
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
37, 201-209 (1977) 

Zeitschrift ftir 

Wahrscheinlichkeitstheorie 
und verwandte Gebiete 

�9 by Springer-Verlag 1977 

Stability of the Classification of Stopping Times 

Philip Protter 
Department of Mathematics, Duke University, Durham, North Carolina, USA 

Introduction 

Let (~), 0 < t _< oo be an increasing family of a-algebras which is right continuous, 
with ~ complete and each ~ ~ •, on a probability space (f2, Y ,  P). If T, S are 
(~)  stopping times, then so are T AS, T vS  and T + S .  Dubins [4] has char- 
acterized all the deterministic functions of n stopping times (n > 1) such that the 
image is a stopping time. 

In "the general theory of processes" one classifies stopping times into pre- 
visible (or predictable), accessible, and totally inaccessible stopping times. These 
stopping times are intimately connected with the previsible and well-measurable 
o--algebras that are used, for example, in Markov process theory and stochastic 
integration. It is elementary that if T, S belong to one of the three classes, so also 
do TA S and T v S. This paper determines which of the deterministic functions 
that carry stopping times into stopping times ("preserve" stopping times) also 
preserve the classifications. 

The main Theorems are (3.3) and (4.3) which show that all Borel functions ~b 
which preserve stopping times also preserve previsibility; Corollaries (3.4) and 
(4.4) show that all such q~ also preserve accessibility; Theorems (3.6) and (4.9) 
reveal a more complicated situation for the class of totally inaccessible times. 
For q5 to preserve total inaccessibility there must be a partition of the domain 
such that q5 is a lattice operation in n variables on each set in the partition, except 
for a small set. The structure of this exceptional set is determined. 

2. Preliminaries and Notation 

A standard reference for the classification of stopping times is the book by Del- 
lacherie [2]. We recall some of the definitions and elementary properties. A 
stopping time T is previsible if there exists an increasing sequence (T") of stopping 
times with limit T such that Tn< T on {T>0} for each n. Such a sequence an- 

nounces T. A time T is accessible if there is a sequence (T") of previsible times 
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suchthat S {T"= T<  oo} = (T<  or} a.s. A time T is totally inaccessible if P { T =  
S<  oo} =0 whenever S is previsible. It is elementary that all three classifications 
are preserved under the operations min(A) and max( v ); for example, if T, S are 
accessible, T A S  and T v S  are also accessible. If A ~ J ,  then T A is the random 
variable equal to T on A and + oo on A', the complement of A. Also T A is again 
a stopping time if and only if A 6 J  r. If T is previsible, then T A is again previsible 
if and only if A e J T _ .  If S, T are stopping times, then {S< T} is in both ~s and 
J r .  If S is previsible, then {S < T} ~ J r - .  We also recall that T is J r -  measurable. 

We let t=( t t ,  . . . ,  tn) , where the dimension should be clear from the context; 
and t*, t ,  will denote t I v t 2 v -.- v t, and t 1 A t z A ... A t, respectively. The letters 
R, S, T will always be stopping times, T a vector of stopping times, etc. If t is an 
n-dimensional vector ("n-vector"), the quantity t(0 =(t  1 . . . .  , ti_ 1 , ti+l, . . . ,  t,) is an 
(n-1)-vector. Similarly t(i,j) is an (n-2)-vector, etc. If A is a set in IR~, then 
A(t(~)) will denote the section of A holding t,) fixed. The letter q~ is reserved for 
functions which preserve stopping times, though its domain may vary. 

Dubins [4] has shown that for Borel ~b: IR+ ~IR+ to preserve stopping times 
it is necessary and sufficient that there exist a (possibly infinite) constant c such 
that 

(2.1) 4 ( t ) > t  i f 0 < _ t < c  

=c  if c < t < o v .  

Dubins considers finite-valued stopping times, but the extension to infinite- 
valued stopping times follows from it: let f :  IR__ --+I be given by f ( x ) = x / ( 1  +x), 
0 _< x_< oQ (where IR+ =__[0, oo], and I = l-0, 1]). Let g:I  ~ ~,+ be given by g(y)= 
y / (1 -y ) .  Let ~: IR+ -+IR+, and let qS: I -+I  be given by ~b=for Then letting 
s= f ( t ) ,  ~ s = ~ ,  (2.1) for q5 becomes 

(2.2) ~)(t)>t O < t < c  

=c  e<t_<l .  

