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The Variation of a Stable Path is Stable 

PRISCILLA E.  GREENWOOD 

Summary. Let X(t) be a separable symmetric stable process of index c~. Let P be a finite partition 
of [0, 1], and .r a collection of partitions. The variation of a path X(t) is defined in three ways in terms 
of the sum ~ [X(t~)- X(q_l)  f and the collection N. Under  certain conditions on r and on the para- 

t~P 
meters ~ and/~, the distribution of the variation is shown to be a stable law. Under  other conditions the 
distribution of the variational sum converges to a stable distribution. 

1. Introduction 

Let X(0 be a separable symmetric stable process on R 1 of index ~, 0 < e = 2. 
X(t) has characteristic function e -tlxl~. Let P be a finite partition, {tl < ' "  < tk} 
of [0, 1], and ~ a collection of such partitions. Let V(P,/~) denote the variational 
sum ~ IX(t i ) -X(t i_ l ) f ,  where/~ > 0. The variation of the stable path X(t) can be 

tieP 
calculated in at least three ways: as the supremum over ~ of V(R ]~); as the limit 
as n --> ~ of the supremum over ~n of V(R 8) where ~, = {Pe ~:  mesh of P_-< i/n}; 
if ~ is a sequence {P,}, as the lim sup as n --+ ~ of V(R 8). We give sufficient con- 
ditions on ~ that the variation, calculated in each of these ways, be a stable 
random variable of index ~/]~ if/~__< i. The case ~ > ] presents special problems, 
some of which are resolved in Section 5. We use and refine results of Blumenthal 
and Getoor, and of Bochner [i, 2, 3]. 

2. Definitions 

We impose closure conditions on ~ which are satisfied, for example, by the 
collection of all finite partitions and by the collection of all finite rational partitions. 

If P = {tl . . . . .  tk} c [0, 1], let r P + s denote the partition 

{rh +s, . . . ,r tk+s }n[O, 1]. 

We say that ~ is closed under translation and multiplication by r = �89 �89 ~ if for 
each P ~  some refinement of each ofrP, (I/r) P, P+r, P - r  is s~ .  

We define ~ to be closed under piecing at r = 1, �89 if whenever PI and P2 are 
in ~, some refinement of the partition (P1 n [0, r]) u (P2 ~ [r, 1]) w r is also in ~. 

When we use these conditions with /~> 1, we intend that the words "some 
refinement of" should be omitted. 

If ~ is a sequence of partitions we require that the closure conditions hold in 
the forward direction of the sequence, and define ~ to be closed with respect to 
translation, multiplication, and piecing for r = �89 �89 ~ if whenever P~ and Pm are in 
there is a refinement further along in the sequence for each of r P~, 1/r P~, P~ + r, 
P , -  r, and (P, n [0, rl) w (Pm f3 It,  1]) u r. An example of such a sequence is P, = 
{i/n, i=0,  ..., n}. 
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Let X ~ Y mean that the random variables X and Y have the same distri- 
bution. It follows from the form of the characteristic function that for a > 0, 
X ( t )  ~ a 1/~ X(t/a). 

The mesh/,  of a partition P will be the maximum length of the interval between 
successive points of P. 

Finally, we introduce distinguishing notation for the three types of variation 
which we consider. The supremum over P in ~ of the variational sum V(P, fl)= 

[X(ti)-X(ti_l)[ fl is denoted by fl-var X. 
ti~P 

The limit as n--+oo of the supremum over ~ of V(P, fl) where ~ , = { P ~ :  
mesh of P < 1/n} is denoted by lim fi-var X(N,). 

In case N is a sequence of partitions P,, the lira sup as n ~ oo of V(P,, fi) is 
denoted by lim sup fl-var X(P,). 

fi-var X [a, b] denotes the supremum over P in N of V(P c~ [a, b], fl). 

3. A Method Using the Definition of Stable Random Variable 

Theorem 1. Let X (t) be the symmetric stable process on R 1 of index cq 0 < ~ <= 2, 
let 0<fl=< 1, and let ~ be a collection of finite partitions of [-0, 1], closed under 
translation and multiplication by �89 �89 ~ and under piecing at �89 �89 Then the distribu- 
tion of fl-var X is a stable law of index c(fl and 

i) /f 0 < c(fl < 1 then the distribution is a proper stable law on [0, oo); 

ii) /f e/fl = 1 then fl-var X is either a constant with probability one, or is oo with 
probability one; 

iii) /f ~/fl > 1, P {fl-var X = oo } = 1. 

