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Compositions and inverses of measures on the real line are defined as measures 
whose cumulative distribution functions (c.d.f.'s) are compositions and in- 
verses, respectively, of the c.d.f.'s of the measures involved. We study the 
continuity of the composition and inverse operators on measures. We then 
show how a large class of thinnings of point processes and random measures 
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temporary extensions. 
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1. Introduction 

The first result on the convergence of thinned point processes appeared in Renyi 
(1956). It is as follows. Consider a renewal process whose distances between points 
have a finite expectation c~. Independently retain each point of the process with 
probability p and delete it with probability 1 - p .  Change the time scale of the 
process of retained points so that p-1 is the new time unit. Then as p--, 0 the 
resulting thinned process converges in distribution to a Poisson process with 
intensity c~- 1. 

During the last two decades, a number of such convergence theorems have 
been proved for the thinning of (i) renewal processes under more general thinnings 
[2, 7, 14, 17, 18, 20, 21, 25] and [26]; (ii) point processes that obey a law of large 
numbers [2, 6, 13, 15] and [19] ; and (iii) point processes on topological spaces 
[11, 12] and [16]. These thinning studies have focused on (or are highly dependent 
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on) the "locations of points" of the processes. Consequently, the various thinned 
processes appear to be very different mathematically. However, by describing 
the thinned process by the "numbers of points in regions" rather than by their 
locations, one can see (Sect. 4) that all of these thinned processes on the real line 
are compositions of the form ~ = 0 ~ ~, where ~ is the "initial process" and 0 is the 
"thinning process". The thinned processes in [-11, 12] and [16] on topological 
spaces are equal in distribution to similar compositions (Sect. 5). Furthermore, 
from these descriptions of thinning it is now clear how such thinnings can be 
defined for random measures (Sect. 4). 

The thinning theorems mentioned above are basically convergence theorems 
for various compositions 3, = 0, ~ ~, where 0, and ~, are convergent sequences of 
random measures. Our main result, Theorem 3.2, describes the convergence of 
such compositions in a general setting. Its proof is based on the continuity of 
the composition operator on measures (Theorem 2.3), and the continuity of the 
operator of taking inverses of measures (Theorem 2.1). It yields many results for 
thinnings (Sect. 4). Among other things our results address the question: if the 
thinned measure 4. is to converge to a desired measure 4, then how must the 
thinning measure 0, behave? We discuss thinnings further in the last Section 5. 

2. Inverses and Compositions of Measures 

In this section we describe the continuity of the inverse and composition operators 
on measures. We first introduce some notation. 

Let (R, ~(R)) denote the real numbers and their Borel sets. We denote by 
~/~ the set of measures on ~ (R) that are finite on compact sets. We endow J / w i t h  
the vague topology [1] and [8]: the coarsest topology on ~///that makes the map- 
pings/z ~ ~ f (x) d# (x), for f~  cgc, continuous. Here cg c denotes the set of continuous 
functions on R that have compact support. For #, and # in Jr the following 
statements are equivalent: (i) /~,~/~, (ii) ~ f ( x ) d # , ( x ) ~  f(x)dl~(x) for each 
f~cgc, and (iii) I~,A---,#A for each bounded A in N(R) w i t h / ~ A = 0  (where 8A 
denotes the boundary of A). The Borel o--field N(Jg) generated by the vague 
topology is the same as the smallest o--field that makes the mappings /~--->/~A, 
for A e ~ (R), measurable. 

The cumulative distribution function (c.d.f.) centered at zero of a /~eJr is 
defined by 

/~(x)= -/z(x, O] for x____O 

= MO, x] for x>O. 

The #(x) is right-continuous, nondecreasing and #(0)--0. There is a one-to-one 
correspondence between such functions and .//g that is based on # (a, b] = # (b)-/~(a) 
for a<b in R. (Replacing 0 by aER in the preceding yields the c.d.f, centered at a 
of/~.) Note that if #,(x)---> #(x) for each x~ C,, then #, ~ #. The converse holds 
if 0e C u. Herein C, = {x~R:# {x} =0}, and Du=R \ C, are the continuity and 
the discontinuity sets, respectively, of #. 

We now discuss inverse measures. Here and throughout this article we let 
m denote the Lebesgue measure on R. Let/~ be in Jr The image of m under the 
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mapping # (x) is the measure 

m#- l  A=m{xeR:p (x )aA}  for Aa~(R) .  