One easily checks that q5 preserves ~r stopping times if and only if ~ preserves J 
stopping times. Thus th=go~bof preserves stopping times if and only if it is of 
the form (for some constant c): 

(2.3) ~(s)>__s O<s<_c 

: C  C<S<:O0. 

For a Borel function ~b: IR~ ~ IR+ ,  Dubins showed that it is necessary and 
sufficient that 

(2.4) t--,~)(t 1 . . . .  , ti_l,  t, ti+l, . . . ,  t,) 

satisfy (2.1) for each t(o, 1 < i N n ,  in order for ~b to preserve stopping times. For ~b 
to carry n-vectors of possibly infinite stopping times into stopping times, by 
letting Tj = t j, j # i, it is clearly necessary for the function of t in (2.4) to satisfy 
(2.3) for each vector t(0 ~ ~ 'U 1. Let F (x) = (xj(1 + x1) . . . . .  Xn/(1 + x,)), and G (y) = 

.. - "  --+I" and G : I " ~ - "  --+ (yj(1 - Y l ) , . ,  Y,/(1 - y,)), where F: IR + IR +. Also let ~: ~,+ 
IR+; d ) : I " ~ I  where q~=fotpoG; s=f ( t ) ;  and ~ = ~ .  Then we have: 

(2.5) Lemma. ~) preserves J stopping times if c~ preserves ~ stopping times. 
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Proof. Let T be an n-vector of ~,~ stopping times. Then R= F( T)  is an n-vector 
of ~ stopping times. Then 

it) (T) < t} = {0o G o F(T) < t} 
= {~,o 6 (R)  ~ t} 

= {4 (R) <f(t)} 

Therefore ~(T) is an f f  stopping time, which establishes Lemma (2.5). 
If ~ is of the form (2.3), then 4 is of the form (2.2), and Dubins' result assures 

us 4 preserves stopping times. Lemma (2.5) then shows that it is also sufficient 
for 4 to preserve stopping times that each function as in (2.4) satisfy (2.3) for each 
vector t(o ~ , + -  1. 

Note that the constant c i = ci(tu) ) which is called for in (2.3) is merely 

4 ( t l  . . . . .  t i _ l ,  00, ti+ 1 . . . . .  tn). 

Hence ci: IR "-1 + --+ ]R+ is also Borel. We call q the i-th function of constants. 

3. One Variable Results 

In this section 4: I),+---,IR+ is Borel and preserves stopping times; that is, 4 
satisfies (2.3) and 4(c~)=c. Always R, S and T will denote arbitrary stopping 
times. 

(3.1) Lemma. If 4(t)> t for all t, then O(T) is previsible. 

Proof Let 4"( t )=(n-1In)  [ 4 ( t ) - t ]  + t. Then 4"(T) announces 4(T). 

(3.2) Lemma. Let 4(t)> t for all t, A = {t: 4(t)= t}, A = T-I(A). If T A is previsible, 
then O(T) is previsible. 

Proof Note that Ae~T_. Since 4 (T)=  O(T A) A 4(TA,)= T A A 4(TA,), it suffices to 
show 4(TA, ) is previsible. Let ~( t )=4( t )1A,+2t  1A, where 14 is the indicator 
function of the set A. Then O(TA,)= 4(TA, ) is previsible by Lemma (3.1). 

(3.3) Theorem. All 0 preserve previsibility. 

Proof Let T be a previsible time. If 4(t)> t all t, then 4(T) is previsible by Lemma 
(3.2). Suppose there exists c < oo such that 4(t)= c for t > c. Then 

O(T)=4(TAC)AC~, 

where B = {c < T}. Since T is previsible, we have B~.~_, hence c a is previsible. 
Let ~( t )=4( t  ) 1Lo, c~+2t l(c ' ~). Then ~(TA c )=4(TA C) is previsible by Lemma 
(3.2). 

(3.4) Corollary. All 0 preserve accessibility. 

Proof Let T be an accessible time. Let (T") be previsible such that 

0 {T~=T<oo}={T<oo} a.s. 
n-1 
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Then G {4(T,)=(a(r)<oo}={4)(T)<oo} a.s., and each qS(T,) is previsible by 
n = l  

Theorem (3.3). 

If ~b(t)<t for some t, then ~b(t)=c for all t>c for some finite c. So a necessary 
condition for q~ to preserve total inaccessibility is that qS(t) > t for all t. 

