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w O. Introduction 

Recently Dynkin [2-4] gave a direct stochastic approach to the construction of 
the Martin boundary in the case of Markov processes which has proven quite 
fruitful when adapted to specified stochastic fields (F611mer [5], Miyamoto [12]). 
In particular one can derive general integral representations of stochastic fields as 
mixtures of phases even if the Markov property is dropped. Our purpose here is 
to characterize the class of mixed Poisson processes with infinite intensity measures 
as canonical Gibbs states in the sense of Georgii [6], so that Dobrushin's theorem 
[1], which characterizes the mixed Poisson process as the limiting process of 
random translations, may be viewed as a special case for the present discussion 
about time development of infinite particle systems which have Gibbs states as 
limiting processes. Since canonical specifications fit into the general setting of 
specified stochastic fields which have been considered by F611mer [5] and Preston 
[14] we can apply Dynkin's method, and this gives us some new results for mixed 
Poisson processes. Our main results (Theorem 1 and Theorem 2) may be viewed 
as a generalization of de Finetti's theorem on exchangeable 0-1 variables [17] 
to point processes with a general state space. 

w 1. Stochastic Fields and Martin-Dynkin Boundary 

We first recall the definition of a stochastic field. (cf. FSllmer [5]) Let (f2, Y) be a 
standard Borel space, Y/" an index-set ordered by a relation _~, and (-~v)w~: a 
decreasing family of sub-o-fields of ~ For each V ~  let H v be a probability 
kernel on (~, Y) such that 

F/v(., A) is ~v-measurable (A~@); (1.1) 

Hv(., A) =11A if A~Cv; (1.2) 

suppose further that the collection H =(Hv) v satisfies the consistency condition 

HwHv=H w (V, W~r V~_ W). (1.3) 
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Now call any probability measure P on (f2, ~,~) which is compatible w i t h / / i n  
the sense 

Ee(A [~v)= IIv(', A) P-a.s. (Ae~,  V~ $/') (1.4) 

a stochastic field with local characteristic H. The set (5 =15(H) of all such fields 
is convex: its extremal points are called phases of 1-1. If there is more than one 
element in 15(H) then the stochastic field P is not uniquely determined by its local 
characteristics. This case will be called a phase transition. 

Given a collection H =(IIv)vE ~ of local characteristics over ((2, i f )  one con- 
structs the Martin-Dynkin boundary in the following way. Suppose that V has a 
countable base; fix a polish topology on Y2 compatible with g ,  and thereby a 
polish topology on the set ~g2 of all probability measures on (O, if).  Let 
(5 0o --- 15 0o (H) be the set of all limits 

lira f/v~ (%, .) 

where (V,) is some countable base o f ~  and (~o,) some sequence in f2. 150o is complete 
in ~ ,  and thus a polish space whose Borel field we denote by N0o. The measurable 
space (t5oo, N0o) is called Martin-Dynkin boundary of 17[. 

w 2. Mixed Poisson Processes 

We now give an example of a specified stochastic field which turns out to be the 
class of mixed Poisson processes. The idea of the construction is that this field is 
locally a Poisson point process given the particle number of the realizations of 
the process. To be more precise, such a process is defined as follows. 

Let X be a locally compact second countable Hausdorff topological space and 
the o--field of Borel sets in X, i.e. the a-field generated by the open sets in X. A 

subset of X is called bounded if its closure is compact. Denote by ~o the set of all 
bounded Borel subsets of X. Let ~IJt be the set of all non-negative Radon-measures 
in X and ~ the smallest a-field of subsets o f ~  making all functions N(., B): ~R ~ IR, 
N(/~, B)=#(B) ( B ~ o )  measurable functions of tt and, for G ~  o, ~ will denote 
the sub-o--field generated by all N(., G') with G'~_ G, i.e. the sub-a-field of 'events 
occurring in G'. ~ can be made into a polish space in such a way that ~ coincides 
with the a-field generated by the open subsets of ~ .  For details see [13]. If p is a 
Radon measure on (X, N), then the Poisson process with intensity p is the probability 
measure in (g)l, @) such that, if G 1 . . . . .  G, are pairwise disjoint bounded Borel sets, 
then the random variables N(., G1) . . . . .  N(., G,) are independent and each N(., G o 
has a Poisson distribution with parameter p (Gi). We denote this probability measure 
by Pp. Let ~ '"  be the set of all non-negative integer-valued Radon measures on X 
and ~ " =  ~l"r ~ It is well known that Po is a point process, that is Po is concen- 
trated on ~ " ,  and that Po is a simple point process (i.e. concentrated on all Radon 
point measures on X) if and only if the intensity measure p is diffuse (for details 
see Krickeberg [10]). Let T~: ~ll~g)l  be the 'projection' TG#=ResG# ( G ~ 0 )  
and call 

