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On the Central Limit Theorem in R k 

T h e  R e m a i n d e r  T e r m  for Special  B o r e l s e t s *  

HARALD BERGSTROM 

Summary. Let F*" denote the n th convolution of a distribution function F on R k and suppose 
that F has-zero moments of the first order and finite second order moment matrix. It is well-known 

that F*"(]/~.) converges to a Gaussian d.f. q~ as n~  + oe. These d.f.s determine measures F*"(If~A ) 
and 4~(A) for Borelsets A. We present a method that admits the estimation of the remainder-term 
F*" (l/~ A) - 4~ (A) when A belongs to a certain class of Borelsets. This class contains all convex sets. If F 
has finite absolute third order moments then the remainder-term is of the order n -~. Also the remainder 
term's dependence on the dimension k is given. These results strengthen and generalize earlier results 
in the same direction. 

1. Introduction 

Consider  a d is t r ibut ion  funct ion F o n  R k where F has zero mome n t s  of the 
first order and  second order  m o m e n t  matr ix  M. Let F* n denote  the n th convo-  

lu t ion  of F with itself. It is wel l -known that  F * ,  (V ~ .) converges to the Gauss i an  
d is t r ibut ion  funct ion  ~ with the same momen t s  of the first and  second orders as 
F, provided that  M is non-s ingular .  In  [4] I proved that  

6. = sup If*"(1/n x)-  �9 (x)[ 

is of the order ( ~ )  if F has finite absolute moments of the third order. Also I 

gave a more  precise es t imat ion  of 6.. Now F * .  (l/- ~ .) induces a measure  #.  defined 

for any  Borelset A on R k. We shall also use the no ta t ion  F* "(1/~ .) for this measure  

and  thus put  #.(A) = F* (l//n A). 

In  the same way �9 (A) denotes the measure of A induced by ~. 

We may  now ask for es t imat ions  of the difference 

5,(A)=IF*"(1/~ A)--~'(A) [ 
for Borelsets A. Already in [6] Esseen proved that  

k 
g)n(A)<Cn k+l 

with a cons tan t  C for a closed sphere A if M is the uni t  matr ix  and  F has finite 
momen t s  of the fourth order. In  [71 Rao  stated (without proof) under  the same 

condi t ions  that  fin (A) = [(log n) ~ n -  213 

�9 This paper was first communicated at the Scandinavian mathematical congress in Oslo, August 
1968. 
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with c~ = (k -  1)/2(k- 1) for any convex set. B. von Bahr [1] gave estimations of ~, 
for general Borelsets where, however, the dependence of n is rather complicated 
and ~, also depends heavily on the set A. For convex sets he gave the uniform 
estimation 

~ < Cn -§ 

if F has bounded absolute moments of the order s > k > 1. 

In [2] Bhattacharya, assuming the existence of higher moments than the third 
moment gave estimations of 6, for certain Borelsets. 

Let B be a Borel set on the unit sphere [xl = 1. We say that the Borelset A 
belongs to the class F(B) if 

A c A + ~ z  

for any z~B and any non-negative number ~. Clearly the class F(B) has the 
following properties 

Aer(n)-o A + xer(B) (1.1) 
for any x e R  k, 

AeF(B) ~ /3 AeF(B) (1.2) 

for any positive number/3 (/3 A denotes the set {x: x = ~ y, yeA}).  In Theorem 3.1 
I give an estimation of 

sup I F*"(]/n A) -  ~(A) I (1.3) 
AEF(B) 

under the condition that F has finite moments of the third order and show that 
this supremum is of the order n -~. Considering differences and sums of sets 
belonging to F(B) we can get estimations of the remainder term for fairly general 
sets A for instance for all convex Borel sets. The quantity (13) depends on B and k 
in a rather simple way which is shown in Theorem 3.2. In Section 4 we estimate 
the remainder-term for sums of dependent random variables. 

The method that I use here can be applied also for convolutions of unequal 
components and also in cases when the limit distribution is not the Gaussian 
distribution but another infinitely divisible distribution, for instance a stable 
distribution. 

2. A Fundamental Lemma 

Let ~ be the Gaussian distribution function with the non-singular second 
order moment-matrix M and zero moments of the first order and denote the 
density function of �9 by D. Hence 

k 

D(x)= (2r 0 2 A -~ exp-�89 x ' M - 1  x, (2.1) 

M = (#/j), #~j second order moment, A = det M. 