(3.5) Theorem. Let4)(t)>t for all t and Tbe totally inaccessible. Let 

A={t: t<q~(t)< ~} 

and A= T-I(A). Then (o(r) is totally inaccessible if and only/f  P(A)=0. 

Proof (Necessity). Suppose q~(T) is totally inaccessible. Then 4)(TA) is previsible 
by Lemma (3.2), so P {4(T a)= 4fiT)< oo } = 0, hence P(A)= O. 

(Sufficiency). Suppose P(A)=0. Then O(T)=(a(Ta)AO(TA, ). Since A e ~ r ,  we 
know Ta, T A, are also totally inaccessible. Let 0(t)=~b(t)1A,+t 1A. Then when S 
is previsible, we have R-- T A, totally inaccessible and 

P{S = r oo} __< p{s =R < oo} =0. 

So 4(TA,) = r is totally inaccessible, and q~(TA) = oo a.s. 

(3.6). Theorem. q5 preserves total inaccessibility if and only if q)(t)> t and 

A={t :  t < ~ ( t ) <  oo} 

is countable. 

Proof (Sufficiency). Let T be totally inaccessible, and S be an arbitrary previsible 
time. Then 

P{43(T)=S < oo} <=P{O(T)=S; TeA} + P{~b(T)=S< oo ; TgAA} 
< P { T = S } + P { T e A }  

< ~ P { T = a } = 0 .  
0~A 

(Necessity). Suppose A is uncountable. Since A is  Borel, by a theorem of 
Alexandrov-Hausdorff (see Dellacherie [2], p. 25), A contains an uncountable 
compact set. It is well known that a closed set may be written as the union of a 
perfect set and a countable set, so in particular A contains a nonempty perfect set. 
For any perfect set there exists a bounded continuous nondecreasing function 
which induces a diffuse probability measure whose support is that set. So we may 
find a diffuse probability P on JR+ which gives mass to A. Take f2=]R+, S(t)=t, 
@ the Borel sets, 4~ and (4)  the completed family 4 ~ made right 
continuous. Dellacherie [3] has studied this example, and shown that P diffuse 
guarantees S is totally inaccessible. Since P{SeA}>O, d)(S) cannot be totally 
inaccessible by Lemma (3.5). 

(3.7) Theorem. Suppose $(T) is totally inaccessible. Then R = T  a is totally 
inaccessible, where A = {6o: ~b(T(co)) < oo }. 

Proof. Note A =  T- l{ t :  qS(t)< oo}, so Ae~,~ T and R is a stopping time. I fR is not 
totally inaccessible, we can find a set B such that P(B) > 0, R B < oo on B, and R B 
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is accessible. By Corollary (3.4), q~(RB) is accessible. But 

P{q~(T) = q~(RB) < oo} > P(B) > O, 

a contradiction. 

4. n Variables  Resul ts  

Throughout this section ~b" IR+-" ~ IR+- is Borel, and preserves stopping times; 
that is, for each i the function in (2.4) satisfies condition (2.3) for all fixed t(i)~IR"~ -1. 
We let c i=ci ( t ( i ) )=(a(q , . . . , t i_ l ,oo ,  ti+ 1 . . . . .  tn) denote the i-th function of 
constants. For ease of reference we note the following obvious but fundamental 
result. 

(4.1) Theorem. Each c~ preserves stopping times, 1 <- i <_ n. 

Proof. If (T1, ..., T,_I) is an (n-1)-vector  of stopping times, then 

c~(T,,  . . . ,  T , _ 0 =  0 (T~ ,  . . . ,  o0 . . . . .  T,) 

is a stopping time, since ~b preserves stopping times. 

(4.2) Lemma. Suppose ~b(t)>t* for all t. Then ~b(T) is previsible for all T. 

Proof. Let qS( t )= (n -  1/n) [qS(t)-t*] +t*. Then ~b'(T) announces ~b(T). 

(4.3) Lemma. Suppose ~b(t) > t*. Then r preserves previsibility. 

Proof. Let A--{t :  qS(t)>t*}, A=T-~(A),  and T * =  sup (T/). Then R = T ~  is 
l <=i<__n 

previsible, since A ' ~ .  Since ~b(T)=~b(TJ . . . .  , T ~ ) A R ,  it suffices to show 
~b(Ta ~ . . . .  , T~)= q~(TA)is previsible. Let 0( t )= qS(t)1A+2t* 1A,. Then 0(TA)=r 
is previsible by Lemma (4.1). 

(4.4) Theorem. All ~b preserve previsibility. 

