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w 1. Introduction 

The problem of the convergence of the iterates p(n)(x, B) of the transition function 
of a Markov process defined on a "continuous" state space received early attention 
in the development of the theory of Markov processes. Results establishing the 
cyclic behaviour and uniform convergence (along the appropriate subsequences) 
of iterates to certain "periodic" distributions were already obtained in the thirties 
and we refer the reader to p. 628 of [6] for references. Doeblin's work in particular 
([3, 4]) was very influential on most subsequent literature on the subject. These 
early results were mostly based on two different conditions, the "Doeblin con- 
dition" (which is probabilistic in nature) and the "Kryloff-Bogoliouboff con- 
dition" (a functional analytic one). It was Yosida and Kakutani [19] who 
obtained Doeblin type convergence results operator-theoretically under the 
Kryloff-Bogoliouboff condition and showed that the two approaches were 
essentially equivalent. (See also [16, p. 167], [12, p. 45].) 

In [5] Doob assumed the existence of a stationary distribution and, under a 
condition weaker than those mentioned above, established the cyclic behaviour 
and convergence of the appropriate subsequences of p"(x, B) for "every x" and 
"every B", but not necessarily uniformly. Another insight into the convergence 
problem was given by Jacobs in [11]. Harris introduced his recurrence condition 
for Markov processes in [9] and proved that under this condition there is an 
invariant a-finite measure (unique to within a constant factor). Orey [17] then 
showed that a Harris recurrent Markov process exhibits the familiar cyclic 
behaviour and, for processes with finite invariant measure, strengthened Doob's 
"simple" convergence to convergence in total variation. 

An alternative proof of Orey's theorem (and a more general version of it) 
was given ill [143, where Jamison and Orey make use of the space-time harmonic 
functions to show that the tail field of the process is finite for any initial distribution. 
Jain and Jamison [133 established limit theorems under broader assumptions, 
by reducing them to Orey's theorem. Foguel (see [7] and [83) and S. Horowitz [10] 
gave a functional analytic formulation and proof of Orey's theorem. Ornstein 
and Sucheston [18] derived the Jamison-Orey theorem from their "zero-two 
law" and there have been a host of other papers exploring its Ll-operator-theoretic 
implications and alternative approaches to it. 
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In the present paper we are exclusively interested in Markov processes whose 
cycle has length one (the "aperiodic" case). Our purpose is to indicate an alter- 
native probabilistic approach to the problem of convergence to asymptotic 
stationarity, which is based on the theory of martingales and involves no hard 
technicalities other than the martingale convergence theorem. In Theorem 2.1 
below we assume the existence of an invariant probability measure rc and formulate 
a necessary and sufficient condition for the convergence (in total variation) of 
p(")(x, ") to re(.) for re-almost every x. The novelty lies in the method of proof 
rather than the statement itself, which can easily be derived from results of [13] 
or of [5] (with the required "total variation twist" provided by Theorem 7.3 
below). 

The condition given in the theorem has an advantage over some others that 
have been used in the literature in that it is readily verifiable in many examples 
encountered by the working probabilist. The theorem is also well adapted to 
situations where there are many invariant probability measures. To give an idea 
of the spirit of the approach we outline here the main line of the proof. 

Suppose .... X_I,  Xo, X1 . . . .  is a Markov process with transition function 
p(x, B) and such that P(X, ~B)= re(B) for all n (where rc is the invariant probability 
measure). If p(")(x, dy) =f,(x, y) rc(dy) + v,(x, dy) is the decomposition of p(")(x, ") 
into absolutely continuous and singular parts with respect to ~z, then, for every x, 
the process f,(x, X,), n = 1, 2 . . . .  is a backward supermartingale (Lemma 3.2). It 
follows among other things that for fixed x the functions f,(x, .), n > 1, are uni- 
formly integrable under rc and hence the sequence is relatively compact in the 
~r(L~, Loo)-topology, i.e. every subsequence contains a sub-subsequence converging 
to some function g in the o'(La,L~)-topology. Using the fact that backward 
supermartingales converge in the mean we prove in Lemma 4.2 that there are 
functions gl,g2, ... such that g(Xo)=g~(X1)=gz(Xz)=.., almost surely. The 
condition of Theorem 2.1 is then shown to imply that g equals some constant 
almost surely and hence that f,(x, ") converges (~r(L1,L~)) to this constant 
(Theorem4.1). In w it is proved that this constant is 1 for almost all x (Theo- 
rem 6.1) and this means that lira p(")(x, B) = re(B) for all measurable B (Theorem 6.3). 

n ~ o o  

In w 7 we give a simple and apparently hitherto unnoticed way of strengthening 
this type of convergence to convergence in total variation: This consists in showing 
(Lemma 7.1, Theorem 7.3) that lira inff,(x, y)> 1 for re| re-almost all (x, y), if the 

n ~ o o  

functions f,(x, y) are chosen to be jointly measurable in (x, y). This easily implies 
the L~-convergence of f,(x,.), n>l,  to 1 and hence the convergence in total 
variation of p(")(x, ") to rc (Theorem 7.2). 