There is an orthogonal matrix L which transforms M-1 into the diagonal 
matrix where the elements 2j of the main diagonal of the matrix are the eigen-values 
of M-1. By this transformation D (x) is transformed into the density 

k k 

Do (x)= (2 72)-2 A -~ exP-�89 ~ 2j x~. (2.2) 
j = l  
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/ A.._. \ 
We observe that  M - 1  =/-v-~ -) where AU, i , j = l , 2  . . . .  ,k  are the cofactors of A. 

We also in t roduce the trace S of  M-  

S= ~ Ajj (2.3) 
j=a A 

and observe that  also 
k 

S = ~, 2j. (2.4) 
j = l  

For  a set B on the unit sphere Ix] = 1 on R k we introduce the cone 

C(x, B ) =  {t: t=x+ccz, z~B, ~6[0,  + oo)}. (2.5) 

N o w  we state our  fundamental  lemma which is a generalization o f L e m m a  2 in [-4]. 

L e m m a  2.1. Let B, F(B) and C(x, B) be defined as above and put 

(i) g (p )=  sup r 
Ixl=pS-~ 

(ii) M(e)=sup~R~ [ F - ~ ] * ~  ( @ )  (A+x),~>0, 

1 
(iii) ( 2 - f i ) g ( p o ) =  1 + - -  

7 

where fl and Po are positive numbers and fl < 1. Then 

xsR ksup ,F(A + x)-q~(A + x), <Max [ fll//~-~ 7 ( M ( e ) + ~ )  ] 

for A eF(B), provided that 7 > 0. 

Remark. If B contains an open set then sup g(p)> 1 so that  fi and p can be 
chosen as positive numbers  so that  y > 0. 

In order  to prove L e m m a  2.1 we shall need two lemmas which we now give 
without  proofs. 

L e m m a  2.2. For any Borelset A on R k we have 

~ . -  - �89 I~(A§ = (2 ~) - - [y[  S -~ . 

L e m m a  2.3. For any Borelsets A and C on R k and any e > 0 we have 

k e  
[ ~ [~(A +e v)-  ~(A)] D(v) dv] <=-- 
C 7~ 

We are now going to prove Lemma  2.1. Put  

6 = sup IF(A + x ) -  4~ (A + x)] 
x ~ R  k 

and first consider the case when F(A + x) is larger than �9 (A + x) at the supremum. 
Then we choose Xo such that  61 =F(A +x~ - ~(A + x ~ is arbitrari ly close to 6. 
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Observing that F(A+t)>=F(A+x ~ for tsC(x~ since AeF(B) and that 
IF(A+t)-cb(A+t)l<6 for all t we obtain for any point x 

> [F(A + x ~ cI)(A + x~ ~-c(~, m 

1 
e k ~ [Cb(A+t)-~(A+x~ dt 

C (x ~ B) 

- 6 .  e~- ~ D dt. 
R k - C (x O, B) 

x - - t  
= - v  and observe that C(x ~ B) 

o r  

and then 
6<  eP~ 

fl 6 (2 n) ~ 
- -  >Po 

8 

In this relation we make the transformation 
( x ~  ) 

then is transformed into C , B . Then we obtain 

M(e)>=((5 +60  ~ D(v)dv-6 
c ( @ , B )  (2.6) 

- ~ [eb(A+x+ev)-cb(A+x~ dr. 
c(~,.t 

By Lemma 2.2 and 2.3 we find that the last integral is not larger than 

ek 
(2n)--~lx-x~ S~ S D(v)dv+--  

7"C c(~e;_~,,,) 

Putting Ix-x~ 6S-~(2n) ~ and observing the definition of g(p) we get from 
(2.6) 

6(2n) ~ r + 6 - z  6)g / / - 6 -  
- -  L 8 J 

or since 61 is arbitrarily close to 6 

M(~)>6(2_fl)g [_fl6(2n)�89 ek - 6 - - -  (2.7) 
7Z 

Either we have 
/~ 6 (2 ~)~ 

<Po 
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and then we obtain from (2.7) regarding (iii) 

Hence the lemma is proved in this case. If ~ = sup ~b (A + x ) - F ( A  + x) we use the 
fact that F(A + t) < F(A + x ~ on the cone 

C(x ~ B)= {t: t = x ~  zeB,  c~e 1-0, + oo)}. 

Then the proof  can be carried through in the same way as in the first case. The 
lemma is proved. 

