag{5}
\end{equation*}
$$

The distribution of $\left|X\left(t_{i}\right)-X\left(t_{i-1}\right)\right|^{\beta}$ is the same as that of $|X(1)|^{\beta}\left(t_{i}-t_{i-1}\right)^{\beta / \alpha}$ and the terms of the sum Y_{n} are independent. Denoting $\left(t_{i}-t_{i-1}\right)$ by Δt_{i}, the distribution of Y_{n} is

$$
G\left(\Delta t_{1}^{-\beta / \alpha} x\right) * G\left(\Delta t_{2}^{-\beta / \alpha} x\right) * \cdots * G\left(\Delta t_{n}^{-\beta / \alpha} x\right)
$$

Let $\varphi=\mathcal{Q} G$. Then the Laplace transform of the convolution is $\prod_{i=1}^{n} \varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)$, and that of the distribution with density $1-G$ is $(1-\varphi(\lambda)) / \lambda$. Therefore (5) implies

$$
\begin{equation*}
(1-\varphi(\lambda)) / \lambda \sim c \lambda^{\alpha / \beta-1} \quad \text { as } \quad \lambda \rightarrow 0[4, \text { p. } 424] . \tag{6}
\end{equation*}
$$

For fixed λ consider

$$
\begin{equation*}
-\log \prod_{i=1}^{n} \varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)=-\sum_{i=1}^{n} \log \left[\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)-1+1\right] . \tag{7}
\end{equation*}
$$

We use the inequality $|\log (1+x)-x| \leqq \frac{1}{2} x^{2}$, for small $|x|$, with $x=\varphi-1$. Given $\varepsilon>0$, let n be large enough so that $1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \leqq(c+\varepsilon)\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)^{\alpha / \beta}$ for $i=1, \ldots, n$. Then

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|\log \left(\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)-1+1\right)-\left(\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)-1\right)\right| \\
& \quad \leqq \frac{1}{2} \sum_{i=1}^{n}\left|1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)\right|^{2} \leqq \frac{1}{2} n \lambda^{2 \alpha / \beta} \sum \Delta t_{i}^{2}\left(c^{\prime}+\varepsilon\right)^{2} \\
& \quad \rightarrow 0 \text { as } n \rightarrow 0 \text { since } \max _{i=1, \ldots, n} \Delta t_{i} \rightarrow 0
\end{aligned}
$$

It follows that

$$
-\sum_{i=1}^{n} \log \varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \sim \sum_{i=1}^{n} 1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) .
$$

Now choose n so large that

$$
(c-\varepsilon) \lambda^{\alpha / \beta} \Delta t_{i} \leqq 1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \leqq(c+\varepsilon) \lambda^{\alpha / \beta} \Delta t_{i}, \quad i=1, \ldots, n
$$

Summation over i yields

$$
(c-\varepsilon) \lambda^{\alpha / \beta} \leqq \sum_{i=1}^{n} 1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \leqq(c+\varepsilon) \lambda^{\alpha / \beta}
$$

i.e.

$$
\sum_{i=1}^{n} 1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \rightarrow c \lambda^{\alpha / \beta} \quad \text { as } \quad n \rightarrow \infty
$$

Combining this with (7) we have

$$
-\log \prod_{i=1}^{n} \varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \rightarrow c \lambda^{\alpha / \beta}
$$

or

$$
\prod_{i=1}^{n} \varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \rightarrow \exp \left(-c \lambda^{\alpha / \beta}\right) .
$$

It follows from the continuity theorem for Laplace transforms that the distribution of Y_{n} converges to F where $\mathfrak{L} F=\exp \left(-c \lambda^{\alpha / \beta}\right)$.

If $\beta \leqq 1$ and \mathscr{P} proceeds by refinements then for each sample path the sequence Y_{n} is nondecreasing and therefore converges. The last statement of (i) now follows from the Lemma.

If $\beta<\alpha$ we use a similar argument. Since $1-G(x) \sim 2 b x^{-\alpha / \beta}$ and $\alpha / \beta>1$, $F(x)=\int_{0}^{x} 1-G(y) d y \rightarrow c$ as $x \rightarrow \infty$, where $0<c<\infty$. It follows that $\Omega F(\lambda)=$ $[1-\varphi(\lambda)] / \lambda \rightarrow c$ as $\lambda \rightarrow 0$, i.e. $1-\varphi(\lambda) \sim c \lambda$.