We shall denote m #-1 simply by #-1, and shall call it the inverse of # associated 
with its c.d.f, centered at 0. (One can define an analogous inverse of # associated 
with a c.d.f, of # centered at any aaR. This will generally be different from #-2.) 

Note that #-1 may be infinite on some compact sets and hence not in ~(. In 
particular, if # (oo) = lirnoo # (x) < o% then 

#-1(0,#(00)]:00 and p-l(g(oo), oo)=0. 

A similar comment applies to #( -oo) .  It is easily seen that g-~aJ/r if and only 
if # a J Q =  {#aJ/l '#(__.oo)= _+co}. In this case, #-* is also in Jr Clearly for 
#aJr xaR,  and a<b in R, 

# -*(x)=~(x) -~(0)  and p-l(a,b]=iz(b)-~(a), 

where [z(x)=inf{taR:p(t)>x} is the right-continuous inverse of #(x). For 
simplicity of exposition, we shall frequently confine our discussion to measures 
in d/'oo. 

Observe that different measures may have the same inverse. Also, using the 
well-known relation p(x)=inf  {taR: ~(t)> x}, we can write 

(#-- 1) -- 1 (X) ~---/-/(X Jr-/~ (0)) - -  ~ (~ (0)) for xaR.  

That is, (#-~)-*A=p{A+~(0)} .  Consequently, (#-1)-1=# if and only if # is 
invariant under the translation ~ (0). Note that/~ (0) = 0 if and only if # (x) > 0 for 
each x > 0. 

We now consider the mapping # -~ #-1 from ~ o  to Moo, where Jr is endowed 
with the relativized vague topology. (Note that 

Jr = ~ { p a X '  p(0, m)>n ,  p ( -  c~, 0) > n} a ~(~/r 
r l  

(2.1) Theorem. The inverse mapping # -+ p-1 from Jr to J/to~ is Borel measurable, 
and it is continuous at those p for which p {0} = 0. 

Proof. For each a and x in R, 

{# a J/Coo :~(x)<a} = {p a J/lo~ : # ( a - ) > x }  aJ/lo~ c~ ~ ( J r  ~ (Jloo). 

Thus #-+/~(x) from J~oo to R is measurable for each x. It follows that #--+ #-l(x)  
is measurable for each x, and this implies that/,t--+ #-1 is measurable. 

Now suppose #,--*# in ~o~ and #{0}=0. Fix xaCr, and e>0. Pick a, baC, 
such that 

f~(x)-e<a<~(x)<b<~(x)+e.  

Pick ~ and fl such that 

#(a)< e < x < fl < #(b). 

This is possible since r is a point of increase of#(-). Pick N such that for each 
n>N, 

I#,(a)-p(a)l<~-#(a) and I#,(b)-p(b)l<#(b)-fi .  
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This is possible since f . ( t ) - ~  f( t )  when 0 and t are in C u. The monotonic i ty  of 
# , ( ' )  and the above inequalities yield 

#, (~t (x) - e) < f ,  (a) < c~ 

< x < fi < f , (b)  < #,(f~(x) + e). 

Since f ,  (t) < x implies t < ~t, (x), and f ,  (t) > x implies t > ft, (x), then from the 
preceding inequalities, 

~ ( x ) -  e < ~.(x)__< ~t(x) + ~. 

Thus ~, (x) --~ ~t (x) for each x e C~. F r o m  this we have 

fin 1 (a, b] = ~, (b) - B, (a) ~ ~ (b) - ~ (a) = # -  1 (a, b] 

for each a < b in C~ = C , -  1. Thus f21 __. ~ -  1 in JC{oo and this completes the proof. 

The map f ---, # -  ~ may not  be cont inuous at f if f {0} > 0. To see this note that: 

f , = m + 6 ~ , - - ~ # = m + 6 0 ,  as a ,+0 ,  

where 6 a denotes the Dirac measure with unit mass at a (recall that  m is the Lebesgue 
measure). However ,  

1 1 2 1 A = m { A \ [ a , ,  l + a , ] } - ~ m  { A \ [ 0 ,  1 ] } ~ f - 1 A = m  { A \ [ - 1 , 0 ] } .  

We now discuss composi t ions of measures. We define the composi t ion of 
two measures 2 and f in ~/E to be the measure 2 o f  whose c.d.f, is 

2o/~(x)= 2 (#(x)) for x 6 R .  