Remark. It is easily seen that (2.6) remains true if we change C -, B 
e 

against any sub-Borelset of this cone. This fact can be used in order to get better 
estimations in some cases (cf. [3]). 

3. An Estimation of the Remainder Term 

Theorem 3.1. Let F(B) and C(x, B) be defined as above and suppose that 

lira sup ~[C(x,B)]>�89 
P~+~ Ixl=pS-~ 

Further let F be a distribution function on R k with zero moments of the first order 
and second order moment matrix M which is non-singular. Put 

k 

~3j= ~ Ixjl 3 dF(x), ~ =  y~ ~ 
R k j=  1 

and assume that fla < + oo. Then 

(i) sup [F*"(1 /~A)-~(A)[<Cf laS~n-~  
AeF(B) 

where q~ is the Gaussian distribution function with zero moments of the first order 
and second order moment matrix M, S is the trace of M -  1 and C is a constant only 
depending on k and B. 

Proof. At first we notice that 

3 >  5 
/~3 S ~ -  k ~. (3.1) 

From (3.1) it follows that the inequality of Theorem 3.1 holds for n<no if 
C>n~ k-~ 

Having established the fundamental lemma we can now proceed as in 1-4] and 
prove the theorem by the help of induction. Thus putting 

z z -  v , ~ > 0 ,  e-,_~_l>0 e~=e -I---, (~ . . . .  1) 2= n - v - 1  
n n 
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for v-=0, 1, ..., n -  1, we get 

[ F , . ( V / ~ . ) _  ~ (. 3] ,  ~b ~__ 2 F ,  . . . .  1 (V#~ o ) ,  i f  (V~ . )  _ ~b (]//~ o ) ] ,  ~b 
v~0 
. - 1  

n-2  

Now 

Hence putting 

(3.2) 

H ,_~_I ( ' )=  r,_~_l(')* 4~ ( ~ )  (3.3) 

we obtain from (3.3) 

, -2  (3.4) 
+ 

v=0 

Now assume that the inequality in Theorem 3.1 holds true for n <= n'. It was shown 
above that it certainly does for n'=no if C>no k -}. Consider then n=n'+ 1. In 
(3.4) we obtain for any Borel set A 

, _ 2  (3 .5 )  

+ 2 H,-~-I( ' )*[F(] / /n ' ) -@(I /n ' )](A)  �9 
v=O 

Since F and ~ have the same moments of the first and second orders we obtain 
expanding H(A - t) by Taylor's formula 

IH(')*[F(Vn')-qV(I/n ')](A)I=[ ~ H ( A - t ) [ d F ( t  vn)-~b(t] /n)]  [ 
R k 

(3.6) 
1 [ k ~ \3 d [ f ( t  

For any non-negative integers m~ . . . .  , rn k with ml + " "  + m2 = m we have 

axT,...~x~k = 7  r ( a - v )  D ~ ~ x " ? . . . ~ x ' ;  ~ 

0" D (v) <e;-m sup Ir ( A - x ) l [  dr. 
- x~R~ ~ ~ V T ' . . . e v ~  '~ 



On the Centra l  L imi t  T h e o r e m  in R k 119 

In [4] p. 114 we have given the inequality 

Z AO xj (3.7) 
c~vT,...c?v,~ D(v)dv Oxr~...Ox'~ ~ i=1 j = l  A 

Observing that 
IA~j[ < (A.  Ajj) ~ 

since �9 is non singular, we find that the right hand side of (3.7) is not larger than 

Thus we get from (3.7) 

t t l  1 n l k  ~x~ ...~Xk 
H(A-x)  <= / k A \ (m!) } ,J-(l-[- 1 ~JJ} 2 A  / e~- " x~RkSUp Ir (A-x) l .  

Combining this inequality and (3.6) we obtain 

IH(.),  [F(v/~)-q~ (1/~)] (A)I < 6- ~ e; -3 xSUp~ Ir(A - x)l 

�9 I t j l  
j = l  

By well-known inequalities we easily get 

[tj] <k~- ~ [@3 =k~S ~ ~ ]tj[3. 
j = l  = j = l  j = l  

Since 
f ltjl3dF(tl/n) -~ = Fl f l  3 j 

R k 

and by [1] 4 

R k 

we thus obtain from (3) 

IH._v_l(. ) �9 [ F ( ] / ~ - ) -  �9 (t/~-)] (A)I 

< 6 - } (  1 + 3}) (rt~ gv)- 3 k~S} f13 sup Ir . . . .  I(A -x ) l  

(3.8) 