P., ~(~o)= P~(~o o To) (q~*LdP.)) (2.1) 
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the Poisson process with intensity p restricted to G. It is well known (see for 
instance Krickenberg [9]) that 

1 
Po, G(q~ =e-o(m" ~ ~. ~ "'" f (P(G~ + "'" +G,,)p(dxl). . .  p(dx,) (2.2) 

n>=O G G 

for any bounded measurable function go on ~J~. 
By the Fourier transform of a probability measure P on !I.ll we mean the 

mapping 

P ( f )  = J" exp(i, v(f)) P(dv) 

of the set ~(((X) of all continuous f with compact support into the complex plane. 
If f~JT'(X), f>O, the Fourier transform 

P(if) = S e x p ( -  v(f)) P(dv) 

is well defined, and is called the Laplace transform of P evaluated for the function f 
It is well known that the Laplace transform of P determines P and that the La- 
place transform of the Poisson process Pp is given by 

Po(if) = e x p ( p ( e x p ( - f ) -  1), f e d + ( X )  

(see Krickeberg [10]). 
We fix now an infinite measure p~J~ and define 

/Ta(#, A1 c~ A2) =1A2(# ) - Pp, a(A1 In(., G) = #(G)), (2.3) 

where/~6YJ~'; G6~o ,  A 1 6 ~ ;  A 2 ~ "  a. H G can be extended in the usual way 
to a Markovian kernel on 0Jl'" if"). It holds in general for any bounded Y ' -  
measurable function go on 9~'" that 

Ha(#, go) = ~ go(~ + #x.. a) Po, a(d~ IN( ", G) = #(G)). 

Here 9Jt~ denotes the set of all/~e~J~" with support in G. 

Let g x \ a  be the a-field generated by all sets of the form 

{y~gJF': N(#, G)=n}c~A (Ae5;~'..a, n~N). 

It is not difficult to see that the collection H =(Ha)a~o  satisfies the conditions 
(1.1), (1.2) and (1.3), that is 

He(., A) is ~ ' . .a -measurable  (AeY") ;  He(., A )=I  A (Aegx~.G); (2.4) 

He(., A)=I~ (A~C~:.a); (2.5) 
H e ,H e = H  e, ( G , G ' ~  o,G~_G'). (2.6) 

Thus using the explicit formula (2.2) for Pp, a a stochastic field P with local 
characteristic H is given by 

P(A~A2J-~x'..a)(#) 
1 (2.7) 

=]IA~(#) " p(G)U(a) ' ~"" ~ IA~(G, +"" + G.(G,) p(dxl)'." p(dxu(a)) 
G a 
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P-a.s. in # for each GeNo, Aie~-~', Azs~-x" G. In the terminology of Georgii [6] 
P is called a canonical Gibbs state for the local characteristic 17[. 

Let 91 be the set of all measures #egJl'" which are well-distributed with param- 
eter Y(#) with respect to p in the sense of Goldman [8]. Thus #e91 iff for every 
expanding sequence {G,} of bounded Borel subsets of X with G i ~_ G2 ~ G 2 - ' "  
exausting X, we have 

lim N(#, G,) _ y(#). 
p(G.) 

Recall that a point process P in X is called well-distributed with respect to p 
if its sample points are well-distributed with probability one (i.e. Pg I=  1). Note 
that 91e ~-". 

Remarks. (1) It is clear from the definition of/1 that the boundary of 17 includes 
the set of all Poisson processes P~. p, z>=0, according to the well known theorem 
of yon Waldenfels [163 which states that Pp, a,(.IN(.,G,)=#(G,)) converges 
weakly towards Pr(~).p as n-+ + 0% #egl. 