Proof. (Induction on the number of variables.) Theorem (3.3) establishes the 
theorem for n = 1. Let T be an n-vector of previsible times. Recall that c~, 1 __< i < n, 
are the functions of constants for ~b. By Theorem (4.1) and the inductive hypothesis 
each c~ preserves previsibility. Let Ri = c~(T(0 , and A[i] = {R i < T i }  , 1 < i < n. Since 
T~ is previsible, we have A[iJ e~R,-"  We let R'~ denote the restriction of R~ to the 
set A[i]; that is, R'i=R i on A[i] and + oo otherwise. Each R'~ is previsible. Since 

! ~b(T) = O(T 1/x R 1 . . . .  ,7",/x R,) /x R . ,  

~b(T) is previsible if @(T~/xR1,.. .  , T, AR, )  is. Let 0( t )=~b(t) l~+t* 1A, , where 
A = {t: t i < ci(t(i)) for each i}. Then dp(T 1/x e 1 . . . . .  T n/x R,) = O(T~/x R~ . . . .  , T,/x R,) 
is previsible by Lemma (4.3). 

(4.5) Corollary. All d? preserve accessibility. 

Proof. Proceed as in Corollary (3.4). 

The next lemma reveals some of the structure of q~ which will be used to prove 
the results on total inaccessibility. 
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(4.6) Lemma.  Suppose there exists t such that ~b(t) = c~ < t , .  I f  p ,  > a, then (a(#) = a, 

Proof  This is trivial if ~b is a function of one variable. Let t be an n-dimensional  
vector with q5 (t) = ~ < t , .  Then q5 (t) = c~ (t(~) = ~ < t t~, .  By the inductive hypoth-  
esis, if p ,>c~ and hence p(l),>c~, then cl(p(~)=c~<p(l~ , .  Since also pl>c~, we 
have qS(p) = c 1 (P(1)) = cc 

(4.7) Corollary. A necessary condition for dp to preserve total inaccessibility is 
that qS(t) __> t ,  for all t. 

Proof. Suppose e = ~b(t)< t ,  for some t. Let O(t)= qS(t . . . . .  t). Then 0 mus t  preserve 
total inaccessibility. But for any T, we have tp(T)=c~ on {T>c~} by L emma  (4.6). 
Let  T be the first j ump  time of a Poisson process, which is totally inaccessible. 
Then P{O(T) = c~} > 0, an impossibility. 

For  an n-vector t, there are h(n) possible lattice operations. We shall denote  
these by L k (t), 1 < k < h (n). 

(4.8) Theorem. Let ~b(t)>t, and let A = { t :  qS(t)<oo and ~b(t)#Lg(t), any k}. Let  
T be a vector of  totally inaccessible times. Then q~(T) is totally inaccessible l a n d  only 
i f P { T e A }  =0.  

Proof(Sufficiency). It is elementary that the lattice operations preserve total 
inaccessibility. If S is an arbi t rary previsible time, then 

h (n) 

P { r  ~ e { S = L k ( T ) < o o  } 
k = l  

= 0 .  

(Necessity). Let A o = { t :  r  Let  Oo(t )=r  1ao+2 t*  la6. Then  O(T) is 
previsible (Lemma(4.2)), and s o P { T e A 0 }  =0.  

Let A [i] = {t: t~) < q~(t)'< ti}, 1 < i < n. Then on A [i], ~b(t) = ci(t(i)) > t~). Defining 
(t(i)) = ci(t(o ) 1a[ q q- 2 t(*) 1a[i], , we have Oi(T(i)) previsible, so P { T e  A [i-[} =- 0. 

Let t(~ ..... ~) be the (n -k ) -vec to r  with the i l , . . . ,  i k coordinates deleted. Let  
% ~: Ik'+- k ~ IR+ be the i k function of constants for the stopping time preserving 
function c~ ...... ~_ ~, where c~x is the i 1 function of constants for qS. Suppose 

t~. ...... i~) < ~b(t) < min (ti, . . . . .  tik ). 