(3.9) 

for v = 0, ..., n -  2. It is easily seen that this inequality remains true for v = 0 if we 

define H,_~ ( ' ) =  4i ( ~  and thus put r,_ 1 (') equal to the unit distribution and 

then sup It,_1[ = 1. Hence we get from (3.5) 

f13 
(3.1o) 

. . . . .  ll - l,t. 
- v = o  x ~ R k  ) 
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Now assuming that the inequality in Theorem 3.1 holds true for n<n' and 
observing that 

A~F(B) ~ - n - v -  1 (A-x)eF(B) 

we get 
Ir._~_t(A- x)l < C fl3 S} (n-  v - l ) - i .  

It was shown in [3] p. 150 

~ 8;3(n-v-1)-~<__2n~8-1+n-~e -3 1-  

> -�89 and the right hand side is smaller than 4 n ~ e- 1 for 8 = n , n > 21 

Regarding these inequalities we obtain from (3.11) 

(@) ( A ) < M ' ( 0  (3.11) 

with 
M' (8) = 6~-(1 + 3 ~) k ~ [e~- 31 + 4 C fl a S~ 8-1 n-  ~] fl 3 S ~ n-  ~. 

To this inequality we apply Lemma 2.1 and get 

]F*"(I / 'nA)-~(A)[<Max{~,7[M'(O+~kTz-]} (3.12) 

where Po , / / and  ? are given in this lemma. 

Now choose e = a/~3 S} n-~ 

where a > 1 and a is independent of n. Then 8._ 1 > 1 and 

?M'(0__<76-~(l+3~)k�89 1 + - - ~ -  ~3S~n -~ 

8k ak 
? - - = ? - - / ~ 3  S~ n-§ 

Po 8 Po a 

If we choose C so large that 

7 �9 6-~(1 + 3-~) k~ (1 + - 4 ~ - )  + 
7ak 

< C .  (3.13) 
7~ 

poa < C (3.14) 

we find that the right hand side of (3.12) is not larger than C 83 S~ n--~ and so the 
theorem follows. 

1 This estimation may be improved. The second term on the right hand side of the inequality is 
small compared to the first one for those ~ which are considered. 
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We shall now examine the dependence of C on the dimension k. It follows 
from (3.13) that we have to choose 

a =  a o k ~ 

with a number ao> 1 and then C is at least of the order 0(k~). We may then let 
Po have the order 0(k). However Po may have a larger order for certain sets B. 
As a complement to Theorem 3.1 we show 

Theorem 3.2. Let the eigenvalues 2i, j =  1, 2, . . . ,  k of M -1 satisfy the condition 

)ci 2  pf =d 
and let 7, fl and # be given positive numbers, fi < 1. I f  

1 
(i) (2- f l )  sup c P [ C ( x , B ) ] > I + - -  

Ixl=uk6(k) d-~S -�89 7 

with (~ (k)>= 1, then the constant C in the inequality (i) of Theorem 3.1 can be chosen as 

C= C o k~ (k )  d -1 

with an absolute constant C O . (Hence C o only depends on fi, 7 and #. The factor d 
is introduced for later purpose.) 

Proof. We may choose 
p o = p k 6 ( k )  d -1. 

Observing that d <  1, 6(k)> 1 we find that (3.13) and (3.14) then are satisfied for 

a =  8 7" 6-~( 1 + 3 ~) k~, 

C o > 2 7 . 6 - ~ ( 1 + 3 ~ ) ( 1 + ~  7-) 

Co >87  #.  6-~(1 +3~) �9 fl-l(2rc)-~. 

Of course, these estimations are not very good for numerical computations. (If 
g(k) is of order larger than 0(1) it is easily seen that the left hand side of (3.14) 
essentially depends on k~(C/a).) We may now ask: Which sets B do satisfy the 
inequality (i) of Theorem 3.2 for given #, 6 (k), d, s, fl and 7- Clearly B depends on 
the dimension k. The next theorem gives a sufficient condition for (i) and a descrip- 
tion of sets B that holds generally for any dimension. 