Clearly )~ o f e j/{ and 

)~of(a ,b]=2(f (a) , f (b)]  for a < b i n R .  

As one would anticipate, many  of the properties of composi t ions of functions 
carry over to composi t ions of measures. Some of these are as follows: 

(i) m o f = f = f o r n .  
(ii) (2 o #) -  1 (a, b] = f -  ~ (2~ (a), 2~ (b)] for a < b in R. 

(iii) f - ~ o f = r n  if and only if f (x )  is strictly increasing. 
(iv) If ft (O) = 0, then 11 o f -  1 = m if and only if f (x) is continuous.  
(v) ()~ o f ) -  ~ = f -  ~ o 2-  ~ if and only if f -  ~ is invariant under  the translat ion 

i(0). 
(vi) Let ~ , = ~  y,  6~, be an atomic measure in ~/Z~ where . . . .  s t < 0 < S o <  

t l  

s l , . . . ;  and let g = ~ 6 s ,  and 2 = ~ y ,  6.+1. Then v=)~of ,  and v - l = ~ x , + l r  
n I1 

where x , = s , - s , _  1 and t , = 2 ( n +  1). 

The continuity of the composi t ion mapping (2, f)---, )~okt from ~ x J C/ (with 
the product  topology) to J/t is described in Theorem 2.3 below. For  this we need 
the following result. 

(2.2) Lemma.  I f  2 and # in all[ satisfy 2D~=0,  then 

2 [ p ( x - ) , f ( x ) ] = O  for each x~C~o,.  
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Proof. For each x6 C~ou, 

=J '2( /~(x-)  - )  i f / ~ ( t ) < # ( x - )  for each t<x  
[2  (# (x - ) )  otherwise. 

In the latter case #(x-)~D~, and since 2D~=0 then 2 ( # ( x - ) ) = 2 ( # ( x - ) - ) .  
Thus the assertion follows. 

(2.3) Theorem. The composition mapping (),~)--~2o/~ from J g x J d  to ~ is 
Borel measurable, and it is continuous at those (2, kt) for which 2D~ =0  and I1 {0} =0. 

Proof. The measurability of the composition mapping follows by an argument as 
in ~3, p. 232]. 

Now suppose 2,--, 2 and #, ~ # in J{, where 2D~ = 0 and/~ {0} = 0. Fix e > 0 
and x<y in C;.ou. Pick, a, b, c,d in Caou that satisfy 

a<#(x-)<#(x)<b<e<#(y-)<l~(y)<d,  

and are such that each of the sets 

(a, (#(x) ,  b] ,  (e, d]  

has )~-measure less than e. This is possible because of Lemma 2.2. Pick an integer 
N such that for each n > N 

a<#,(x)<b, c<#,(y)<d, 
]2,(a,d]-A(a,d]l<e, and ]2,(b,c]-Z(b,c]r<~. 

Then for each n > N, 

I;,.o y]  y]  J = - ;,(#(x), I 

< 12, (a, d] - 2 (# (x), # (y)] I + 12, (b, c] - 2 (~t (x), # (y)]] 

=< 12, (a, d] - 2 (a, d] ] + 2 (a, kt (x)] +)o (# (y), d] 

+ [2, (b, e] - 2 (b, c] ] + 2 (/t (x), b] + 2 (c, # (y)] < 6 e. 

Thus 2, o #, -+ 2 o #, and this completes the proof. 
The composition mapping may not be continuous at (2,/~) with # {0} > 0. To 

see this let #,=m+ba, , where a,~,0, and let /~=m+6 o and 2 , = #  -a. Clearly 
2, -~ # -  1, kt, ~ /~  and D~ = qS. But since 2, o #, (x) = x + 1 for a, < x, then 2, o #, 
does not converge to # - a o # = m .  The condition # {0} is needed here (and in 
Theorem 2.1) because of the convention of using c.d.f.'s centered at zero. 

The assumption 2D~=0 is also needed in general for continuity of the com- 
position mapping at (2, #). Indeed if 2, = 2 = m + ~1, and #, = (m + a 8b, )- 1 where 
b,J, 1, then #, - -~p=(m+ac51)- i  , 2 , - ~ 2  and ZD~=2{1}=I .  But 

2,o#,=kt,+c51+a--~ p+61+,+2op=p+61. 