Orey mentions in [17] that the assertion "lira p(")(x, B)= re(B) for all x and B" 
n ~ o o  

for an aperiodic Harris process follows from Doob's Theorem 5 in I-5]. It is 
interesting that the argument of Theorem 7.3 makes Orey's stronger assertion 
("!irn L] p(")(x,.)-n(')ll =0 for all x") a simple consequence of Doob's theorem. 

Theorem 7.4, which seems to us to be new, asserts the same type of convergence 
for the measure p(")(B, y)=~f,(x, y)rc(dx). This is connected with the fact that the 

B 

process f , ( X , ,  y), n = 1, 2, ..., is a backward supermartingale (Lemma 7.5). 
Section w 5 indicates that Kolmogorov's classical theorem on the convergence 
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of the iterates of a positive-recurrent, irreducible, aperiodic transition matrix 
on a countable state space already follows from Theorem 4.1. Finally in the 
appendix we show how Orey's theorem for the case of an aperiodic Harris process 
admitting an invariant probability measure can be obtained from 2.1. For the 
major theorems it is assumed that the a-field of the state space is contained in 
the completion (with respect to n) of a countably generated a-subfield. The reader 
interested in achieving greater generality is referred to [14, w for methods of 
removing such assumptions. 

Note Added in May 1976. The author has recently received a preprint of a paper 
by Y. Derriennic entitled "Lois zero on deux pour les processus de Markov. 
Applications aux marches aleatoires", giving a striking martingale approach 
to the "zero-two law" from which, as mentioned above, Ornstein and Sucheston 
derived Orey's theorem. 

w 2. Statement of the Theorem 

Let (S, ~)  be a measurable space. If 2, # are finite measures on (S, ~)  we shall 
denote below by 2 |  their product measure on (S x S, N |  and by [I;t-#l I 
the total variation norm of 2 - # ,  i.e. H2-#fl = ( 2 - # ) + ( S ) + ( 2 - # ) - ( S )  where 
(2 -# )  + and ( 2 - # ) -  are the positive and negative parts of 2 - #  in its Jordan 
decomposition. Recall that the measures 2, # are called singular with respect to 
each other (denoted 2• if there is a set B e N  such that 2(B)=0 and #(Be)=0. 
At the other end, 2 is said to be absolutely continuous with respect to/~ (denoted 
2 ~ #) if #(B)= 0 implies 2(B)= 0. Given g, every 2 can be decomposed into a sum 
21 ~-22, where 21 ~ #  and 22• #. 

As is well-known a probability transition function on (S, M) is a function 
p(x, B)(xeS,  B e N )  such that for fixed x, p(x, ") is a probability measure on 
and for fixed B, p(., B) is a N-measurable function on S. The iterates p(")(x, B) 
of p are defined inductively as follows: 

p(*)(x,B)=p(x,B), P("+I)(x,B) = S p(")(x, dy)p(y,B).  
ysS  

A probability measure n on (S, ~) is said to be stationary or invariant under 
p ( . , . )  if 

~(B)= ~ ~(dx) p(x, B) (Be~). (1) 
x~S 

Throughout the present paper it will be assumed that n is a fixed stationary 
probability. 

For many of the results the following hypothesis will be made. 

Hypothesis (H). There is a countably generated a-field fr ~ such that ~ is con- 
tained in the completion of f~ with respect to n. 

(2.1) Theorem. Let n be a probability measure on (S, ~), stationary under p(., .), 
and suppose hypothesis (H) holds. The following conditions are then equivalent: 
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(i) For ~z| all (x, y)eS x S there is an n (depending on (x, y)) such that 
the measures p(')(x, ") and p(')(y, ") are not singular with respect to each other. 

(ii) For re-almost all x e S  

lim/I p(")(x, . ) - ~(.  )11 = 0 .  
n ~ o o  

The implication (ii) ~ (i) is immediate since (ii) implies that, for rc | ~-almost 
all (x,y), lim ILp(n)(x, ")--p(n)(y, ")[I =0  and two probability measures 2, /~ with 

II)t-plh <2  cannot be singular. Our aim is to prove the converse implication 
(i) ~ (ii). In the text, (i) and (ii) will be referred to as "condition (i)" and "con- 
dition (ii)" respectively. 

All subsets of S appearing below will be assumed, without explicit mention, 
to be members of N. Since the proof of Theorem 2.1 depends on probabilistic 
considerations we introduce the class of Markov processes with transition 
function p(x, B). First we define the stationary process. 

Let ~2 . . . .  x S x S x S x . . . ,  ~ . . . .  | 1 7 4 1 7 4 1 6 2 1 7 4  and for each co= 
(..., x 1, Xo, xl . . . .  )s[2 let X,(co)=x,. There is a probability P~ on (f2, ~ )  under 
which the process .... X 1 , X o ,  X1, . . .  is a stationary Markov process with 
transition function p(x, B) and such that each X, has distribution ~. In other words 

(a) For any k, any n > 1 and any B e ~,  p(')(x, B) is a version of P~(X k +, ~ B IX k = x). 
(b) For any n and any B ~ ,  P~(X,~B)=rc(B). 
This P~ is uniquely determined by its finite-dimensional marginals, defined 

as follows 

Pu(Xiff Bo, Xi + l ~ B1, ..., Xi +k ~ Bk) 

= ~ rc(dxo) ~ p(xo, dx l ) . . .  ~ p(Xk- l ,dxk) ,  
XO~BO Xl EB1 xkEBk 

with the formula valid for arbitrary i ( - o 9  < i <  oo). Expectations with respect 
to P= will be denoted by E=. 