Theorem 3.3. Let the cone C(O, B), 0 being the zero-point, contain the "circular" 
rc 

cone with the angle of  departure 2q), O< q~ <~- ,  

{y: y = ~ z ,  c~>O, [zl= 1, z z ' > c o s  ~o} 

where z' is some point on Iz[ = 1 and 

1 
sin q) > 6 (k)" 

9 Z. Wahrscheinlichkeitstheorie venv. Geb., Bd. 14 
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Further suppose that 
hi 2 

inf = -  = d . 
i,i ~j 

Then to given positive numbers fi and 7, fl < 1 there exists a positive number # such 
that (i) of Theorem 3.2 holds 

Remark. We observe that we then have the estimation 

IF*"(1/% A)  - �9 (A)[ <= C O k S 6 (k) d - 1  S ~  ]~3 n -  { 

for AsF(B) which is uniform in respect to all classes F(B) and all F such that a 

circular one with the angle of departure 2 ~o, sin (p = 6 (k) belongs to B and F has 

first order moments equal to 0 non-singular moment matrix and finite third order 
absolute moments 2. 

Proof Let the conditions of the theorem be satisfied. The cone C (x, B) contains 
the cone 

{y: y=x+ z, Izl-- 1, a_>_0, zz '>cos  cp} 

and this cone contains the sphere 

{y: lyl<lxl sin q~}. 
Hence we have 

q) [C(x, B)] => ~ O(v) dr. (3.15) 
Ivl =< Ixl sinto 

By the orthogonal transformation v - ,  L v with E L---- unit matrix we first transform 
this integral into 

Do (v) dv 
Ivl-<lxl sin~o 

where Do(v) is defined by (2.2). Then making the transformation 

P v ~ v  

in the last integral where P has the diagonal elements 2~, 2~, ..., 2~ and all other 
elements equal to 0, we find that the last integral can be written 

k 

(2re)-: ~ exp-�89 
[p - 1 v[ < [xl s in ~o 

The ellipsoid 

contains the sphere 
IP -1 v[_-< Ix[ sin q~ 

Ivl Ixl sin cp 

where 2 = mjn 2~. Hence we obtain from (3.16) 
] 

k 

4~ [ C (x, B)] > (2 g) -~ exp-�89 2 dr. 
J_ . Ivl_~= IxL sm~o 

2 If 6 (k)= o (1) we may choose C o = 4 for large k. 
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Consider now the case 

#k  .=~-~(k), 

and observe that 

z 
Hence we get for [xl = p S-  ~, 

and 

1 min ~ i  = d 2 
sin ~o > 6 (k)' i, j 2j 

d 
2~S-+> 

- 1 / ~ "  

2 ~ Ixi sin (p>#V ~ ,  

k 

sup ~[C(x,B)]>(2~) -~ ~ exp-�89 dv. 
Ixl = aS- ~ rvl <-u gk 

Introducing spherical coordinates in the last integral we then get for # > 1 

where 

1 
sup ~b[C(x,B)]>-- 

1 =1 

k - 2  

y 2 e x p ( - y )  dy 

k - 2  

y 2 (exp-y)  d y = l - - I k  

1 k - 2  

1 k -2  
= < _ _ ( � 8 9  k) 2 

- -  (exp- �89 #Z k) ~ ( l + ~ k  ) k Z2 exp ( -  y) d y 

- - e x p ( - � 8 9  1 -  1 dy. 
0 

By the use of Stirling's formula we get 

F >(2re) ~ 2 2exp 2" 

Hence the last term in the inequality above is smaller than 

1 1 
#2-1 V ~  exp-�89 

and this quantity is not larger than 

1 
],/2__ 1 

9* 
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for # > 1. Thus the inequality (i) of Theorem 3.2 is satisfied if 

(2-f l )  [1 1 1 > 1 + 1  (3.16) 
1)  = 

and # > 1. Clearly # > 1 can be chosen independently of k such that this inequality 
holds for given fl and #. For large k we may choose kt= 1 +0(k-+). 

4. Convex Sets 

Theorem 4.1. Let F be a distribution function on R k with first order moments 
equal to O, non-singular second order moment matrix M and finite absolute third 
order moments flaj. Denote the trace of M -1 by S the eigenvalues of M -1 by 2j, 
j = 1 . . . . .  k and put 

k 
f13- ~ flaj, dE----inf 2i �9 

j = l  i,j ,~j 

Let �9 be the Gaussian d.f. which has first order moments 0 and second order moment 
matrix M. Then there exists a positive constant Co such that 

(i) iF* "(]/~ A ) -  r (A)[ -< Co k ~ S ~ f13 d-1 n-  ~ 

for any convex set A such that all its translates A + x are F-measurable. The constant 
Co is independent on F, k, S, fla, d and n. 