Proceeding as in case (i), given $\varepsilon>0$ we have as $n \rightarrow \infty$,

$$
\sum_{i=1}^{n}\left|1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)\right|^{2} \leqq(c+\varepsilon)^{2} \lambda^{2} \sum \Delta t_{i}^{2 \beta / \alpha} \rightarrow 0
$$

if $2 \beta / \alpha>1$, so that again

$$
-\sum_{i=1}^{n} \log \varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \sim \sum_{i=1}^{n} 1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) .
$$

For large enough n,

$$
(c-\varepsilon) \lambda \sum_{i=1}^{n} \Delta t_{i}^{\beta / \alpha} \leqq \sum_{i=1}^{n} 1-\varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) .
$$

Since $\beta / \alpha<1$ and $\max _{i=1, \ldots, n} \Delta t_{i} \rightarrow 0$ the left side $\rightarrow \infty$, and so does $-\log \prod_{i=1}^{n} \varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right)$. Therefore $\prod_{i=1}^{n} \varphi\left(\lambda \Delta t_{i}^{\beta / \alpha}\right) \rightarrow 0$ as $n \rightarrow \infty$ for each λ, and the continuity theorem implies that the distribution of Y_{n} converges to 0 for each x in [0, ∞). It follows from the Lemma that $P\left\{\limsup _{n \rightarrow \infty} Y_{n}=\infty\right\}=1$.

If $\beta=\alpha$, then $y(1-G(y)) \rightarrow b$ as $y \rightarrow \infty$, and $F(x)=\int_{0}^{x} 1-G(y) d y \sim b \log x$. A Tauberian theorem [4, p. 421] implies that $[1-\varphi(\lambda)] / \lambda \sim c \log (1 / \lambda)$ as $\lambda \rightarrow 0$.

Again proceeding as in case (i), given $\varepsilon>0$, as $n \rightarrow \infty$,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|1-\varphi\left(\lambda \Delta t_{i}\right)\right|^{2} & \leqq(c+\varepsilon)^{2} \lambda^{2} \sum_{i=1}^{n}\left(\Delta t_{i} \log \frac{1}{\lambda \Delta t_{i}}\right)^{2} \\
& \leqq \sum_{i=1}^{n} \Delta t_{i}^{2}\left(\lambda \Delta t_{i}\right)^{-2 \varepsilon} \rightarrow 0
\end{aligned}
$$

For large enough n,

$$
\begin{aligned}
(c-\varepsilon) \lambda \log \left(\frac{1}{\lambda \max _{i=1, \ldots, n} \Delta t_{i}}\right) \sum \Delta t_{i} & \leqq(c-\varepsilon) \lambda \sum \Delta t_{i} \log \left(\frac{1}{\lambda \Delta t_{i}}\right) \\
& \leqq \sum_{i=1}^{n} 1-\varphi\left(\lambda \Delta t_{i}\right) .
\end{aligned}
$$

As $n \rightarrow \infty$, the left side and consequently also the right side $\rightarrow \infty$. As in case (ii) we conclude that the distribution of Y_{n} converges to 0 , and $P\left\{\limsup _{n \rightarrow \infty} Y_{n}=\infty\right\}=1$.

Brownian motion, the stable process with index $\alpha=2$ can also be investigated by the method of Theorem 3. In the notation used there, $F(x) \rightarrow c>0$ as $x \rightarrow \infty$ for every $\beta>0$. This leads to the result that if $\mu_{n} \rightarrow 0$ as $n \rightarrow \infty$, the distribution of Y_{n} converges to a distribution concentrated at ∞ if $\beta<2$, at 0 if $\beta>2$, and at a number $d>0$ if $\beta=2$. We conclude that Y_{n} does not converge to a stable random variable in the case $\beta>\alpha=2$.

Some information about the rate of growth of the variational sum if $\alpha=\beta<2$ and $P_{n}=\{i / n, i=0, \ldots, n\}$ is given by Theorem 4.