The unilateral sequence Xo, X 1 . . . .  can be made into a Markov process with 
the same transition function but with an arbitrary initial distribution 2. More 
specifically, for every probability measure 2 on (S, N) there is a probability 
measure Pz on (f2, g ) ,  where ~ is the a-subfield of ~, generated by X0, X1, X2, ..., 
such that X 0 has distribution 2 and (a) above holds with P~ replaced by P~ and 
with the additional restriction k >0. In this case 

P~(Xo eBo, X1 e B1, ..., Xk~Bk) 

= S 2(dxo) ~ P ( ~ o , d ~ O . . .  S P ( ~ - ~ , d x O .  
xoEBo Xl ~B1 xk~Bk  

w 3. The Backward Supermartingalc 

For the results of sections w 3 and w hypothesis (H) will not be needed. 
If 2 is a finite measure on (S, ~)  we define the measure 2 o pC,) (n = 1, 2 . . . .  ) by 

(2op("))(B)=~2(dx)p( ')(x,B).  Note that if 2 is a probability measure then 
S 

(,~ o p % ( B ) =  ~ ( x ~ e  n). 
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(3.1) Definitions. Let 2 be a probability measure on (S, ~), to be called the 
"initial distribution". We set 2~ 2"=2op(")(n>l)  and for each n > 0  we let 
#, and v, be the absolutely continuous and singular parts, respectively, of 2" with 
respect to re, i.e. 2"= #, + v,, #, ~ ~z, v, L ~z. For each n > 0 we choose a version of the 

Radon-Nikodym density ~ and denote it by f,(2, "), i.e. 

#.(B)-=S f.(2, x) ~(dx) ( B ~ ) .  (2) 
B 

It follows easily from (1) that #. o p ~ 7r and hence 

#n~  (3) 

for every n > 0. This in turn implies 

m(s)<#.+,(s), v.(s)> ~.+~(s). 

We define c(2) = lira #,(S) 

(3.2) Lemma. For each n > 1 

E~(f, _ 1 (2, X,_ 1)IX ., X,+ 1 . . . .  ) <f,(2, 32,) P~-a.s. 

I f  ~ denotes the ~-field g ( X , ,  X,+I, ...) generated by X,, )if,+ 1 . . . .  then {f.(2, X.), 
~ ,  n => 0} is a backward superrnartingale under P~. 

Note. A "backward supermartingale" is a process which becomes a supermartingale 
after a reversal of time. Thus the present lemma asserts that the process 

.... L (~, x2),f~ (2~, xO, fo(L xo) 

is a supermartingale. 
Since 2 and ~z are held fixed in several sections we shall occasionally write 

f,(x) instead of f,(2, x) and P, E instead of P~ and E,, though we shall continue 
to use the latter in most statements of theorems. 

Proof of Lemma(3.2). Suppose A e ~  and denote by Za the indicator function 
of A. Then 

S E(L_I (Xo_Of~) dP 
A 

= J'L-~ (X,_,) dP=~f~_~ (Xn_ 1))~d dP=~f,-1(X,-,)  P(A Ix._z)dP 
A ~ 

=~f,_l(x)P(AIX,_l=X)~z(dx)=~P(AlX,_l=x)#,_l(dX) by (2). 
S S 

Now the Markov property implies that 

P(AIX,_ 1 = x ) =  S p(x, dy)P(AIX,=y),  
y e s  

so the last integral above is equal to 

#,-i  (dx) ~ p(x, dy) P(AIX, = y) = ,[ (#,_~o p)(dy) P(A]X, = y). 
x ~ S  y e s  y~S  
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By (3) this is 

< y t~.(dy) P(A IX. = y ) =  5 ~.(dy)f.(y) P(A IX. =y) 
y ~ S  y ~ S  

= ~f~(X~) P(AIX,) dR = ~f~(X~) dP 
Y2 A 

which proves the theorem. The following corollary is now a consequence of 
[6, p. 329]. 

(3.3) Corollary. The random variables f,(X~), n>=O, are uniformly integrable 
with respect to P~ and there is a random variable Y on f2, measurable with respect to 

the tail a-field ~ ~ of Xo, X1, X2 .... and such that l imf, (X.)= Y almost surely 
n ~ O  n ~ c o  

and in the mean, with respect to P~. 

w 4. Convergence to c(~) in the ~(L1, L~)-Topology 

(4.1) Theorem. I f  condition (i) holds, then the sequence {f,(2, "), n__> 0} converges 
to the constant c(2) in the a(L 1, L~)-topology and hence 

lim/~,(B)=c(2) n(B) for all BeN.  (4) 
n ~  oo 

(This theorem will be strengthened below, under hypothesis (H), to con- 
vergence in total variation.) 