Proof That fl-var X is a random variable is established by Blumenthal and 
Getoor [1]. We will show that Y=fl-varX satisfies the defining relation for a 
stable random variable, 

S,--a c, Y, where S, = ~ Yi, 
i=l 

the Y~ are independent and distributed like Y, and c, =nP/% It suffices that the 
relation hold for n = 2, 3 [4, p. 215]. An equivalent relation is r ~/~ Y~ + (1 - r) p/~ Y2 d= y,, 
for r = �89 �89 where Y~ __e II2 e= y and Y1, Y2 are independent. The proof of this relation 
is given in three parts: For a t 

fl-var X = fl var X [0, r] + fl-var X [r, 13, (1) 

where the summands are independent; 

fl-var [r, 1] & fl-var [0, 1 - r] ; (2) 

fl-var [0, r ] g  r ~/~ fl-var [0, 1], (3) 

for r=�89 ], ~. 

For fixed P and X, since fi < 1, the variational sum is only increased if P is 
i 1 replaced by a refinement of P to {> 3}. Therefore we assume r e P  and write 

V(P, fl) = V(P c~ [0, r], fl) + V(P c~ [r, 1], fl). 
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The condition that ~ is closed under piecing at r=�89 1 enables us to calculate 
/3-var X, for fixed X, by taking the supremum of these two terms separately. Since 
the random variables fl-var X I-0, r] and/3-var X [r, 1] depend on values of X(t) 
in non-overlapping time intervals, they are independent, and (1) is proved. 

Because the process is stationary, 

V(Pn [r, 1], fl)& ~ ]X( t i -r ) -X( t i_ l -r ) l  ~. 
t i - l , t i~Pr~[r,  1] 

For each path the supremum over P ~  of the right side is the same as fl-var 
X [0, 1 - r], since ~ is closed under translation by r. The supremum of the left side 
is/3-var X I-r, 11, so we have (2). 

For fixed P, V(P ~ [0, rl, fi) ~ 

rP/~ E IX(t,/r)-X(t~-dr)l ~. (4) 
ti -1 , t i~P n [O,r] 

The closure of ~ under multiplication by r enables us to calculate the supremum 
of (4) over P ~  for fixed X by taking the supremum of r ~/~ V(R/3). Statement (3) 
follows. 

Now combining (1) and (2) and applying (3) to each term we have 

/3-var X &/3-var X [0, rl +/3-var X [0, 1 - rl 

~r p/" /3-var X+(1  -r)  ~/~ /3-vat X, 

where the terms on the right are independent random variables. This is the relation 
we wished to prove. Note that only the proof of (1) requires that /3< 1. 

Let F be the distribution of Y-/3-var X. Since Y is nonnegative, either F is 
concentrated at a single point, possibly Go, or the Laplace transform of F is 
e -c~ where 0 < ~ <  1, [cf. 4, p. 424]. In the latter case 7 = ~//3. 

Suppose F is concentrated at a. The supremum is 0 only with probability 0, 
so a>0 ,  and F , F  is concentrated at 2a. But Y~+ Y2 a--2a/~ Y, so a is co except 
possibly when/3/e = 1. We conclude that when/3/0~ < 1, F is concentrated at co, 
whereas if/3/e = 1, F may be concentrated at any point of [0, co]. This concludes 
the proof of (ii) and (iii). 

In case 0 < ~//3 < 1 the above argument does not tell us whether F is the proper 
stable law of index e//3 on [0, co) or whether F is concentrated at co. The following 
theorem of Blumenthal and Getoor [1] gives the answer. 

Theorem A. Let X(t) be the symmetric stable process in R" of index 0~, 0 < e < 2, 
and let ~ '  = {all finite partitions of [0,1] }. Then P {/3-var X = co } = 1 or 0 according 
as/3<~ or /3>e.  

We use only the second half of this theorem. (The above includes an independ- 
ent proof of the result for/3 < e.) If N c N' then/3-var X over N </3-var X over N'. 
Therefore if /3>e, P{/3-var X =  co} =0  for any collection of finite partitions 
and F is not concentrated at co. We conclude that F is the proper stable law on 
[0, co). 

If N is a sequence of partitions, closed under translation and multiplication by 
~, �89 ~-, and piecing at �89 �89 which proceeds by refinements, and/3 < 1, then lira sup 
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/3-var X(P,) = limit/3-var X =/3-var X, the supremum over the sequence N regarded 
as a set, so that Theorem 1 applies. If N does not proceed by refinements, the 

identity lim sup/3-var X(P,)--e/?-var X, for /3<1, /3~c~ follows from Theorem 2, 
which can also be proved as an easy corollary to Theorem 1. 