Theorem 4. Let $X(t)$ be a symmetric stable process of index $\alpha, 0<\alpha<2$. The distribution of $Z_{n}=\sum_{i=1}^{n}|X(i / n)-X((i-1) / n)|^{\alpha} / \log n$ converges to a distribution concentrated at $c, 0<c<\infty$.

Proof. Let G be the distribution of $|X(1)|^{\alpha}$ and $F(x)=\int_{0}^{x} 1-G(y) d y$. The distribution of Z_{n} is $G^{n^{*}}(x(n \log n))$. As in part (iii) of Theorem 3, $y(1-G(y)) \rightarrow b$ as $y \rightarrow \infty, F(x) \sim b \log x$, and $[1-\varphi(\lambda)] / \lambda \sim c \log 1 / \lambda$, where $\mathcal{L} G=\varphi$. As $n \rightarrow \infty$,

$$
\begin{aligned}
& -\log \varphi^{n}(\lambda /(n \log n)) \sim n[1-\varphi(\lambda /(n \log n))] \sim n c(\lambda /(n \log n)) \\
& \quad \cdot \log ((n \log n) / \lambda)=c \lambda[\log n+\log \log n+\log 1 / \lambda] / \log n \rightarrow c \lambda .
\end{aligned}
$$

Therefore $\varphi^{n}(\lambda /(n \log n)) \rightarrow e^{-k \lambda}$. It follows from the continuity theorem for Laplace transforms that $G^{n^{*}}((n \log n) x)$ converges to the distribution concentrated at c.

5. Corollaries Using the Method of Section 3 and Results of Section 4

Corollary 1. Let $X(t)$ be a symmetric stable process of index $\alpha, 0<\alpha<2$, and let $\mathscr{P}_{n}=\{$ all finite partitions of $[0,1]$ of mesh $\mu \leqq 1 / n\}$. Let Y_{n} be the supremum over $P \in \mathscr{P}_{n}$ of $V(P, \beta), \beta>\alpha$. Then the variation $\lim \beta-\operatorname{var} X\left(\mathscr{P}_{n}\right)$ defined by $Y=\operatorname{limit}_{n \rightarrow \infty} Y_{n}$ is a proper stable random variable of index α / β.

Proof. The proof follows that of Theorem 1. Statements (2) and (3) hold just as in Theorem 1. We must show that (1) holds.

Let A be the set of paths which are continuous at r. Since the stable process has no fixed discontinuities, $P\{A\}=1$. For each path in $A, Y_{n} \leqq Y_{n}[0, r]+Y_{n}[r, 1]+$ $\sup _{P \in \mathscr{P}}\left|X\left(t_{j}\right)-X\left(t_{j-1}\right)\right|^{\beta}$, where t_{j-1} and t_{j} are the points of P neighboring r, or ${ }_{P \in \mathscr{F}_{n}}^{t_{j-1}}=t_{j}=r$ if $r \in P$. As $n \rightarrow \infty, t_{j}-t_{j-1} \rightarrow 0$, and so does $\sup _{P \in \mathscr{F}_{n}}\left|X\left(t_{j}\right)-X\left(t_{j-1}\right)\right|^{\beta}$.

Almost surely, then,

$$
\operatorname{limit} Y_{n} \leqq \operatorname{limit} Y_{n}[0, r]+\operatorname{limit} Y_{n}[r, 1]
$$

To obtain the reverse inequality we write for each point in A,

$$
Y_{n}+\sup _{P \in \mathscr{P}_{n}}\left(\left|X\left(t_{j}\right)-X(r)\right|^{\beta}+\left|X(r)-X\left(t_{j-1}\right)\right|^{\beta}\right) \geqq Y_{n}[0, r]+Y_{n}[r, 1],
$$