Then ~b(t) = ci,(t(~) ) = c~, i~(t(~, ~=)) < t~; letting 

A [ i l ,  itJ = {t : t* . . . ,  �9 " ,  (i ...... i~) < ~b(t) < rnin (ti~, ti~, tlk)}, 

we have that ~b(t)=ci~ ..... i~(t(i ...... i~))>t* ..... on A[i~, ik]. So on i~) " ' " ,  

{ T e A [ i  t . . . . .  i~]}, 

we have ~b(T)=0i ...... i~(T(i ...... i,)), a previsible time. Hence P{A[ia,  ..., ik]}=0. 
Since A = U A[ia . . . .  , i~], we have P {TEA} =0 .  Q E D  

all i~,, . . . ,  i k  
l < k < n  

n - - 1  Suppose A e 2  ~ ,  and t=( t~ ,  . . . ,  t~_l) is a vector in IR+ . We will denote the 
t(,) section of A by A(t(,))= {t,: (t(,), t , )eA} .  We let 

p (A)= {(ta, . . . ,  t,_~): A( tx , . . . ,  t ,_ t )  is uncountable} 
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n - 1  denote the essential projection of A onto IR+ . We will now give a lemma that 
we will use in the proof of Theorem (4.10). It generalizes a result given in Della- 
cherie [2, p. t35]. If 9 are the Borel sets in IR~_, we let 9 "  be the universally 
measurable sets; that is, 9 " =  0 9",  where ~ is the completion of 9 by the 

/l f i n i t e  measure g. 

(4.9) Lemma. Suppose A e ~ * .  Then p(A) is universally measurable as a subset of 
n--1 JR+ . 

Proof We know that He.N implies p(H) is universally measurable as a subset 
of IR+ -1 (cf. Dellacherie [2, p. 135]). Let v be any finite measure on ~(IR+-I), the 

t l - -1  Borel sets of IR+ , # a finite measure on NOR+), and r = #  x v. Then since AeN*, 
there exist B2, B t ~  such that B z ~ A ~ B  1 and -c(Bz-B1)=0. Let co denote a 

n - - 1  point in IR+ , F = B 2 -  Ba, and 

Since z(Ba - B 1 ) =  0, we have v(A)= 0. But A ~ p(B2)- p(Bl), so v[p(B2)-  p(B1) ] =0. 
Since p(Bz) , p(B1) are universally measurable and p(Bz)~p(A)~=p(Bl), we have 
p(A)~M(IR +- I) ~. 

(4.10) Theorem. Suppose r  Let Z=  {t: r some k, l <_k<_h(n)}. 
Let A = IR+ \ S .  Let (al, ..,, a,) be the j-th permutation of the labelling of the n axes. 
We define the following sets, where F,,,J k is a subset oflR+-k: 

{ } F,s_1 = t(~: A(t(a~))c~ 1~ [t.~, oo) is uncountable 
k = l  

F,,J_ 2 = t( . . . . . . . .  ): F~s_l(t ( . . . . . .  ))n ]-[ [t~., ce) is uncountable 
�9 k = l  

FlJ= {ta~ : F2J(t~)n[t~, oQ) is uncountable}. 

Then r preserves total inaccessibility if and only if FlJ is countable for each j, 1 < j < n [. 

Proof. By rearrangement if necessary, we take Lk(t ) to be the lattice operation 
on the coordinates of t that exhibits the (n-k)- th largest coordinate. Let 

A(j)={Ta <=Ta2<=...<=Tan}, l<=j<=n! 

where (a a . . . . .  a,) is the j-th permutation of the labelling of the axes. Let 

Cj(t) -- r (Lo~(t),. . . ,  Lo,,(t)). 

Then 

r  rain {r 
1 < j < n !  

Note that A(Oe~,----~r,~, and r  so Cj(T)~(j) is a stopping time. Therefore it 
suffices to consider only the case where the stopping times are totally ordered. 

We also note that if 0<  T 1 < . - - <  T, are random variables and (~~ is the 
minimal filtration making them stopping times then (Jtt ~ is already right contin- 
uous. Let ~ be the completed a-fields. Let N t be the counting process for (T~), 
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l<_i<n. The dual previsible projection Nt (or "compensa to r " )  of N t has been 
calculated by Chou and Meyer  [1, p. 234]. It is cont inuous if and only if the 
distribution F~ of T~ and all the condit ional  distributions 

F/(t I . . . .  , ti-1; t i )=P(Ti<t i ;  T 1 = t  t , . . . ,  T/_ t =ti_ l )  

are continuous.  It is well known (cf. Dellacherie [2, p. 111]) that ~ is cont inuous 
if and only if the jumps of N, are totally inaccessible. So T~ . . . .  , T, are totally 
inaccessible times if and only if t ~ F l ( t  ) and t~F~(t~,  t2, ..., ti_l; t) are contin- 
uous for each fixed (h ,  ..-, t , - t ) ,  2 < i < n .  