Theorem 2. Let ~ be a sequence of finite partitions of [0, 1], closed with respect 
to translation and multiplication by �89 �89 2 and piecing at �89 �89 Let/3 < 1. Then Theo- 
rem 1 holds with/3-var X replaced by lim sup/3-var X(P,). 

Proof. The proof parallels the proof of Theorem 1 with the obvious modifi- 
cations. In place of Theorem A we need to know that P {lim sup/3-var X = oe } = 0 
if/3 > ~. This follows easily from Theorem A. As a set, N ~ N' so that 

lim sup/3-var X(P,) </3-var X over N_<_/3-var X over N'. 

4. A Method Using Laplace Transforms 

When ~ is a sequence we expect that the distribution of the variation can some- 
times be established by showing that the distributions of Y. = ~ IX(ti)-X(ti_ 1)1~ 

t i ~ P n  

converge to a stable law, while the random variables Y, converge almost surely. 
An example is given by Theorem 3, which differs from Theorem 2 in allowing/3 > 1 
and in restricting the mesh of the partitions. We require the following lemma: 

Lemma. Let Xn be a sequence of random variables and let lim sup Xn = X. Let 
n ~  oo 

F, be the distribution of X , ,  and suppose the F, converge to a limit distribution F. Let 
G be the distribution of X. Then G (y)<-_ F (y)for every y. I f X ,  converges to X almost 
surely, then G = F. 

Theorem 3. Let X(t) be a symmetric stable process on R 1 with index c~, 0 < c~ < 2. 
Let ~ be a sequence of partitions P, such that P, contains n points and the mesh #, 
of P, goes to 0 as n goes to oe. Let Y,= ~ ]X (t i)-  X (ti_ l)l p. Then 

t i ~ P n  

i) /f/3 > e, the distribution of Y, converges to the one-sided stable law of index ~//3. 
I f  in addition/3 < 1 and P, proceeds by refinements then I1, --, Y almost surely, where 
Y is distributed by the limiting distribution; 

ii) / f e /2</3<e ,  the distribution of Y, converges to 0 on [0, oe) and 

P {lim sup Y, = oe } = 1 ; 
n ~ o o  

iii) /f c~=/3 then (ii) holds. 

Proof Let H be the distribution of X(1). That x" (1 - H ( x ) ) ~  b, a constant > 0 
as x ~ oe is a well-known property of stable laws [c. f. 4, p. 547]. Since/-/is symmetric, 
the distribution of [X(1)l ' is a ( x ) = 2 H ( x  l /p)- 1 on [0, oe), and 

x~/P(1-a(x))-+2b as x ---, oe. (5) 

The distribution of IX(t~)- X(tg_ 1)18 is the same as that of [X(1)[P (tz- tz_ 1) r 
and the terms of the sum Y, are independent. Denoting (t~-ti_l) by Ati, the dis- 
tribution of Y, is 

6(  At ~ ~/~ x)* G(At2 ~/~ x)* ... �9 G(At2 p/~ x). 
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Let q~ = ~ G. Then the Laplace transform of the convolution is l~ ~o (2 A t~/'), 
i = 1  

and that  of the distribution with density 1 - G  is (1 -~o (2))/2. Therefore (5) implies 

( 1 - q o ( 2 ) ) / 2 ~ c 2  ~/#-1 as 2--+0 [4, p.424]. (6) 

For  fixed 2 consider 
n n 

- -  l o g  ~I (P (2 A t~ I~) = - ~ l o g  [q) (2  A t~ I~) - 1 + 1 ] .  
i = 1  i = 1  

(7) 

We use the inequality [log(1 + x ) - x [  <�89 X 2, for small Ix I, with x = (p-1 .  Given 
e > 0, let n be large enough so that  1 - ~o (2 A t~/~) <= (c + e) (2 A tf/~) ~n for i = 1 . . . .  , n. 
Then 

n 

2 Ilog(q)(2 Attila) - 1 + 1 ) -  (~0(2 At~/') - 1)l 
i = 1  

n 

< l y .  11 -~o(J.At{/')12 <=�89 n22~1# Z At2(c'  + e) z 
i = 1  

--+0 as n ~ 0  since max Ati--,0. 
i = l , . . . , n  

It follows that  
// 

- Z log <p (2 At~i/~) ~ ~ 1 - (p (2 A t~i/'). 
i = 1  i = 1  

Now choose n so large that  

(c - e) 2 ~/t~ A ti _-< 1 - (p (2 A t#i/~) <= (c + e) 2 ~/# A ti, i = 1 . . . .  , n. 