Remark. A and its translates are certainly F-measurable if A is a Borelset. 

Proof. Since the estimation (i) is uniform in respect to the sets A it is sufficient 
to prove it for finite sets A. Any finite convex set A is e-measurable. In fact, we 
can find a polyeder B that contains A and a polyeder B' that is contained in A 
such that 4~(B) and ~(B') are arbitrarily close to each other. Hence there exist 
Borelsets D and D' such that A c D, D' ~ A and 4~ (D) = q~ (D'). Since 4~ (B')__ r (A) 
=< r and the polyeders B' and B can be chosen such that ~(B') and �9 (B) are 
arbitrarily close it is also sufficient to prove (i) for closed polyeders A of the di- 
mension k and clearly a polyeder is a Borelset. Since the convex polyeder has the 
dimension k it has an interior that is an open set. We can then enclose a regular 
simplex in A. Let pU), j = 1, . . . ,  k + 1 be the normal unit vectors to the sides of the 
simplex, directed from the simplex. Any direction 

k 

p=  ~ ~jpj, ~ > 0  
j = l  

(iv unit vector) determines a hyperplane P(p) of support of A having p as normal 
and at least one point say x in common with A and separating A and the set 
{y: p y > p. x}. All these directions determine the set 

Bk+l= y: y=z+c~p,e>O, zeP(p)c~A, p= ~ e j p j ,  c~j>=O . (4.1) 
j = l  

In the same way we define sets Bj corresponding to the directions p~, v = 1, ..., k + 1 
v=t=j. We shall now show that Bk+l is a set of that type that has been considered 
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in Theorem 3.1. Then we have to determine directions q([ql = 1) such that 

Bk+l +qfl~Bk+ 1 (4.2) 

for any positive number ft. Denote the angle between the direction --Pk+I and 
any of the directions p j, j :t: k + 1 by v. Then 

- - p j .  p k + l = C O S  V. 

We easily find that cos v = 1/k. 
If now xEP(ptJ))c~A for j + k +  1 then the angle between q and ptJ) must not 

be larger than 7c/2 in order that (4.2) holds. That means that the angle between 

_p(k+l) and q must not be larger than ~ - - v .  But if this condition is satisfied then 
q. p(i) > 0 for all j ~: k + 1 and 

k 

q. p = ~ ~j p(J) > 0 
j = t  

7C 
for e j__> 0. Hence all directions q which form at most the angle ~ - - v  with -p(k+l) 
satisfy 4.2. We observe that 

sin - v = ~ .  (4.3) 

We can now apply Theorem 3.3 with 6(k)=k to Bj and get 

t --�89 �9 (B j) = Co d-I St P3 n 

The common boundary between any to sets B j, By can be included in one but only 
one of these sets so that all Bj are disjoint. Observing that then 

k + l  

[r*"(]/-n A)-~b(A)[=< 2 IF*"(t/~ B j ) -  ~b(Bj)[ 
j = l  

we get the desired inequality with 

k + l  
= ' <2C~ .  Co Co" k = 

5. Sums of Dependent Random Variables 

Consider normed sums 
1 n k 

of random variables such that the random vectors 

are independent for i = 1, 2 . . . .  and have the same distribution function F. Further 
suppose that ~(z) has zero mean value vector and non-singular covarianz matrix 
M. Let �9 be the normal distribution function with zero mean value vector and 
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covarianz matrix and let the eigenvalues 2j satisfy the relation 

,~i 2 i n f - - = d  >0 .  
i,J 2j 

Putting 

we get 

A= v: vj<=a 
k j= l  .] 

P[tl,,k <=a]=F*n(l/~ A). 

Applying Theorem 3.3 and observing that we can put g0 = re/2 here we get 

[P(~ln,k <=a)--~(tl,,k <=a)<= CO k~ f13 S~ d-1 n-r 

provided that E [~}i)J = fi3j< + oo (f13 and S are defined as above). 

Remark. Just as this paper was to be published I got an offprint of a paper by Sazonov. On the 
speed of convergence in the multidimensional central limit theorem, Sankhya, Ser. A, Vol. 30, Part  
1968, p. 181-204.  There he studies convex Borelsets and then get essentially the same results as I have 
given in Section 4 though the remainder term is presented in forms that differ from mine. Sazonov 
partly uses my method [4] but  gives a direct estimation of the Gaussian measure of the homogenous  
shell of a convex body. 
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