Proof The uniform integrability of f,(X~), n>=O, on (f2, ~, P) implies that of f, ,  
n > 0, on (S, N, zc). By [15, p. 20] the set { f,, n __> 0} is sequentially relatively compact 
in LI(S, ~,  n) with respect to the a(L 1, L~)-topology and hence for every sub- 
sequence of {f,} there is a sub-subsequence { f J  and a non-negative function 
g ~ L 1 (S, ~ ,  n) such that 

lim ! f .~hd~=~ghd~ (5) 
k ~ o o  S 

for all bounded ~-measurable functions h. It is now sufficient to prove that any 
such g equals c(2) re-almost everywhere. This will follow from Lemma 4.3 below. 

First note that (5) implies that for every bounded random variable Z on (f2, ~ )  

5 g(Xo) ZdP = lira 5f~(Xo) Zde  (6) 
k ~  f2 

since 

g(X0) ZdP = ~ g(Xo) E(Z[Xo) dP 
f2 0 

= S g(x) E(ZlXo = x) ~(dx)  
S 

= lim (f.~(x) E(ZIXo = x) =(dx) by (5) 

= lim (f.~(Xo) ZdP. 
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Let now g.(x) be a version of E(g(Xo)IX . = x), n > 1. 

(4.2) Lemma. P~-almost surely 

g(Xo): & (Xl) : g2 (X2) . . . . .  (7) 

To prove this fix m> 1 and consider the equality g(Xo)=gm(Xm). It is SUfficient 
to prove that for every A s Y 

g(Xo) de = ~ gm(Xm) dP. (8) 
A A 

By (6) 

I ~ g(Xo) d P -  ~gm(X~)dP I 
A d 

= l ~ g(Xo) dP-~ E(g(Xo)JX~) dP[ 
A A 

= I ~ g(Xo) Y.~ d P -  ~ g(Xo) P(A I X~) dP I 

= k~o~lim I ~f.~ (Xo) X~ dP - ~f~ (X o ) P (A I Xm) dP[ 

= lira I ~f.~(Xo)dP-~ E(f,~(Xo)]Xm)dP[ 

__< limE ff~(Xo)-E(f~(go)lX~) [ 
k~oo 

< l ime  JLk(Xo)-Lk+m(Xm)J + l ime  IE(Lk(Xo)lXm)-L~+~(xm)l 
k~oo k~oo 

< 2 l ime  [ fn~(X0)--f,k +,,(X~)I �9 
k~co 

The last limit is zero by Corollary 3.3 and the fact that, under P=, the joint distri- 
bution of (Xo, X,,) is the same as that of (X,~, X,~+,,). The Lemma is thus proved. 

Since the distribution of the pair (Xo, X~) is given by P(Xoedx, Xmedy ) 
==(dx)p(")(x, dy), (8) together with Fubini's theorem imply that for every m 
there is a re-null set C~ in S such that if xr C,,, then 

g(x)=gm(y ) for p(m)(x, -)-almost all yeS. (9) 

Define D = . Then ~(D) = 1 and we have: 

(4.3) Lemma. I f  condition (i) holds, then g(xi)=g(x2) for ~ | ~-almost all (Xl, x2). 

In fact, for 7r| all (xl, x2)~D xD there is an m such that p(m)(xl, .) 
and p('~)(x2, .) are not singular with respect to each other. By (9) the sets 

E1 = {Y: g ( X l ) = g i n ( y ) } ,  

E2 = {y: g(x2) = g~(y)} 

carry the measures p('~) (x, , ' )  and p(m) (x2 . )  respectively. Since these two measures 
are not singular, we must have E~ c~ E 2 =t=ta and choosing yEE~ c~ E 2 we deduce 

g(x,)=gm(y)=g(x2). 
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It follows trivially that g equals some constant ~z-almost everywhere and it is 
easily seen that the constant is lira #,(S). This completes the proof of Theorem 4.1. 

(4.4) Corollary. I f  condition (i) holds and if c(2) = 1 then 

limA"(B)--~(B) for all B ~ .  
n ~  oo 

This is true in particular i f2 ~ ~z. 
In fact, in the latter case the singular parts v, are all zero and hence 2"= #,. 
We end this section with a sufficient condition for c(A)= 1, though we will 

not make use of this below. First some notation. If x~S, we denote by fix the 
probability measure with unit mass at x and we write P~ instead of P~x. Clearly 

~"~(.)=p(")(x, .). 

(4.5) Proposition. Suppose 2 is such that if z (B)= 1 then P~(X,~B for some n)= 1 
for 2-almost all x. Then c(2)= 1. 

Proof. As before let 2 " = # , + v , ,  # , ~ ,  v,L~.  For each n choose a set D, such that 

~(D,)= i, v,(D,)=0 and define D = (~ D,. Then 
n = 0  

~(O)=l ,  v,(O)=0 for all n. (10) 

Observe now that the set 

C = {x6D: p(x, D c) > 0} 

is null with respect to all the measures n, 2, 2 l, 22 . . . . .  for the equality 

0 = 7z(D c) =J  n(dx) p(x, D c) 
S 

implies ~(C)=O and this in turn implies #.(C)=O for all n. However, we also 
have v,,(C) = 0 since C ~ D. 