Summat ion  over i yields 

i.e. 

(c - ~) ~1~ < ~ 1 - q~ (2 A t{ i') < (c + ~) ~#lp, 
i = 1  

~ l - ~ o ( 2 A t ~ / ~ ) - - ) c U / p  as n--)oo. 
i = 1  

Combining this with (7) we have 

o r  

- log 15I q~ (2  At~/~) --) c )~/t~, 
i = 1  

l • I q )  (2 A t~/~) --. exp ( - c 2~/#). 
i = 1  

It follows from the continuity theorem for Laplace transforms that  the distribu- 
t ion of Y, converges to F where P~F=exp( -c2~ /~ ) .  

If fl < 1 and N proceeds by refinements then for each sample path the sequence 
u is nondecreasing and therefore converges. The last statement of (i) now follows 
from the Lemma.  



The Variation of a Stable Path is Stable 145 

If  fi < c~ we use a similar argument .  Since 1 - G(x) ~ 2 b x -  "/p and  c~/fl > 1, 
x 

F ( x ) =  S1-G(y)dy--,c as x ~ o e ,  where 0 < c < o e .  It  follows that  ~ F ( 2 ) =  
0 

[ 1 -  q) (2)]/2 ~ c as 2 - * 0 ,  i.e. 1 - q ~ ( 2 ) ~ c 2 .  

Proceeding as in case (i), given e > 0 we have as n ~ o% 

n 

i = I  

if 2/~/~ > 1, so that  again  

- ~ l o g  q)(2At~/~)~ ~ 1-@(2At~/'). 
i = 1  i = 1  

F o r  large enough n, 

E A <= 1 - A tf/'). 
i:I i = 1  

tl 

Since fl/c~ < 1 and  max  A ti --+ 0 the left side ~ 0% and so does - log ~I  (P (2 A tBi/=). 
F I  i = l  . . . . .  n i = 1  

Therefore  q~()oAt{/~)-~O as n ~  for each 2, and the cont inui ty  theorem 
~=1 

implies that  the dis t r ibut ion of Yn converges to 0 for each x in [0, oo). It  follows 
f rom the L e m m a  tha t  P {lira sup I1, = oo} = 1. 

n--~ ao 
x 

If  fl=c~, then y(1-G(y))~b as y ~ o o ,  and F ( x ) =  S 1-G(y)dy~blogx.  A 
0 

Tauber ian  theorem [4, p. 421] implies tha t  [1 - ( p  (2)]/2,-, c log (1/2) as 2 ~ 0. 

Again  proceeding as in case (i), given e > 0, as n --, o% 

~ll-q)(2Ah)[2<-_(c+e)222~ Ah l o g ~ -  i 
/ = 1  i = 1  

< ~AtZ~(2Ah)-z~O. 
i = 1  

For  large enough n, 

( ) (1)  1 EAti<(c_e)2~Ati log ( c - e ) 2 1 o g  2 max  At~ 
i= l , . . . ,n  

< i 1 -  ~~ Ati)- 
i = 1  

As n ~ ~ ,  the left side and consequent ly  also the right side --, ~ .  As in case (ii) 
we conclude that  the dis tr ibut ion of Y~ converges  to 0, and  P {lim sup Y, = ~ }  = 1. 

n ~ o o  

Brownian  mot ion ,  the stable process with index ~ = 2 can also be investigated 
by the m e t h o d  of T h e o r e m  3. In  the no ta t ion  used there, F(x)~ c > 0  as x ~ o o  
for every fl > 0. This  leads to the result tha t  if #~ ~ 0 as n ~ 0% the dis tr ibut ion of 
Y~ converges to a dis t r ibut ion concent ra ted  at ~ if 13 < 2, at 0 if fl > 2, and at a 
n u m b e r  d > 0 if fi = 2. We  conclude that  Y, does not  converge to a stable r a n d o m  
variable in the case fl > ~ = 2. 
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Some information about the rate of growth of the variational sum if c~-- fl < 2 
and P~ = {i/n, i=0,  ..., n} is given by Theorem 4. 