(2) To see that (5(17) is non empty, note that P~pe(5(17) for any z>=0. For this 
we have to check that 

P~p(A1A2B)= S ~A2(#) Pp, a(A1 IN(., G)= #(G)) P~p(d#) 
B 

for any Aieffs , A2effx'\G , Begx', ,a.  It is sufficient to show this for sets B of the 
form B={N( . ,  G)=n} c~ C with Ce~x'\a.  Using well known properties of the 
Poisson process the assertion follows at once. 

We now briefly follow Dynkin's construction of the boundary of H, in the 
form elaborated by Ftillmer [5], combined with the theorem of yon Waldenfels 
mentioned above, in order to see how it works in our particular case. 

o 

Fix a sequence of bounded Borel subsets G, of X with G I ~ G 2 ~ G 2 ~ . . .  
exausting X and let PeN(H). Then we have for any q~eLl(P ) 

p(~p 19o~') = lira p(~p ~ "  _ I~x- a,) - lim 17a, ~0 P-a.s., (2.8) 

~'" ~,'" - ^ This implies, P-a.s. in #, where ~ denotes the tail-field ~ x , a , , -  (-] ffs 
the existence of , B~o 

p(#)=lim17G,,(#,. ) and p(#)e(5oo(H ). 

We now give the explicit form of the limits p(#) by simulating the proof of yon 
Waldenfels' theorem ([16], Satz 4). 

Proposition 1. Every canonical Gibbs state P with local characteristic 17 is well- 
distributed and 

lim 17G,(#,-)=Pr(,).p P-a.s. in #. (2.9) 

Proof Let N be the set of all #e~Jl" for which lim 17G,(#, .) exists, and fix a 
continuous function f on X with compact support such that y ( e x p ( - f ) -  1) dp= 

X 
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a+0.  Then the Laplace transform of HG,,(/~ , .), /~99l"', evaluated for f is 

Ha,,( #, . )( i f )= ~ exp(-v(f))H~, ,(#,  dv) 
?01 

t u(o~) ) 
1 ~ . - .  J" exp [ -  Z f ( x j ) - # x - . e . ( f )  p(dxO . . .  p(dxu(6.)) 

o( ~.G. :  (G~) G,, G., ~=~ 

[ P(~n) 1 ,u (a,O 
=exp(--l~x\G,,(f)). 1 �9 ~ e x p ( - f )  d0] . 

e x p ( - f ) d p  
G~ 

If n is large, G, contains the support of f and then the integral 
does not depend on n and #x,,G,(f)=0. Therefore 

, ~  , u ( G n )  

[ (  ' a \ p t t ~ ' ' l ~  -W~-Z~ ~ ' J 
= [+p( l j , , ) l  " 

(2.10) 

Now let #~N. Since H~,,(/t, .) converges weakly, the left hand side of (2.10) con- 

verges. On the other hand 1 + converges against exp a # 1. Therefore 

lim ~(G,) _ y(#) (2.11) 
p(a.t 

exists and does not depend on the choice of the sequence {G,}. So we have proved 
N _  9l; in particular P is well-distributed. 

In view of (2.ll), combined with (2.10), we have for any continuous function f 
on X with compact support and # ~ N  

p(lO(if) =l im H~,,(#, . )( i f)= exp(r(/~), p ( e x p ( - f ) -  1)). (2.12) 

The right hand side of (2.12) is the Laplace transform of Pr(~).p evaluated for f 
so that p(/~) = Pr(,).p- -J 

Combining (2.8) and (2.9) we have 

P(cp ] ~ ' )  = Py(.). p(cp) P-a.s. (2.13) 

We thus have constructed a general conditional probability distribution relative 
to g~' for all P c  (5 (H). Since (2.13) implies that for any bounded, ~ - m e a s u r a b l e  c} 

n(dp . f ( Y)) = P( (o . ny. p(f ( Y))) 

for any bounded measurable function f on 1R+, we have 

Py(.). p(Y= Y(.))= 1 P-a.s. (2.14) 

Let us call 

A.= {z. plz_>-0, P~..(r= z)= l} (2.15) 
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the essential part of the boundary of 11.1 If we define a probability measure V e 
on A o by 

Ve(A)=P(Y.  peA) ( A e A p c ~ " ) ,  (2.16) 

then it has been shown above that Vp(Ap)= 1. Thus (2.13) implies that for any 
q)~LI(P) 

P(q)) = P(Pr. p(q))) = ~ P~(tP) Vp(dS). (2.17) 
Ao 

It is not difficult to see that, conversely, any probability measure V on Ap induces 
a canonical Gibbs state for 11, which we denote by Pv for short. 