Note that D n = D u_~ and that 

2D~=Oe=> Dx c~ Du_ , = r  #-1 Dx=0" 
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This follows since D u is a countable set for each # ~ / / .  Also note that 2Do=0 
when #(x) is strictly increasing or 2(x) is continuous. This follows since for any 
# e Jr D~ = 4) <=~ # (x) is strictly increasing ~ g -  a (x) is continuous. 

(2.4) Corollary. Suppose #n--~ # in ~/g, and a, < bn in R are such that a,--* a and 
bn---~b, where a and b are in C,. Then # , (an ,bJ -*p (a ,b ]  and #,{an}--~0. 

Proof. Fix c<d  in R and pick v , e ~  such that v,(c)=a, and v,(d)=b,,  and v,--, v 
in ~/~ where D~ = qS. Clearly c and d are in C,o,. Then by Theorem 2.2, #.(an, b,] = 
#,o Vn(C, d] ~ #or(c, d] =#(a,  b~. To prove/~, {a,}--* 0, pick c5 and ~>0 such that 
# (a - 6, a + 8) < e. Pick c < d in C, such that a -  6 < c < d < a + c5. Then for sufficiently 
large n 

g, {an} < #n(C, d)-~ #(c, d)<e, 

and so/~, {a,} ~ 0. 

3. Convergence of Inverses and Compositions of Random Measures 

A random measure ~ on R is a measurable mapping from a probability space 
into (J/g,N(JC{)). If each of the random variables 4A, for A~N(R) ,  is integer- 
valued then ~ is a point process. A sequence ~, of random measures converges in 
distribution to a random measure 4, written 4n d , 4, if the distribution of 4, 
converges weakly to the distribution of ~, i.e. E h (4,)-~ E h (4) for each bounded 
continuous function h on J//. The following are equivalent statements: 

(i) 3. d,  4, 
(ii) ~ f ( x )  d~,(x) ~ , ~ f ( x )  d~(x) for each fe~c,  and 

(iii) (~,A1, . . . ,  ~,Ak) e , (4A1, . . . ,  ~Ak) for all A1, ... ,Ak in B(R) satisfying 
8Aa . . . . .  ~ 0Ak=0 a.s. These and other basic properties of random measures 

are discussed in [8] and [12]. 
Throughout the remainder of this paper we let 4, q and ~ (with or without 

subscripts) denote random measures on R. For simplicity we assume that they 
take values in JC{| This means, for example, that ~(+oo)= +_oo a.s. Our first 
result concerns inverses. 

(3.1) Theorem. I f  4 n ~  ~ and ~. {0}=0 a.s., then ~21 e > ~-1 I f  421 ~ ~-J 
and 4-1 {0} =0  a.s., then 4n d > 4. 

Proof. The first statement follows from Theorem 2.1 and the continuous mapping 
theorem [3, Sect. 5]. Under the hypothesis of the second statement, it follows from 
Corollary 2.4 and the first statement that ((~;-1)-1, ~ , ( 0 ) ) J ~  ((~-1)-1, 0). Using 
this, along with 4, A = (~- 1)- 1 {A - ~, (0)} and Corollary 2.4, it follows that ~n e , ~. 

For the next result we assume that 4n = ~/, ~ ~,- 

(3.2) Theorem. (i) I f  (rl,,~,) a->(rl,~ ) where r/D~=0 a.s. and ~{0}=0 a.s., then 

(ii) / f  (4,, ~.) e , (4, ~) where 4D~ =0 a.s. and ~ {0} = ~- 1 {0} =0  a.s., then ~, 

(iii) I f  (4n,~n)- d >(~,tl) where t / - 1D~:0  a.s. and 4{0}=r/{0}=0 a.s., then 
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Proof. Part (i) follows by Theorem 2.2 and the continuous mapping theorem. 
To prove (ii) we use the representation 

~.=4.o~21 +(~.-4.o~21). (1) 
By Theorem 2.1 and the continuous mapping theorem we have (4., [21) ~ (4, ~- 1), 
and so by part  (i) 

~nO~n 1 d ~, 4o ~--1 (2) 

Let g = r/. (a, b] - {. o ~- 1 (a, b] for a < b in Cr162 1 a.s. Using the relations 

~(#(x)-)<x<~(p(x))  for xeR  and #e)r (3) 

we have 

(~. ([. (a)), ~. ( ( (b)  - )] c (a, b ] c  (~. (r (a) - ) ,  [.  (~. (b))], 

This and Theorems 2.1-2.3 yield 

'3 --< 4. [~. (a), ~. (b)] - {. o ~- i  (a, b] a , 0. 