Theorem 4. Let X(t) be a symmetric stable process of index ~, O<c~<2. The 
n 

distribution of Z , =  ~ lX( i /n ) -X( ( i -1 ) /n ) l ' / l ogn  converges to a distribution 
i = 1  

concentrated at c, 0 < c < oo. 
x 

Proof Let G be the distribution of IX(1)I" and F(x)= ~ l - G ( y ) d y .  The 
O 

distribution of Z,  is G"*(x(n log n)). As in part (iii) of Theorem 3, y ( 1 - G ( y ) ) ~  b 
as y~oo ,  F(x )~b  log x, and [ 1 -  q) (2)]/2 ~ c log 1/2, where s As n--.oo, 

- log q~" (2/(n log n)) ,-~ n [ 1 - (p (2/(n log n))] ~ n c (2/(n log n)) 

�9 log((n log n)/2) = c 2 [ log n + log log n + log 1/2]/log n ~ c 2. 

Therefore ~o"(2/(nlogn))-*e -k~. It follows from the continuity theorem for 
Laplace transforms that G"* ((n log n) x) converges to the distribution concentrated 
a t  c. 

5. Corollaries Using the Method of Section 3 and Results of  Section 4 

Corollary 1. Let X(t) be a symmetric stable process of index ~, 0 < ~ < 2 ,  and 
let ~ =  {all finite partitions of [0, 1] of mesh #_< 1/n}. Let Y, be the supremum 
over P e ~, of V ( R fl), fl > ~. Then the variation lim fl-var X(N,) defined by Y= limit i1, 
is a proper stable random variable of index a/ft. ,~oo 

Proof. The proof follows that of Theorem 1. Statements (2) and (3) hold just as 
in Theorem 1. We must show that (1) holds�9 

Let A be the set of paths which are continuous at r. Since the stable process 
has no fixed discontinuities, P {A} = 1. For each path in A, I1, < II, [0, r] + I1, [r, 1] + 
sup [X(tj)-X(tj_OI p, where tj_l and tj are the points of P neighboring r, or 
P ~ n  

t j_l= t j=r if reP. As n ~ov,  t j -  tj_ 1 -* 0, and so does sup [X(tj)-X(t j_l) l  ~. 
P ~  

Almost surely, then, 

limit Y, __<limit I1, [0, r] + limit I1, [r, 1]. 

To obtain the reverse inequality we write for each point in A, 

Y, + sup (IX (t j) - X(r)[8 + IX(r) - X(tj_ 1)I t~) >= Y, [0, r] + I1, Jr, l l ,  

and apply a similar argument�9 We conclude that (1) holds�9 
As in Theorem 1, Y satisfies the defining relation for a stable random variable. 

Let F be the distribution of Y F is either concentrated at a point, possibly o% or 
is the proper one-sided stable law of index c~/fl. Since ~ < fl, as in Theorem 1 F 
cannot be concentrated at a point of (0, oo). Theorem A implies, again, that F 
is not concentrated at oo. That F is not concentrated at 0 follows from Theorem 3. 
Let {P,} be a sequence of partitions such that P, has n points and the mesh of P, 
decreases to 0 as n ~ oo. Then Theorem 3 part (i), together with the Lemma, 
implies that the distribution G of lira sup fl-var X(P.) is bounded by a proper 
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one-sided stable law; in particular G(0)=0. For each sample path, limfl-var 
X(N,) > lim sup fl-var X(P,). We conclude that F(0)= 0. 

We note that this proof does not extend to Brownian motion since for e--2, 
fl> e, and P, becoming dense in [-0, 11, lim sup fl-var X(P,) = 0  almost surely. 

Corollary 2. Let ~ =  {all finite partitions of [0, 1]}, 0 < e < 2 ,  f l>e,  and fl-var 
X = sup V(P,, fl). Let G be the distribution of fl-var X. Then G is in the domain of 

P~;P 

normal attraction of the stable law F of Corollary 1, and 1 - G (x) ~ e x-~/'  as x ~ oo. 

Proof First we introduce some notation in addition to that of Corollary 1. 
I fP  is a finite partition, let ~, w P = {partitions in ~, which include the points of P}. 
Let F, denote the distribution of Y,, F,(P) the distribution of the supremum of 
V(Q, fl) over Q in ~, u P, and F(P) the limit as n ~ oo of F, (P). Since the collection 
of partitions ~ , w P  decreases with increasing n, the supremum of V(Q, fl) is 
nonincreasing, F, (P) is nondecreasing, and F(P) is the distribution of the limiting 
random variable. 