and apply a similar argument. We conclude that (1) holds.
As in Theorem 1, Y satisfies the defining relation for a stable random variable. Let F be the distribution of Y. F is either concentrated at a point, possibly ∞, or is the proper one-sided stable law of index α / β. Since $\alpha<\beta$, as in Theorem $1 F$ cannot be concentrated at a point of $(0, \infty)$. Theorem A implies, again, that F is not concentrated at ∞. That F is not concentrated at 0 follows from Theorem 3. Let $\left\{P_{n}\right\}$ be a sequence of partitions such that P_{n} has n points and the mesh of P_{n} decreases to 0 as $n \rightarrow \infty$. Then Theorem 3 part (i), together with the Lemma, implies that the distribution G of $\lim \sup \beta$-var $X\left(P_{n}\right)$ is bounded by a proper
one-sided stable law; in particular $G(0)=0$. For each sample path, $\lim \beta$-var $X\left(\mathscr{P}_{n}\right) \geqq \lim \sup \beta$-var $X\left(P_{n}\right)$. We conclude that $F(0)=0$.

We note that this proof does not extend to Brownian motion since for $\alpha=2$, $\beta>\alpha$, and P_{n} becoming dense in [0,1], lim sup β-var $X\left(P_{n}\right)=0$ almost surely.

Corollary 2. Let $\mathscr{P}=\{$ all finite partitions of $[0,1]\}, 0<\alpha<2, \beta>\alpha$, and β-var $X=\sup _{P \in \mathscr{F}} V(P, \beta)$. Let G be the distribution of $\beta-\operatorname{var} X$. Then G is in the domain of normal attraction of the stable law F of Corollary 1 , and $1-G(x) \sim c x^{-\alpha / \beta}$ as $x \rightarrow \infty$.

Proof. First we introduce some notation in addition to that of Corollary 1. If P is a finite partition, let $\mathscr{P}_{n} \cup P=\left\{\right.$ partitions in \mathscr{P}_{n} which include the points of $\left.P\right\}$. Let F_{n} denote the distribution of $Y_{n}, F_{n}(P)$ the distribution of the supremum of $V(Q, \beta)$ over Q in $\mathscr{P}_{n} \cup P$, and $F(P)$ the limit as $n \rightarrow \infty$ of $F_{n}(P)$. Since the collection of partitions $\mathscr{P}_{n} \cup P$ decreases with increasing n, the supremum of $V(Q, \beta)$ is nonincreasing, $F_{n}(P)$ is nondecreasing, and $F(P)$ is the distribution of the limiting random variable.

Let $r \in[0,1]$. From Corollary 1 we have limit $Y_{n}=\operatorname{limit} Y_{n}[0, r]+\operatorname{limit} Y_{n}[r, 1]$ almost surely. In terms of the new notation, if we regard $\{r\}$ as a partition, $F=F(r)$. More generally, if P is any finite partition $F=F(P)=\lim F_{n}(P)$. Since $\mathscr{P}_{n} \supset \mathscr{P}_{n} \cup P$ and $F_{n}(P)$ is nondecreasing as n increases, we have $F_{n} \leqq F_{n}(P) \leqq F$. This inequality holds, in particular, when P is P_{n}, the regular partition of mesh $1 / n$. We conclude that $F_{n}\left(P_{n}\right)$ converges to F. But $\mathscr{P}_{n} \cup P_{n}=\mathscr{P} \cup P_{n}$, so $F\left(P_{n}\right)$ converges to F.

Now $F\left(P_{n}\right)$ is the n-fold convolution of the distribution of β-var $X[0,1 / n]$ which, as we saw in Section 1, is distributed like $n^{-\beta / \alpha} \beta$-var X; i.e. $F\left(P_{n}\right)=$ $\left[G\left(n^{\beta / \alpha} x\right)\right]^{n^{*}}$ converges to the stable law F. By definition, then, G is in the domain of normal attraction of F. The accompanying asymptotic relation is well known [4].

The next corollary is an extension of Theorem 3 part (i). Its proof uses Corollary 1 as well as previous results.

Corollary 3. Let $X(t)$ be a symmetric stable process of index $\alpha, 0<\alpha<2$, and let \mathscr{P} be a sequence of partitions P_{n} of $[0,1]$ such that P_{n} contains n points and $\mu_{n}=$ mesh of P_{n} decreases to 0 as $n \rightarrow \infty$. Then the distribution of $\lim \sup \beta$-var $X\left(P_{n}\right)$ is bounded between two proper stable laws of index α / β, for every $\beta>\alpha$.