Similarly 

r.>=~.(~.(a), ~.(b))-4.o[21(a, b]- e , O. 

Then 

r. d , 0  for a<binQo:  i a.s. (4) 

Now pick a 1 < bl < " "  < ak < bk in C~o~-, a.s. From (1), (2) and (4) it follows that  

(r/. (al, bl], . . . ,  r/. (ak, bk]) ~ (4 ~ ~- 1 (al, bl] . . . . .  4 ~ ~- a (ak, bk]). (5) 

Thus t/. ~ 4 o ~- a. 

To prove (iii) we use the representation 

~. =,12'  o 4. + ( ~ . -  t/;~ o ~_.). (6) 

Similar to (2) we have 

r 1 2 1 o ~ . .  - ~ , r l - ~ o ~ .  (7) 

Let r b.]-r121o4.(a, b] for a<b in C, 'oe a.s. Using (3) we have 

r = r (b) - {. (a) - f/. (t/. (-~n (b))) + ~/. (4,, (a)) 

<=fl.(~.(a))-fl.(~(a)-)<=rl;lo4n{a} ~ ~0. 

Similarly, 

r.>~l.(4.(b)-)-rT.(4.(b))> -~12~o~. {b} ~ 0. 

Then 

r~ d ~0 for a<bin C,-,or (8) 

F rom (6)-(8) it follows, similar to (5), that s ~ ~/- 1 o 4. 
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We end this section with some comments on the preceding theorems. First 
note that these results hold for normalized random measures such as 

c21~,oa,=(c21tl, ob,)o(b21~,,oa,) where l~oa=poam for # ~Jg  

and aeR. Such measures appear in the next section. The a,,  b, and c, could be 
constants or random variables that converge jointly with the measures. 

Many joint convergence statements follow directly from Theorems 3.1 and 
3.2 and the continuous mapping theorem. For example, suppose 

( t / , , ~ , ) ~ ( t / , ~ ) ,  t/D~=0, and t / { 0 } = ~ { 0 } = t / - l { 0 } = 0  a.s. 

Then 

(~. ,~. ,~. ,~21,~21,  ~2~) d ,(~o~,~,~,Ulo~-1,~-1,~-~). 
The condition r/D~ = 0 a.s. holds if q and ~ are independent and either t /or  f -  

is stochastically continuous. Indeed if r/is stochastically continuous (i.e. ~ {x} = 0 
a.s. for each xsR) then r]A=0 a.s. for any countable set Ae~(R), and so 

P (~/O~ = 0) = E (P (17 O~--- 0[ ~)) --- 1. 

Similarly, if ~-~ is stochastically continuous, then ~-~ D , = 0  a.s., and so ~ID~=O 
a.s. 

Finally, note that Theorem 3.2 describes the convergence of a subclass of semi- 
stationary random measures which are of the form ~,=t/ ,o~,,  where (tl., ~-1) 
are jointly (strict-sense) stationary random measures and ~, (x) is continuous and 
strictly increasing. These are the analogues of semi-stationary processes of the 
form X(0 = Y(rt) as in Corollary 2.3 of [24]. 

4. Convergence of Thinnings of Random Measures 

In this section we discuss how certain thinnings of random measures can be 
characterized by compositions of random measures, and then we present some 
corollaries to Theorem 3.2 that apply to thinnings. Our focus here is on thinnings 
on the real line. In the next section we indicate how some of our results carry over 
to more general spaces. 

The thinnings of point processes on R that have been studied so far are de- 
scribable as follows. Consider a point process ~ on R. For simplicity assume 
~(_+ oe)= + oe a.s. We can write ~ = ~  6s~ where the random variables S,=~(n) 

n 

are the locations of points (unit masses) of ~. Clearly -.. < S_ 1 < 0 < S o < St < ' "  
Let Y, (n =0,  • 1 . . . .  ) be random variables on the s~ime probability space as ~, 
which take the values 0 or 1. (We make no independence assumptions.) Thin the 
process ~ according to the rule: delete or retain the unit mass at S, according as 
Y, =0  or 1. Then the process of retained points ~ has the three representations 
(recall property (vi) of compositions) 

~ = ~  II, 5s =t/o ~=~,  5T, ' (1) 
n n 
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where rl = ~ I1, c5, + 1 and T, = ~ (0 (n)). (Again for simplicity we assume ~I (_+ oo) = + oo 
a.s.) The theorems in the references for such thinnings are basically convergence 
theorems for various composi t ions 4, = r/, o ~, which we have abstracted in Theo-  
rem 3.2. We shall return to this shortly. 