We now prove that for any A e 

vn(A) = P~(X o ~D C, X 1 ~D ~, .... X ,_  1 ~D c, Xn~A ~ D~). (11) 

In fact 
v,(A) = 2,(A c~ O c) = P~ (X, ~ A c~ O ~) 

=Pa(X._16D ~, X . ~ A  nDc)+ pi(x ._16D, X . ~ A  ~DC). 

The second term is 0 because it is equal to 

j 2"-l(dx) p(x, A c~ Dc)< J 2"-~(dx) p(x, D~)= j .~("-l)(dx) p(x, O e) =0  
D D C 

by what was shown above. So 

vn(A)= Pa(X.~A ~D~)= Pz(X._i ~ D ~, X .EA  ~ D  ~) 

and proceeding inductively we can show that the latter is 

=P~(Xo~D ~, X1 eD ~, ..., X,,_ 1 ~D ~, X,,~A c~ D ~) 
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which proves (11). This now implies 

lim v,(S)= lim P~(XieD ~ for i=0,  1 . . . . .  n) 
t l ~ o o  n ~ o o  

=P~(Xi~D ~ for all i>0)  

= ~2(dx)P~(X~eD ~ for all i>0)  
s 

which is 0 by (10) and the hypothesis. Hence c(2) = 1 and the proposition is proved. 

w 5. The Countable Case 

If 2_1_7z then the constant c(2) may be zero, i.e. #, may be 0 for all n. In such a case 
Theorem 4.1 asserts nothing. However this theorem already implies the classical 
Kolmogorov limit theorem for irreducible, aperiodic, positive-recurrent Markov 
chains on a countable state space I. In this case the stationary distribution is 
determined by ~z(i)= Ei(Ti)-t  (i a I), where T~ is the first recurrence time for the state 
i (see [1, p. 144]). Since ~(i)>0 for all i, every probability distribution {2(i)} on I 
is absolutely continuous with respect to {~(i)}, so Corollary 4.4 implies 

lim ~)ji)pl~)=~(j  ") for all j ~ I  
n ~  oo i ~ I  

and (since ~ ~(j) = 1) also 
J 

lim ~ I~  2(i)PI~)-~(J)[ =0  
n ~ o e  j s I  i E I  

or equivalently 

lim jf2"-~[I =0. 
n ~ c o  

Here n ( " )  - , q - P ( X , = j l X o = i  ) and 2"( j )=~2( i )p i j ,  Theorem3.2 reduces in the 
i a I  

2"(X,) n > 0 }  is a backward countable case to the assertion that the sequence [ ~(X,) ' - 
martingale under P~, i.e. 

{ ;:(x.) 
E  (xo) i ) -  

w 6. The Case ). = 6 x 

From now on we assume hypothesis (H). The purpose of the present section is to 
prove Theorem 6.1 below. The proof given here is not the shortest possible but 
is probabilistically simple. 

(6.1) Theorem. Under hypothesis (H), if condition (i) holds, then c(5~)=1 for 
~-almost all x~S .  

Let p(") (x , . )  = #, (x , ' )  + v, (x , ' )  be the decomposition ofp ("~ (x,.) into absolutely 
continuous and singular parts with respect to rc (/~,(x, " ) ~ ,  v,(x,-)_1_ rc). Under 
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hypothesis (H), #,(x, B) and v, (x, B) are N-measurable functions of x for fixed B 
([6, p. 616-7]) and it is easily seen that 

v,+ re(x,') < ~ v,(x, dy) v,,(y, "). (12) 
s 

(6.2) Lemma. c(6~)>0 for ~-almost all xeS. 

Proof. This follows from the fact that p(")(x, ")L~( ' )  implies p(")(x, ")• ") 
for re-almost all y e S. To see this suppose B is a set in N such that p(")(x, B)= 0, 
rc(B) = 1. By the stationarity of rc we have ~ ~(dy)p(")(y, B) = 1, so p(")(y, B)= 1 for 

s 
re-almost all y and the lemma is proved. 

This lemma implies that for ~-almost every xeS  there is an n > l  such that 
v,(x, S)< 1. For each j =  1, 2, .., define 

By (3), 

FlcFzc . . .  and 7~ - 1 .  (13) 
\ j =  1 / 

Now fix a j and consider the following two Markov processes. 

(M1) The Markov process Xo,Xj,  Xzj, ... with state space S and transition 
function p(J)(x, B). 

(M2) A Markov process Y0, Y1 . . . .  whose state space is obtained by adjoining 
a new element ~ to S (and enlarging in an obvious way the a-field N), and whose 
transition function q(x, B) is determined as follows: If x e S and B ~ S then q(x, B) 
=v~(x, B), while q(x, {(})= 1-vj(x,  S)=#j(x, S) and finally q(~, {~})= 1, so that 

is an absorbing state. 

Since rc is a stationary distribution for the Markov process M1, by the recur- 
rence theorem we have for re-almost all xeFj. 

Px(Xnj e S "~ f j eventually) = 0. (14) 

If we denote by Q~ the probability measure for Yo, Y1,... determined by the 
initial distribution 6x and the transition function q, then (14) implies that for 
re-almost all xeFj 

Q~( Yn e S "- Fj eventually) = 0 

since q(y,B)<p(2)(y,B) for all yes  and all BcS.  Hence for 7z-almost all xeFj 

Q~(Y, = ~ eventually) + Q~(Y, eFj for infinitely many n) = 1. 

