A Note on σ-Finite Invariant Measures

Leslie K. Arnold

Abstract

Summary. We consider a one-to-one, bi-measurable, non-singular transformation ϕ of a finite measure space onto itself. We obtain two conditions which are equivalent to the existence of a σ-finite measure μ which is invariant with respect to ϕ and equivalent to the given measure m. The first is a generalization of a condition used by Ornstein in his construction of a transformation for which there does not exist any measure μ as above. The second condition asserts that the entire space is the union of a countable collection $\{F\}$ of subsets, each of which has the following property: if we countably decompose F in such a way that each set in the decomposition of F has an image (under some power of ϕ) which is also a subset of F, then the sum of the m-measures of the images is finite (even though the images need not be disjoint).

In this note we obtain two conditions which are equivalent to the existence of a σ-finite, invariant, measure μ which is equivalent to a given measure m. The first is related to previous results of Ornstein [1] and Kakutani and Hajian [2]. The second is an extension of the author's results in [3].

Throughout the paper we let (X, \mathscr{B}, m) be a finite measure space. Any subset of X which we mention is assumed to be measurable. We let ϕ be a one-to-one, bi-measurable, non-singular transformation of X onto X. Thus, B is measurable implies $\phi(B)$ and $\phi^{-1}(B)$ are measurable, and $m(B)=0$ implies $m(\phi(B))=$ $m\left(\phi^{-1}(B)\right)=0$. The measures $m \phi^{p}$ are defined on \mathscr{B} by $m \phi^{p}(B)=m\left(\phi^{p}(B)\right)$. Any other measure μ defined on \mathscr{B} is equivalent to m, written $\mu \equiv m$, if μ and m have precisely the same sets of 0 measure. We are interested in the existence of measures μ defined on \mathscr{B} which are σ-finite, invariant (i.e., $\mu \phi(B)=\mu(B)$ for all B), and equivalent to m.

We shall say a set B is a copy of a set A if A and B are equivalent by countable decomposition, i.e., there are countable decompositions $\left\{A_{i}\right\}$ and $\left\{B_{i}\right\}$ of A and B respectively, and integers $p(i)$ such that $\phi^{p(i)}\left(A_{i}\right)=B_{i}$ for $i=1,2, \ldots$.

In [1] Ornstein constructed a transformation T on (almost all of) the unit interval which satisfies the conditions we have just assumed for ϕ, but which has no σ-finite invariant measure μ equivalent to Lebesgue measure. He proved that T has this property by showing that T has the following property P : for any integer N and any set S of Lebesgue measure greater than $9 / 10$, there is a set $M \subset S$ of Lebesgue measure $1 / 8$ such that there are N disjoint copies of M in S.

We generalize property P slightly and state it for our transformation ϕ.
Property GP. There exist $\varepsilon>0$ and $\delta>0$ such that if S is any set with $m(X-S)$ $<\varepsilon$, and N is any positive integer, then there is a set $M \subset S$ with $m(M)>\delta$ such that M has N pairwise disjoint copies contained in S.

As Ornstein pointed out, it is easy to see that if ϕ has property GP, then it cannot have a σ-finite, invariant measure $\mu \equiv m$. For if μ is such a measure, then there
is a set S with $\mu(S)<\infty$ and $m(X-S)<\varepsilon$. Property GP implies S contains sets $E_{i}, i=1,2, \ldots$, such that $m\left(E_{i}\right)>\delta$, but $\mu\left(E_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. This is impossible. However, we also have the following theorem.

Theorem 1. If ϕ does not have property GP, then it does have a σ-finite, invariant measure $\mu \equiv m$.

Proof. Since ϕ does not have property GP, there is a sequence $\left\{E_{i}\right\}$ of sets whose union is X with the following property: for any $\delta>0$, there are positive integers N_{i} such that if $B \subset E_{i}$ and B has more than N_{i} pairwise disjoint copies in E_{i}, then $m(B)<\delta$. This implies for each i that no $B \subset E_{i}$ with $m(B)>0$ can have infinitely many pairwise disjoint copies all contained in E_{i}.

Let E be any one of the E_{i}. We assert E is bounded, i.e., there is no $A \subset E$ such that $m(A)<m(E)$ and A is a copy of E. Suppose such an A exists. In the proof of the lemma on p. 87 of [3] it was shown that $B=E-A$ has infinitely many pairwise disjoint copies in E. Briefly, if

$$
A=\bigcup_{j=1}^{\infty} \phi^{n(j)}\left(G_{j}\right)
$$

where $\left\{G_{j}\right\}$ is a decomposition of $E,\{n(j)\}$ is a sequence of integers, and the $\phi^{n(j)}\left(G_{j}\right)$ are pairwise disjoint, we define $\tau: E \rightarrow A$ by $\tau(x)=\phi^{n(j)}(x)$ for x in G_{j}. The copies of B are the sets $\tau^{k}(B)$ for $k=1,2, \ldots$ But by our choice of the $E_{i}, m(B)=0$. So $m(A)=m(E)$.