This thinning of point  processes also makes sense for r andom measures. To 
see this, consider a composi t ion  ~ = rl o ~ of r andom measures t7 and ~ on R. This 
can be viewed as follows. Mass is randomly deposited on R, starting from 0 and 
proceeding forward such that for each x > 0 a mass ~ (x) is placed in (0, x] and this 
is in turn replaced by the amount  t/(~(x)). Similarly, starting from 0 and proceeding 
backward,  for each x < 0  a mass ~(x) is deposited in (x, 0] and this in turn is 
replaced by t/(~(x)). In other  words, if a mass y = ~ ( a , b ]  is deposited in (a,b],  
then it is subsequently replaced by r/(~ (a), ~ (a) + y] = r/(~ (b) - y, ~ (b)]. The resulting 
mass is thus described by ~ = rl o ~. One can think of ~ as an q-replacement of ~. 
If q (a, b] < b - a for each a < b, then ~A < CA a.s. for each Bore1 set A, and we call 
the replacement  a thinning. 

Note  that this replacement  procedure  is ordered and centered about  0 in the 
sense that a replacement  at a given location is a r andom function of the mass 
deposited prior  to this location starting from 0. Accordingly we shall call this an 
ordered replacement  or thinning. Two important  examples are (i) ~ = q o ~ =  

Y, 6s. where the Y,,'s are independent  with a common  distribution and are 
independent  of the S,'s, and (ii) ~ = t/o ~ where t / and  ~ are independent  and r/(x) 

has s tat ionary independent  increments. In these cases t/(~ (a), ~ (a) + y] d= q (y). That  
is, the dependency on ~(a) disappears. We shall call these independent  homo-  
geneous replacements or thinnings. More  comments  on thinnings follow in the 
next section. 

The rest of this section is devoted to convergence theorems for special com- 
positions that arise in thinnings. As in Section 3, we let 4, t /and  ~ (with or without  
subscripts) denote  r andom elements of ~{~. Our first result contains the major  
result in [9] which in turn contains many  classical results on thinning. For  this 
we assume that  4, = q, ~ ~, and that a, and c are in R with a , - *  oo. 

(4.1) Theorem. I f  x - l ~ ( x )  ~ ~c as Ixl--+oo, then ~ , o a , ~ r l o c  i f  and only i f  
tl, oa . ~ t 1. 

I f  (~,o an, ~ln ~ an) e , (q, rl o c), where q (x) is strictly increasing with t 1 {0} = 0 a.s., 
and an/a n + 1 -~ 1, then x -  1 ~ (x) ~ c as I x t  - *  oo. 

Proof .  Clearly ~,oan=(rl ,  oan)o(a21~oa,) .  Note  that x - l ~ ( x )  e , c  as Ixl~oo 
implies a21 ~o a n ~ c m. Thus the first s tatement follows from Theorem 3.2(i) 
and (ii). 

To  prove  the second statement,  first note  that  by Theorem 3.2(iii), 

a21~oan e , r l - l o r l o c = c m .  

In particular,  a21 ~ (a,) ~ c. This and an~an + 1 --' 1 yield a21 (~ (an + i) - ~ (an)) ~ O. 
Now let v (x) = inf {n: a,, > x}. Since an~an + a --+ 1, then 

x -1 a~(x)=a~(~)/(x-a~(~)+a~(~))--~ 1. 

It follows that  as I x l ~  o% 

x -1 ~ ( x ) = x  -1 a~(~) {(~(x)-~(a~(~)))/a~(~)+~(a~(~))/a~(x)} ~ e. 
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(4.2) Example. (Thinning of a renewal process.) Let ( = ~ ,  6s, be a renewal 
n 

process and set c -~=E(S , -Sn_~) .  Let t / . = ~  gr,~ be a renewal process in which 
k 

the T,k'S are integer-valued and assume an=EWn< oo, where W, d T, k--Tn, k_l . 
Let r / = ~ 6 r ,  be a renewal process with w d T n - T , _ ~ .  It is well-known that 

d n 
t/, o an ~ t / if  and only if an 1 Wn d > W. Consequently by Theorem 4.1 we have 
in o an d > t/oc if and only if a21 Wn d , W. Results like this are discussed in 
[14, 20, 21, 17, 18, 25] and [-26]. In the latter four articles, ~/n=Vno . . . .  V~, where 
Vl, v2 . . . .  are n successive independent copies of a single thinning operation. 