Let re  [0, 11. From Corollary 1 we have limit Y, = limit I1, [0, r] + limit Y, [r, 11 
almost surely. In terms of the new notation, if we regard {r} as a partition, F=F(r). 
More generally, if P is any finite partition F = F(P) = lim F, (P). Since ~ ~ ~, w P 
and F, (P) is nondecreasing as n increases, we have F,__< F, (P)__< F. This inequality 
holds, in particular, when P is P,, the regular partition of mesh 1/n. We conclude 
that F, (P,) converges to E But ~, u P, = ~ u P,, so F(P,) converges to F. 

Now F(P,) is the n-fold convolution of the distribution of fl-var X [0, 1/n] 
which, as we saw in Section1, is distributed like n-~/~fl-varX; i.e. F(P,)= 
[G(n~/'x)]"* converges to the stable law F. By definition, then, G is in the domain 
of normal attraction of F. The accompanying asymptotic relation is well known [4]. 

The next corollary is an extension of Theorem 3 part (i). Its proof uses Corol- 
lary 1 as well as previous results. 

Corollary 3. Let X (t) be a symmetric stable process of index e, 0 < e < 2, and let 
5 ~ be a sequence of partitions P~ of [0, 11 such that P, contains n points and #n = 
mesh of P, decreases to 0 as n -~ oo. Then the distribution of lim sup fl-var X(P,) is 
bounded between two proper stable laws of index e/fl, for every fl > e. 

Proof With N, as in Corollary 1, for each path 

lim fl-var X(~,)> lim sup fl-var X(P,). 

If F and G are the distributions of these two random variables in the order written, 
then F N G. Corollary i says F is a proper stable law of index a/ft. On the other 
hand Theorem 3 part (i), together with the Lemma, says G is bounded above by 
such a stable law. 

6. Discussion 
The restriction fi = 1 in Theorem 1 was imposed in order to allow �89 and �89 to be 

included in all partitions. If ~ is all finite partitions of [0, 1], it is possible that the 
distribution of fi-var X remains unchanged if �89 or �89 is added to every partition. 
If this is the case then the method of Theorem 1 will give a new proof of Theorem A 
whenever fi__< e and will specify that fi-var X is distributed by a stable law when 
f l ~ e .  
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The scaling relation (3) can be shown to hold for each t in [0, 1]. When fl-var X 
is distributed by a proper stable law with Laplace transform e x p ( - c U / a )  it 
follows from (3) that the transform of the law of fl-var X[0,  t] is e x p ( - t  c U/P). 
It now follows from the stationary and Markov properties of the stable process 
X(t) that fl-var X[0,  t] can be viewed as a one-sided stable process or stable 
subordinator of index e/ft. In fact an alternative approach to Theorem 1 is to 
show that fl-var X[0,  t] is a differential process which satisfies (3) for each t. 
Blumenthal and Getoor have observed this in a slightly different context [2, p. 509]. 

It is not clear what happens in Theorem 3 part (ii) if fl < e/2. If P, is the sequence 
P,={i/n, i = 0  . . . . .  n}, however, the method of Theorem4 leads to the result 
P{lim sup fl-var X=oo}  = 1 for every fl<c~<2. 

The earliest results of this type appear to be those of P. L6vy [5] on the 2- 
variation of the Brownian path. L6vy showed that if N is all finite partitions then 
2-var X = oo almost surely, whereas if N is an increasing sequence of partitions 
which become dense in [0, 1], i.e. the mesh goes to 0, then l i m - 2 - v a r X = c > 0  
with probability 1. The method of Theorem 1 indicates that two such possibilities 
exist when e =  fl< 1. However we can conclude from part (iii) of Theorem 3, 
together with Theorem A, that Brownian motion is the only stable process of the 
family for which the two types of e-variation have different distributions. If 
0 < ~ < 2 ,  then both the supremum of ~ [X(ti)-X(ti_l)[ ~ over all finite partitions 

ti~P 
and the lim sup through a sequence of partitions which become dense, are almost 
surely infinite. 

There remains the possibility that for ~ in (0, 2], fl > 1 and fl > ~, the distribu- 
tion of fl-var X may differ from that of lim sup fl-var X(P~) when the limit is taken 
through a sequence of partitions which become dense. However Corollaries 2 
and 3 indicate that for 0 < ~ < 2, the two distributions have similar asymptotic 
behavior. 

The author wishes to thank Prof. J. Chover for several helpful suggestions. 
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