We have shown X is the countable union of bounded sets. By a theorem of Halmos [4], a σ-finite invariant measure $\mu \equiv m$ exists. Q.E.D.

We note that we have also shown that ϕ has a σ-finite, invariant measure $\mu \equiv m$ if and only if X is the union of a countable sequence $\left\{E_{i}\right\}$ of sets such that for each i, if $B \subset E_{i}$ and B has infinitely many pairwise disjoint copies contained in E_{i}, then $m(B)=0$. This is, in some sense, an analog of Kakutani and Hajian's theorem on weakly wandering sets [2; Theorem 1].

Our second result is stated in the following theorem. Like conditions (b) and (c) of [3; Theorem 1], the condition of this theorem restricts the ability of ϕ to map sets of small measure into sets of large measure.

Theorem 2. There exists a σ-finite invariant measure $\mu \equiv m$ if and only if X is the countable union of a sequence of sets $\left\{F_{i}\right\}$ each of which satisfies the following condition: if $\left\{A_{j}\right\}$ is a countable decomposition of F_{i} and if $\{n(j)\}$ is a sequence of integers such that $\phi^{n(j)}\left(A_{j}\right) \subset F_{i}$, then

$$
\sum_{j=0}^{\infty} m \phi^{n(j)}\left(A_{j}\right)<\infty .
$$

Proof. (Necessity.) Suppose μ exists. In [3; Theorem 1] we showed this implies the existence of a countable sequence $\left\{F_{i} \mid-\infty<i<\infty\right\}$ of sets such that $A \subset F_{i}$ and $\phi^{p}(A) \subset F_{i}$ (for any integer p) implies $m \phi^{p}(A)<2 m(A)$. The sets F_{i} are given by

$$
F_{i}=\left\{x \mid 2^{i} \leqq f(x)<2^{i+1}\right\}
$$

where f is a Radon-Nikodym derivative of μ with respect to m. Clearly these F_{i} satisfy the condition of the present theorem.
(Sufficiency.) Suppose X is the countable union of sets F_{i} satisfying the condition of the theorem. We assert each F_{i} is bounded, i.e., there is no $A \subset F_{i}$ with $m(A)<m\left(F_{i}\right)$ such that A is a copy of F_{i}. Suppose there is such an A. Then, as in the preceding theorem, the set $B=F_{i}-A$ has infinitely many pairwise disjoint copies B_{j} for $j=1,2, \ldots$ all contained in F_{i}. This means that for each j there is a decomposition $\left\{B_{j, k} \mid k=1,2, \ldots\right\}$ of B_{j} and integers $\{p(j, k): k=1,2, \ldots\}$ such that

$$
B=\bigcup_{k=1}^{\infty} \phi^{p(j, k)}\left(B_{j, k}\right)
$$

and the sets in this union are pairwise disjoint, for $k=1,2, \ldots$. Put

$$
D=F_{i}-\bigcup_{j=1}^{\infty} B_{j} .
$$

Then $\{D\} \cup\left\{B_{j, k} \mid k=1,2, \ldots, j=1,2, \ldots\right\}$ is a decomposition of F_{i}, and

$$
m(D)+\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} m \phi^{p(j, k)}\left(B_{j, k}\right)=m(D)+\sum_{j=1}^{\infty} m(B)=+\infty .
$$

This contradicts the assumption about F_{i}, hence F_{i} must be bounded. By the theorem of Halmos [4] mentioned above, there is a σ-finite, invariant measure $\mu=m$. This completes the proof.

References

1. Ornstein, D. S.: On invariant measures. Bull. Amer. Math. Soc. 66, 297-300 (1960).
2. Kakutani, S., Hajian, A.: Weakly wandering sets and invariant measures. Trans. Amer. Math. Soc. 110, 136-151 (1964).
3. Arnold, L.K.: On σ-finite invariant measures. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 85-97 (1968).
4. Halmos, P.: Invariant measures. Ann. of Math., II. Ser. 48, 735-754 (1947).

Dr. L. K. Arnold
Daniel H. Wagner, Associates
Station Square One
Paoli, Pennsylvania 19301, USA