Continuing our analysis of in = t/n ~ (, we now assume that t/n = ~ Ynk 5k where 
for each n the Y,k (k=0,  _+ 1 . . . .  ) are independent with a common distribution. 
Let t /be  such that r/(x) has stationary independent increments with 

E (e- ~ ~1))__ exp - ~ (1 - e-~Y) de (y), 
0 

where e is a (Levy) measure on (0, Go) satisfying ~ min {1, y} de(y)< oo. We write 
0 

X ~ for the random variable X truncated at ~ > 0. 

(4.3) Corollary.  I f  X-1 ((X) d 'C as IXi~Ov, then inoan e >~oC if and only if 

(i) anP(Y,l  < y ) - * e ( y  ) for each yEC~, and 
(ii) lim lira a n E(Y,~)= lim l ima n E(Yd~) =0 .  

a n  

Proof. Conditions (i) and (ii) are necessary and sufficient for ~ Y~k d ~ ~/(1); 
k=l 

see [12] which is a generalization of [4, p. 564]. The latter convergence is equiv- 
alent to ~/noan a ~ ~/; see [5, p. 480]. Thus the assertions follow by Theorem4.1. 

(4.4) Example. (R6nyi's result.) Suppose ( = ~  CSs, is a renewal process with 
c-  t = E (Sn - Sn_ t), and that n 

p ,=P(Y~k=l )  and P ( Y , k = O ) = l - p n ,  

where Pn ~ 0. Then by Corollary 4.3, in ~ P21 a ~ tl o c where t/is a Poisson process 
with unit intensity. Other examples of Corollary 4.3 appear in [9, 11, 12] and [15]. 

Results similar to the above hold for compositions in =t/o (n. The analog to 
Theorem 4.1 is as follows. Here bn--+ oo in R. 

(4.5) Theorem. I f  x - ~ l ( x )  d >caslx l_~,~,andv{O}=Oa.s . , thenb21 ~,oa, d > 
c ( i f  a n d o n l y i f b  21(n ~ d ~(. 

I f  (b21 4, ~ a,, by 1 ~, o an) " , (c (, ~), where ( is strictly increasing with ~ {0} = 
(-1 {0} = 0  a.s., and b,/b,+ l ~ 1, then x -1 rl (x) ~ c. 

For our last result we consider the atomic random measures i , = ~  Y,k 6S, k 
k 

where ... S,_~<O<=S,o<=... for each n. Let Z,k=Snk--S , ,k_  1. We assume that 
the Y,k'S are independent of the Z,k'S, and that P(Y,k<--_X) and P(Z,k<X)  are 
independent of k for each n. As before a. --, oo and bn ~ oo in R. 
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(4.6) Theorem. Suppose the Y,k satisfy (i) and (ii) in Corollary 4,3, and that the 
b2 ~ Z,k also satisfy these conditions with ~ replaced by ft. Then ~,o b, d , tl o ~-~, 
where ~I and ~ are independent measures with stationary independent increments 
with Levy measures ~ and fi, respectively. 

Proof. Clearly ~,ob,=(tl, oa,)o(a21~,,ob,), where tln= ~ Y, kCSk and ~,,=~ 3s,,k. 
As in Corollary 4.2 we have tl, o a, e ~ t /and k 

by 1 ~21oa,=~ b21Znk 5k~ ~ ~. 

Furthermore ~ {0} = 0  a.s., and so by Theorem 3.1, 

a2 ~ ~,ob, =(b2 i ~nlo an) -1 ~ ~-1. 

Thus Theorem 3.2(i) yields ~_, o b, ~ r/o ~- ~. 
Theorem4.6 is similar to the results in [ l l J  and [12J for compound point 

processes on more general spaces. Note that q (~- 1 (x)) is a process with conditional 
stationary independent increments [23]. 

5. Extensions 

In this section we point out some rather immediate extensions of the above 
results. We first indicate how homogeneous independent thinnings on general 
spaces can be characterized by multidimensional compositions of measures. 