However, Proposition 7 in [2] and the fact that q(x, {~})> 1/j for all xeFj now 
imply that for arbitrary x 

Qx(YneFj for infinitely many n)= 0. 
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We deduce that 

Qx(u = ~ eventually) = 1 

for ~-almost all x~Fj and by (12) 

v,j(x,S)< S q(x, dxl) ~ q(xl,dx2)"" ~ q(x,-1,dx,)<=Qx(Y,@() 
Xl ES x2~S xn~S 

which implies v,j(x, S)"~O as n ~ oo. 
It follows that for u-almost all x~Fj lira Vk(X, S)=0 and this combined with (13) 

k ~ o o  
establishes Theorem 6.1. 

(6.3) Theorem. Under hypothesis (H), if condition (i) holds, then for u-almost every 
x~S the following is true 

limp(')(x, B)=u(B) for all B~N. (15) 

Proof This follows from Theorem 6.1 and Corollary 4.4. 
Note that (15) can also be deduced from Theorem 6.1 and condition (i) via 

Theorem6 in [-5]. The present approach is however free from spectral con- 
siderations. 

w 7. Convergence in Total Variation 

If the initial distribution 2 in w is 6x, we shall denote the function f,(6x, y) by 
f,(x, y) for simplicity. Thus 

p(") (x, dy) = f,(x, y) ~(dy) + v,(x, d y). 

Under hypothesis (H) the functionsj~(x, y) can be chosen to be N | N-measurable 
in the pair (x, y) (see [-6, pp. 616-7]) and in the sequel we shall assume that they 
have been so chosen. It is easy to see that (3) implies that for every n > 1, every m > 1 
and every initial distribution ,~ 

f,+m(2, y)> ~f~(2, u)f~(u, y) rc(du) (16) 
S 

for 7r-almost all yeS. 

(7.1) Lemma. Under hypothesis (H), /f condition (i) holds, then for every initial 
distribution 2 

lira inff.()~, y) > c(2) (17) 
n ~ o o  

for 7r-almost all yeS. In particular 

lim inff,(x, y)> 1 
n ~ o o  

(18) 

for ~ | ~-almost all (x, y)~ S x S. 
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Proof. Let ~ (Z, y)--lim inf fk ('~, Y). By (16), for fixed rn, arbitrary r > 0 and z-almost 
all y e S  k~o~ 

~(2, y) = lira inff~ +m(2, y) > lira inf~ f,(2, u)f~(u, y) n(du) 
t I ~  t l ~  CO S 

> lira inf ~ f,(2, u) min {f~(u, y), r} n(du) = c(,~) ~ rain {fro(u, y), r} ~(du) 
n ~  S S 

by Theorem 4.1. Letting r --* oo we obtain 

tp(2, y) > c(2) ~f,,(u, y) n(du) rc-a.e. 
s 

Integrating over an arbitrary B ~ ~ leads to 

S 0(~, y) ~(dy) > c(2) ~ ~ f~(u, y) n(dy) n(du) = c()~) S #m( u, B) rc(du) 
y E B  u ~ S  y ~ B  u ~ S  

and letting m ~oe  we see by Theorems 4.1 and 6.1 that 

~b(2, y) ~z(dy) >: c(2) n(n) 
y E B  

which implies (17). (18) follows easily from this, by Theorem 6.1. 
We are now ready to strengthen Theorem 4.1. 

(7.2) Theorem. Under hypothesis (H), if condition (i) holds, then for every initial 
distribution 2 the sequence {f,(2, "), n > 0} converges to the constant c()~) in Ll-norm: 

!irn ~ [f,(;~, y ) -  c(;0[ n(dy) = 0 (19) 

and hence 

lira [(#,- c ( 2 )  n II = 0. 
n ~ o o  

I f  c (2)= 1, then 

lira N2"-nll =0. (20) 
n ~ o o  

In particular 

lira llp~")(x, ")-n( ' )] l  =0  (21) 
t l ~ o o  

for z-almost every x ~ S. 

Proof. (19) follows from (17) and the fact that 

~ f~()., y) n(dy) = #,(S) --, c()~). 
S 

Theorem 6.1 then implies (21). 
This completes the proof of the implication (i) ~ (ii) in Theorem 2.1. Note 

that the proof of Lemma 7.1 in fact establishes the following general Theorem: 

(7.3) Theorem. I f  hypothesis (H) holds and iffor z-almost every x~S 

lira #,(x, B) = n(B) for all B ~ ,  
n ~  oo 
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then lim inff,(x, y) > 1 for rc | re-almost all (x, y)e S x S and hence 
n ~  oo 

lira Ilp("~ (x, . ) -  re(. )Jl --O 
n ~ o o  

for re-almost all xES. 
There is a "dual" to Theorem 7.2 which reads as follows. 

