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A Note  on a-Finite Invariant Measures 

LESLIE K. ARNOLD 

Summary. We consider a one-to-one, bi-measurable, non-singular transformation q~ of a finite 
measure space onto itself. We obtain two conditions which are equivalent to the existence of a ~r-finite 
measure p which is invariant with respect to ~b and equivalent to the given measure m. The first is a 
generalization of a condition used by Ornstein in his construction of a transformation for which there 
does not exist any measure # as above. The second condition asserts that the entire space is the union 
of a countable collection {F} of subsets, each of which has the following property: if we countably 
decompose F in such a way that each set in the decomposition of F has an image (under some power 
of ~b) which is also a subset of F, then the sum of the m-measures of the images is finite (even though the 
images need not be disjoint). 

In  this note we obtain two condit ions which are equivalent to the existence 
of  a or-finite, invariant,  measure # which is equivalent to a given measure m. 
The first is related to previous results of  Ornstein [1] and Kakutan i  and Haj ian [2]. 
The second is an extension of  the author ' s  results in [3]. 

Th roughou t  the paper  we let (X, ~ ,  m) be a finite measure space. A n y  subset 
of  X which we ment ion  is assumed to be measurable.  We let ~b be a one-to-one,  
bi-measurable,  non-singular  t ransformat ion of  X onto  X. Thus, B is measurable  
implies q~(B) and  qS-~(B) are measurable,  and m ( B ) = 0  implies m(qS(B))= 
m(qS-X(B)) = 0. The measures m q5 p are defined on N by m ckP(B)= m (OP(B)). A n y  
other  measure  # defined on N is equivalent to m, written # = m, if # and m have 
precisely the same sets of  0 measure. We are interested in the existence of  measures 
# defined on ~ which are a-finite, invariant  (i.e., /~b (B)=#(B)  for all B), and 
equivalent to m. 

We shall say a set B is a copy of  a set A if A and B are equivalent by countable  
decomposi t ion,  i.e., there are countable  decomposi t ions  {Ai} and {Bi} of  A and 
B respectively, and integers p(i) such that  e)P(i)(Ai)=Bi for i =  1, 2, .... 

In [1] Ornstein constructed a t ransformat ion T on (almost all of) the unit 
interval which satisfies the condit ions we have just assumed for ~b, but which has 
no a-finite invariant  measure # equivalent to Lebesgue measure. He  proved 
that  T has this proper ty  by showing that  T has the following proper ty  P :  for any 
integer N and any set S of  Lebesgue measure greater than 9/10, there is a set 
M e  S of  Lebesgue measure 1/8 such that  there are N disjoint copies of  M in S. 

We generalize proper ty  P slightly and state it for our  t ransformat ion qS. 

Proper ty  GP.  There exist e > 0  and ~5>0 such that if S is any set with r e ( X - S )  
< e, and N is any positive integer, then there is a set M ~ S with m (M)> 6 such that 
M has N pairwise disjoint copies contained in S. 

As Ornstein pointed out, it is easy to see that  if q5 has proper ty  GP,  then it 
cannot  have a a-finite, invariant  measure # -  m. For  if# is such a measure, then there 
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is a set S with #(S)< ~ and m ( X - S ) < e .  Property G P  implies S contains sets 
El, i=1,  2 . . . . .  such that m(Ei)>6, but #(Ei )~O as i~oo .  This is impossible. 
However, we also have the following theorem. 

Theorem 1. I f  4 does not have property GP, then it does have a ~r-finite, invariant 
measure # ~ m. 

Proof Since ~b does not have property GP, there is a sequence {El} of sets 
whose union is X with the following property: for any b >0,  there are positive 
integers N~ such that if B ~ E  i and B has more than N i pairwise disjoint copies 
in E i, then re(B)< 6. This implies for each i that no B c E i with re(B)> 0 can have 
infinitely many pairwise disjoint copies all contained in E~. 

Let E be any one of the E i. We assert E is bounded, i. e., there is no A c E such 
that m(A)<m(E)  and A is a copy of E. Suppose such an A exists. In the proof of 
the lemma on p. 87 of [3] it was shown that B = E -  A has infinitely many pairwise 
disjoint copies in E. Briefly, if 

A= U 
j=l 

where {Gj} is a decomposition of E, {n(j)} is a sequence of integers, and the OnO)(Gj) 
are pairwise disjoint, we define z: E ~ A by ~(x)= q~"(J)(x) for x in Gj. The copies 
of B are the sets zk(B) for k=  1, 2 . . . . .  But by our choice of the El, re(B)=0. So 
m(A)=m(E).  

We have shown X is the countable union of bounded sets. By a theorem of 
Halmos [4], a a-finite invariant measure # - -m exists. Q.E.D. 

We note that we have also shown that q5 has a a-finite, invariant measure # -  m 
if and only if X is the union of a countable sequence {Ei} of sets such that for each 
i, if B e E  i and B has infinitely many pairwise disjoint copies contained in Ei, 
then re(B)= 0. This is, in some sense, an analog of Kakutani and Hajian's theorem 
on weakly wandering sets [2; Theorem 1]. 

Our second result is stated in the following theorem. Like conditions (b) and 
(c) of [-3; Theorem 1], the condition of this theorem restricts the ability of q5 to 
map sets of small measure into sets of large measure. 

Theorem 2. There exists a a-finite invariant measure # - m  if and only if X is the 
countable union of a sequence of sets {Fi} each of which satisfies the following 
condition: if {Aj} is a countable decomposition o f F  i and if {n(j)} is a sequence of 
integers such that ~)n(J)(Aj)cFi, then 

m ~"~J)(Aj) < oo. 
j=o 

Proof (Necessity.) Suppose # exists. In [3; Theorem 1] we showed this implies 
the existence of a countable sequence {F/I - oo < i <  oe} of sets such that A c F  i 
and d~ p (A) c F i (for any integer p) implies m ~b p (A) < 2 m (A). The sets F i are given by 

F~= {xl2i< f ( x ) < 2  i+1} 

where f is a Radon-Nikodym derivative of # with respect to m, Clearly these F~ 
satisfy the condition of the present theorem. 
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(Sufficiency.) Suppose X is the countable union of sets F i satisfying the con- 
dition of the theorem. We assert each F~ is bounded, i.e., there is no A ~ F i with 
m(A)<m(Fi) such that A is a copy of F/. Suppose there is such an A. Then, as in 
the preceding theorem, the set B=F~-A has infinitely many pairwise disjoint 
copies Bj for j = 1, 2,. . .  all contained in F/. This means that for each j there is a 
decomposition {B/,klk= 1, 2, ...} of B/and  integers {p(j, k): k=  1, 2, ...} such that 

B= ~J Ov(J'k)(Bj, k) 
k=l  

and the sets in this union are pairwise disjoint, for k = 1, 2 . . . . .  Put 

D-- F,.- ~ S / .  
i=1  

Then {D} u {B/,klk= 1, 2 . . . .  , j =  1, 2 . . . .  } is a decomposition of F~, and 

j= l  k=l j = l  

This contradicts the assumption about Fi, hence F/ must be bounded. By the 
theorem of Halmos [4] mentioned above, there is a a-finite, invariant measure 
/~ = m. This completes the proof. 
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