Let ~ , = ~  3s, k (n> 1)be a sequence of point processes on a locally compact 

second countable Hausdorff space X. Let t / , = ~  Y,k 5k+~ ( n > l ) b e  random 
k 

measures on R. Similar to Section 4, we define an G-replacement of ~, as ~, = 
Y,~ C~s,k, We call this an independent homogeneous G-replacement if G is 

k 
independent of ~, and Y,1, Y,2, ... are independent with a common distribution 
for each n > 1. In this case we can write 

(~,A1, . . . ,  ~,Ak) d=(rlnl(~_nA1) . . . . .  rlnk(~.nAk)) (1) 

for any disjoint Borel sets As, . . . ,  Ak in X, where t7,1 . . . . .  Gk are independent 
copies of G. Directly from (1) and Corollary 2.4 one can obtain results such as 
the following. 

(5.1) Theorem. Suppose the Y,k'S satisfy conditions (i) and (ii) in Corollary 4.3 
and a~ l ~n a ~ ~. Then ~, ~ ~, where ~ is defined by 

( ~ A 1  . . . . .  d ~A~) = ( ~  (~A0, . . . ,  ~ (~&)) (2) 

for disjoint Borel sets A 1 . . . . .  A k in X and th, . . . ,  ~Tk are independent copies of a 
random measure q with stationary independent increments and Levy measure ~. 

Results similar to the above appear in [11, 12] and [16], which are proved via 
Laplace transforms and the fact that the probability distribution of ~, is a mixture 
of probability distributions. The random measure version of the above is as follows. 
Let ~, (n> 1) be a random measure on X. For each Borel set A of X, replace the 
mass ~, A by a random mass that is equal in distribution to q,(~, A) where r/, is a 
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random measure on R with stationary independent increments and is independent 
of ~,. Do this replacement so that masses replaced in disjoint sets A i , . . . ,  Ak are 
conditionally independent given ~A i . . . . .  C_ A k. The resulting random measure ~, 
on X is characterized by (i). Similar to Theorem 5.1 it follows that ifll, oa . - a ~ r/ 
and a21 ~n ~ ~, then ~, ~ ~ where ~ is defined as in (2). 

To generalize the notion of ordered thinning to the space X, one needs an 
implicit ordering for depositing mass and/or thinning it. For example, one can 
deposit mass on X by ~, and then thin the mass via increasing Borel sets At T X 
as t ~ oo, where Ao is the empty set, such that the mass ~A, is replaced by ~A t = 
tl(~At) for each t>0 .  This defines ~ on the smallest ~-field containing the At's. 
The convergence of a sequence 4, of such measures can be studied in terms of 
the measure ~*(r)= 4, At = t/,,(~, At) on R. 

A more general analogue of ordered thinning on X is as follows. Think of 
R+ = [0, oo) as a slab of mass that is deposited on X according to a random function 
~b from R+ to X such that the t tu bit of R+ is deposited at the location ~ (t). Thin the 
deposited mass by a random measure tl on R+ such that the mass q~-i A = {t: qS(t)~A} 
deposited in a Borel set A in X is replaced by an amount ~ A = r] 4,- 1 A. That is, 
the resulting measure ~ is an image of tl under the mapping 4). Note that if X = R, 
then ~=~q5 -1 =t/o~ where (o(t)=~(t-)=inf{s: ~(s)> t}. 

Our results can also be extended in an obvious way to multidimensional 
compositions. One application is to the deletion of jumps in a continuous time 
integer-valued stochastic process, as in [27]. Here the jumps are deleted in such 
a way that the resulting process can be described by i ,  = (t/1, ~ ~l 20 2 ~,, t/, ~,,...), which 
converges in distribution as n - , o o  to a step process whose jump times form a 
Poisson process, and whose successive states are independent and identically 
distributed. 

Independent homogeneous thinning and ordered thinnings are the only 
thinnings (like Renyi's) that have been discussed in the literature. There are, of 
course, a wide variety of other thinnings that one could define, based on various 
dependencies between the initial mass and the thinning measure, that cannot be 
characterized by compositions of measures. The term thinning is sometimes used 
in describing (i) rare events in stochastic processes (e.g. high level crossings) and 
(ii) interactions of renewal processes (or inhibitory thinning) as studied by Ten 
Hoopen and Reuver and others, as referenced in [21]. These thinnings are quite 
different from Renyi's and cannot generally be viewed as compositions. 
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