(7.4) Theorem. Assume hypothesis (H) and condition (i). I f  jo t  each n > 1 we define 
the measure p,( ' ,  y) by 

p.(z, y)= ~f.(x, y)~(dx) (Be~) 
B 

then for ~z-almost every y e S  

lim j)p~(., y)- rc(.)j} = 0. (22) 

The following proof reveals the analogy with the forward transition prob- 
abilities. Denote by ~ *  (n>0) the a-field Y(  .... X .... 1 , X n )  generated by 
..., X_,_I ,  X_, .  The following lemma parallels 3.2. 

(7.5) Lemma. Under hypothesis (H),for zr-almost every y e S, { f , (X_ , ,  y),~*, n > 1 } 
is a backward supermartingale under P~. 

Proof Note first that (12) implies #,+re(X, ")> ~pt~)(x, du)#m(U , .) from which it 
S 

follows in turn that for every n>  1, every m> 1 and every x e S  

L+Ax, y)> ~ p(")(x, du)L(u, y) 
S 

for re-almost all yeS.  By Fubini's theorem there is a set C o S  with re(C)= 1 and 
such that if ye C then 

L(x, y)> Sp(~, du)L_~(u, y) 
S 

for all n=>2 and re-almost all xeS.  The right-hand side is a version of 

E(f ,_~(X ,+~,y) lX , = x )  

and hence, for all y e C and n > 2, 

L(X_.,  y)> Z(L_~(x_~ y)lX_,,)=E(L_~(x_.+~, y) tx  ., x ._~ .... ) 

P-a.s., where the last equality follows from the Markov property. This proves the 
lemma. 

(7.6) Lemma. Under hypothesis (H), /f condition (i) holds, then for rt-almost 
every y e S 

lira f f , (x ,  y) r~(dx)= re(B) (Be~),  (23) 
n ~ o o  B 

i.e. the sequence f , ( ' ,  y) converges to 1 in the a(Ll , L~)-topology. 
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Proof. One shows first, as in the proof of Theorem 4.1, that every subsequence of 
(f,(.,y)} contains a sub-subsequence {s which converges to some 
4)eLl(S, N, 7r) in the a(L1, L~)-topology. We shall prove that 4~ = 1. 

By assumption 

~im ~f,k(x, y) u(dx)= ~AO(x)u(dx ) (AcN). (24) 

If we take )~ = zc in (16) we see that for z:-almost all y E S, ~f,,(u, y)u(du)< 1, since 
S 

f,(u, u)= 1. Thus the convergence in (24) is bounded and Lebesgue's theorem 
implies that for arbitrary BeN 

u(B) ~ 4)(x) rc(dx) = lim ~ ~ f,k(x, y) zc(dx) zc(dy) 
A k~o~ y ~ B x ~ A  

= lim ~ ~ f~(x, y) ~(dy) ~(dx) 
k ~  oo x ~ A  yEB 

--lim ~ #,~(x,B)rc(dx)= ~ x(B)rc(dx)--x(A)x(B). 
k ~  x ~ A  x e A  

It follows that q~ = 1 r~-a.e. 
Combining now (23) (with B = S) and (18) we obtain 

lira ~ [f,(x, y) - i I u(dx) = 0 
n ~ o o  S 

which is equivalent to (22). 

w 8. Appendix: The Harris Recurrence Condition and Orey's Theorem 

In the present appendix we indicate briefly the connection of Theorem 2.1 with 
Orey's theorem ([17, 14]). The following theorem shows how Orey's result for 
the case under consideration can be made to follow from 2.1. 

(8.1) Theorem. Under hypothesis (H), conditions (i) and (ii) there and conditions 
(iii) and (iv) below are equivalent to each other. 

(iii) For ~z-almost every xeS  the following is true: I f  ~z(B)>O (BEN), then there 
is an N (depending on x and B) such that, p(')(x, B)> O for all n > N. 

(iv) For 7z| every ( x , y ) e S x S  the following is true: I f  ~z(B)>0 
( B e N), then there is an n (depending on ( x, y) and B) such that p(")( x, B) > O, p(~)(y, B) > O. 

Proof. The theorem will follow if we complete the chain 
(i) ~ (ii) ~ (iii) ~ (iv) ~ (i). The first implication was established above, while 
the next two are trivial. Only the implication (iv) ~ (i) remains to be proved. 

First note that there are versions of f~(x, y) such that 

f ,  +m(x, y) > ~ f,(x, u) f,,(u, y) rc(du) (25) 

for all x, y, n, m (see [6, p. 196]). If (iv) is true, then Lemma 2 in [13J implies that 
there are two sets A, B c S  and a k>  1 such that ~(A)>0, re(B)>0 and fk(x, y )>0  
for all xeA,  yeB. The basic idea of this lemma has been used in the majority of 
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papers on the subject since Doeblin (cf. [6, Lemma 5.3, p. 200] and the references 
cited in [13, p. 23]) and it is interesting that it was not needed in the proof of 
Theorem 2.1 above. We will use it however for the implication (iv) ~ (i) and in 
order to make our discussion self-contained, we outline here a proof of the above 
assertion, simplifying somewhat in the present context the argument in [13]. 