> Proof. With \mathscr{P}_{n} as in Corollary 1, for each path $$
\lim \beta-\operatorname{var} X\left(\mathscr{P}_{n}\right) \geqq \lim \sup \beta-\operatorname{var} X\left(P_{n}\right) .
$$

If F and G are the distributions of these two random variables in the order written, then $F \leqq G$. Corollary 1 says F is a proper stable law of index α / β. On the other hand Theorem 3 part (i), together with the Lemma, says G is bounded above by such a stable law.

6. Discussion

The restriction $\beta \leqq 1$ in Theorem 1 was imposed in order to allow $\frac{1}{2}$ and $\frac{1}{3}$ to be included in all partitions. If \mathscr{P} is all finite partitions of $[0,1]$, it is possible that the distribution of β-var X remains unchanged if $\frac{1}{2}$ or $\frac{1}{3}$ is added to every partition. If this is the case then the method of Theorem 1 will give a new proof of Theorem A whenever $\beta \leqq \alpha$ and will specify that β-var X is distributed by a stable law when $\beta>\alpha$.

The scaling relation (3) can be shown to hold for each t in $[0,1]$. When β-var X is distributed by a proper stable law with Laplace transform $\exp \left(-c \lambda^{\alpha / \beta}\right)$ it follows from (3) that the transform of the law of β-var $X[0, t]$ is $\exp \left(-t c \lambda^{\alpha / \beta}\right)$. It now follows from the stationary and Markov properties of the stable process $X(t)$ that β-var $X[0, t]$ can be viewed as a one-sided stable process or stable subordinator of index α / β. In fact an alternative approach to Theorem 1 is to show that β-var $X[0, t]$ is a differential process which satisfies (3) for each t. Blumenthal and Getoor have observed this in a slightly different context [2, p. 509].

It is not clear what happens in Theorem 3 part (ii) if $\beta \leqq \alpha / 2$. If P_{n} is the sequence $P_{n}=\{i / n, i=0, \ldots, n\}$, however, the method of Theorem 4 leads to the result $P\{\lim \sup \beta$-var $X=\infty\}=1$ for every $\beta<\alpha<2$.

The earliest results of this type appear to be those of P. Lévy [5] on the 2variation of the Brownian path. Lévy showed that if \mathscr{P} is all finite partitions then 2 -var $X=\infty$ almost surely, whereas if \mathscr{P} is an increasing sequence of partitions which become dense in $[0,1]$, i.e. the mesh goes to 0 , then $\lim -2$-var $X=c>0$ with probability 1 . The method of Theorem 1 indicates that two such possibilities exist when $\alpha=\beta \leqq 1$. However we can conclude from part (iii) of Theorem 3, together with Theorem A, that Brownian motion is the only stable process of the family for which the two types of α-variation have different distributions. If $0<\alpha<2$, then both the supremum of $\sum_{t_{i} \in P}\left|X\left(t_{i}\right)-X\left(t_{i-1}\right)\right|^{\alpha}$ over all finite partitions and the lim sup through a sequence of partitions which become dense, are almost surely infinite.

There remains the possibility that for α in $(0,2], \beta>1$ and $\beta>\alpha$, the distribution of β-var X may differ from that of lim sup β-var $X\left(P_{n}\right)$ when the limit is taken through a sequence of partitions which become dense. However Corollaries 2 and 3 indicate that for $0<\alpha<2$, the two distributions have similar asymptotic behavior.

The author wishes to thank Prof. J. Chover for several helpful suggestions.

References

1. Blumenthal, R. M., Getoor, R. K.: Some theorems on stable processes. Trans. Amer. math. Soc. 95, 263-273 (1960).
2. - Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493-516 (1961).
3. Bochner, S.: Harmonic analysis and the theory of probability. Berkeley and Los Angeles: Univ. of California Press 1955.
4. Feller, W.: An introduction to probability theory and its applications, vol. II. New York: Wiley 1966.
5. Lévy, P.: Le Mouvement Brownien plan. Amer. J. Math. 62, 487-550 (1940).
[^0]
[^0]: P. E. Greenwood

 Dept. of Mathematics
 The University of British Columbia
 Vancouver 8, Canada