(Proof  o f  Sufficiency). Suppose each qJ is countable.  By symmetry it suffices to 
show Cs(T)~ o3 is totally inaccessible, assuming T is. So we may assume the stopping 
times are totally ordered. We fix a permuta t ion  (a~, ..., a,) and by abuse of nota t ion 
we identify a~ with i. By Theorem (4.8) it suffices to show P { T e A }  =0.  We have 

P {TEA} =J 1a ( q , . . . ,  t,) F,( tx , . . . ,  t ,_ 1 ; d t , ) . . .  F2(t 1 ; dt2) Vt(dtt). 

Since T is totally inaccessible, we must  have t ~F~(t~ . . . . .  t i_l ;  t) continuous,  
1 < i<  n, regardless of the filtration. So the condit ional  distributions give rise to 
diffuse kernels. Therefore  

1A(t) Vn(t 1 . . . . .  tn_t ; dtn) ... Fn_i(t t . . . .  , tn_i_l ; dtn_i)=O 

unless (tt ,  ..., t,_~_x)eF]_~_ 1, where the j corresponds to the permuta t ion  we 
chose. Finally, we have 

j" 1A(t)F,(tl, ... , t , _ l ;d t , )  ... F2(t t;dt2)=O 

unless t t eF~ j. But F~ j is countable,  so F1 (dh) does not  charge it. Hence P {TEA} = 0. 

(Necessity). Suppose q~ preserves total inaccessibility and T is an n-vector of 
totally inaccessible times. We choose an arbi t rary j and we will show F / i s  count-  
able. By our  previous discussion, we may assume T is totally ordered, i.e. that  
A( j ) =  f2. We now suppress j and identify (a t . . . .  , a,), our j - th permutat ion,  with 
(1, ..., n); that is, we assume 0 <  T 1 < T 2 < . . .  < T,. 

Since A is Borel, F,_ i is universally measurable. By L emma  (4.9), F k is universally 
measurable in IRk+, 1 < k < n -  2. 

Suppose that F~ is uncountable.  Suppose also that there is no diffuse measure 
on IR+ that gives mass to F~. Let v be an arbi t rary diffuse measure and e > 0. Then 
there exists a compact  set 27~,~=F~ such that v(27~,v)<e. Let  

a l l  d i f f u s e  v 

Then 27~ ~ F t is compact  and v(27~)< e, for all v. Let  e, decrease to 0, 27(,)= 27~ ...2:~., 
and Z = 0 27(,). Then  v(27)=0 for all diffuse v, 27~ F1, and 27 is compact.  Since 27 

rl 

is uncountable,  we know Z contains a non-empty  perfect set, hence there exists a 
diffuse measure which charges Z, a contradict ion.  So F~ uncountable  implies 
there exists a diffuse measure which charges it; take it to be Fl(dtl). 
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Now suppose there exist diffuse kernels F ~ ( t l , . . . ,  t i _ l ; d t i ) ,  1 < i<  k - 1 ,  such 
that 

l r k - ,  Fk- l ( t l ,  . . . ,  tk_ 2; dtk_t)  ... Fl(dta)>O. 

Then there must exist a diffuse kernel F k such that 

(4.11) V(Fk)= ~ l r k ( t l ,  . . . ,  tg) Fk(t 1 . . . .  , tk_ ~ ; dtk) . . .  F i ( d t l ) > O .  

Suppose not. Then as we have shown above, we can find a compact set 2~___F k 
such that v(Z) =0  for all such v. We know (see Dellacherie [2, p. 136]) that we can 
put a measurable set K in Z such that K ( t ~ ,  . . . ,  t k_ l )  is perfect or empty, and the 

k--1 projection of K onto IRk+ -~ equals the essential projection of 27 onto Ill+ . A 
result of Dellacherie [2, p. 140] tells us there exists a continuous bounded kernel 
Fk(t I . . . . .  t k _ l ; d t k )  whose support is K__2;. This is a contradiction. Hence there 
must exist a diffuse kernel F k such that (4.11) holds. 

Taking the kernels F~, 1 < i N n  to be the conditional distributions of (T~), 
1 < i N n ,  we have shown P {(T1, . . . ,  T,)~A}>0. Taking the filtration ~ to be 
the completion under P of the minimal filtration o~ ~ making all T~, 1 < i<  n, 
stopping times, the continuity of the F~ assures us the (T~) are totally inaccessible. 
An application of Theorem (4.8) completes the proof. 
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