First note that (iv) implies that for ~c-almost all xES, ~({y~S: fro(x, y)>0  for 
some m})=l  and that consequently the se t  {(x,y)~S2: fm(x,y)>O for some m} 
has ~z | re-measure one. It follows from this that there are i>  1 and j >  1 such that 
the set Q={(x, y, z)~S3: fi(x, y)>0,fj(y,  z)>0} has positive ~3-measure (where 
re3= rc | rc | re). Since rc3-almost every point of Q is a "point of density 1" for Q, 
there is a "rectangle" J x K x Lin S 3 such that ~z 3 (Q c~ (J x K x L)) > �88 ~3 ( j  x K x L) 
(cf. [6, pp. 199 and 201]). If we define A to be the set of all x~J such that ~({y~K: 
f~(x, y)>0})>�88 then it is easily seen that re(A)>0. Similarly, if we define B 
to be the set of all z~L such that rc({y~K:fj(y, z)>0})>�88 then ~(B)>0. For 
arbitrary x~A, z~B we then have ~({y~K: (x,y,z)EQ})>l~z(K)>O and so 
f~+j(x, z)> ~fi(x, y)fj(y, z) rc(dy)>O by (25) and all we have to do is set k---i+j. 

K 
Returning to the implication ( iv)~  (i), if xeS, yeS and n>  1 are such that 

p(")(x,A)>O, p(")(y,A)>O, then by the definition of A and B, for every subset 
C o rb  with re(C)>0 we have p("+k)(x, C)>0, p(,+k)(y, C)>0. It follows easily that 
p("+ ~)(x,.) and p(" +k)(y,.) cannot be singular with respect to each other and hence 
(iv) implies (i). This completes the proof of the theorem. 

Recall now that the Markov process is said to be recurrent in the sense of 
Harris with respect to rc if it satisfies the following condition: If ~(A)> 0, then 
P~(XneA i.o.) = 1 for all x~S. If this is the case and if the period d of the process is 1 
(see [17] for this) then condition (iii) as well as Theorem 6.1 follow trivially (for the 
latter see [17, top of p. 813]) so that in fact our section w becomes in this case 
redundant. Since in this case C(6x)= 1 for every x, and not just almost every x, 
(20) implies that (21) is true for all x, and this is Orey's theorem for the present case. 

In the introduction we remarked that, conversely, Theorem 2.1 can be reduced 
to Orey's theorem by arguments given in [13]. 

References 

1. Breiman, L.: Probability. Reading, Mass.: Addison-Wesley i968 
2. Chung, K.L.: The general theory of Markov processes according to Doeblin. Z. Wahrscheinlich- 

keitstheorie verw. Gebiete 2, 230-254 (1964) 
3. Doeblin, W.: Sur les propri&6s asymptotiques de mouvement r6gis par certains types de chaincs 

simples. Bull. Math. Soc. Sci. Math. R.S. Roumanie 39, 1, 57-115; 2, 3-61 (1937) 
4. Doeblin, W.: t~16ments d'une th6orie g~n6rale des chaines simples constantes de Markoff. Ann. 

Sci. l~cole Norm. Sup. (3) 57, No. 2, 61-111 (1940) 
5. Doob, J.L.: Asymptotic properties of Markoff transition probabilities, Trans. Amer. Math. Soc. 

63, 393-421 (1948) 
6. Doob, J. L.: Stochastic processes. New York : Wiley and Sons 1953 
7. Foguel, S. R. : The ergodic theorem for Markov processes. Israel J. Math. 4, 11-22 (1966) 
8. Foguel, S. R.: The ergodic theory of Markov processes. New York: van Nostrand 1969 
9. Harris, T. E.: The existence of stationary measures for certain Markov Processes. Proc. 3 rd Berkeley 

Sympos. Math. Statist. Probab., II, 113-124 (1956) 
10. Horowitz, S.: Some limit theorems for Markov processes. Israel J. Math. 6, i07-i18 (1968) 



226 F. Papangelou 

11. Jacobs, K.: Zur Theorie der Markoffschen Prozesse. Math. Ann. 133, 375-399 (1957) 
12. Jacobs, K.: Neuere Methoden und Ergebnisse der Ergodentheorie. Berlin-G6ttingen-Heidelberg: 

Springer-Verlag 1960 
13. Jain, N., Jamison, B.: Contributions to D oeblin's theory of Markov processes. Z. Wahrscheinlich- 

keitstheorie verw. Gebiete 8, 19-40 (1967) 
14. Jamison, B., Orey, S.: Markov chains recurrent in the sense of Harris. Z. Wahrscheinlichkeits- 

theorie verw. Gebiete 8, 41-48 (1967) 
15. Meyer, P.A.: Probability and Potentials. Waltham, Mass.: Blaisdell 1966 
16. Neveu, J.: Bases math6matiques du calcul des probabilit6s. Paris: Masson 1964 
17. Orey, S.: Recurrent Markov chains. Pacific J. Math. 9, 805-827 (1959) 
18. Ornstein, D., Sucheston, L.: An operator theorem on L 1 convergence to zero with applications 

to Markov kernels. Ann. Math. Statist. 41, 1631-1639 (1970) 
19. Yosida, K., Kakutani, S.: Operator-theoretical treatment of Markoffs process and mean ergodic 

theorem. Ann. Math. 42, 188-228 (1941) 

Received September 9, 1975 