Proposition 2. The essential part of the boundary of H consists of all measures 
z .  p, z>O, i.e. 

Ao={z .  p; z>0}.  

Proof. According to Remark (2) any Poisson process Pzp, z>0,  belongs to (5(//). 
Therefore 

Pzp = I P~ VP~o(d5)= Prp~o. 
Ao 

As one can prove in the theory of Cox processes (see Knopsmeier [18]) this 
implies lap Vp~p=ezp. This is only possible if z .p~Ap .  _2 

We recall that a mixed Poisson process is rougly a Poisson process not con- 
structed on a fixed measure p but rather on a random measure which is concen- 
trated on the set of all measures z .p ,  z>__O: first a realization of the random 
measure is determined and then a Poisson process is constructed, having this 
realization as intensity. More precisely: if V is a probability measure concentrated 
on Ap={z . p :  z>_0}, then a mixed Poisson process built on V is given by 

P(q0) = ~ P~(go) V(dg)) (go~Ll(n)). 

To summarize, we have shown the following: 

Theorem L Let P be a point process in X and p an infinite Radon measure on X. 
Then the following conditions are equivalent: 

(1) P is a canonical Gibbs state for the local characteristic//. 
(2) P is a mixed Poisson process built on a probability measure V on Ap. 

Specializing Corollary (3.13) of FiSllmer [5] or Lemma 2.1 of Dynkin [3] 
we have 

Theorem 2. Let p be an infinite Radon measure on X and P a mixed Poisson process 
built on a probability measure V on A p. Then the following conditions are equivalent: 

(1) P is an extreme point of (5(11). 
(2) P=Py(.)p P-a.s. 
(3) P is a Poisson process with intensity measure z.  p, z>O. 
(4) P(A)~{0, 1} ( A ~ ) ;  i.e. P is ergodic with respect to the tail field. 

1 In fact here we identify z. p with P~. p 
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Corollaries. Let p, Pt, P2 be infinite Radon measures on X. Then we have: 

(1) P~p is ergodic with respect to Y f  -- ~ ~x~G. 
(2) P~,(Y=z)= 1 for any z>__O. 6~o 
(3) Pzlo• zl, z2>0 with z l # z  2. 

(4) Ppl_LP~ if either Pl(G") positive z,t= 1. -p2(~)~ ) does not converge or converges towards a real 

Proof For (1) note that Y'~'___g'f. (2) and (3) follow easily from the equivalence 
(2) ,~  (3) of Theorem 2. To see (4) note that Pol and Pp~ are concentrated on the 

disjoint sets /~: lira --=I&(G,) ~, i-- 1, 2. 

Remarks. (1) Canonical Gibbs states are well suited to serve as a statistical model 
in the following sense: in this model the mapping Y is an exact estimator for the 
particle density of the underlying process, that is (see (2.14)) 

Pv~ .)o( Y= Y(.))= 1 P-a.s. 

This means roughly that you can estimate the particle density of the underlying 
process from a single realization of the process. If P=P~p (i.e. the underlying 
process is not a mixture but a pure state ) then Y is an exact estimator in the usual 
sense. 

(2) Corollary (4) can be used to generalize our considerations in w 2 in the 
following way: Let M be a set of infinite Radon measures on X with the property 

Pl(G") does not converge or converges towards Pl, P2 EM'  P;t ~ P2 ~ P2(Gn) 

a real positive z4= 1). (2.18) 
/ 

Thus for p~, P2 ~ M, p~ 4= P2 we have Pol LPo~. Let 91p be the set of all point measures 

/~ with #(G,) ~ 1, where G, is again an expanding sequence of bounded subsets 
P(G,) 

of X with G1 ~ G 2 ~ G 2 ~  ... exausting X, and let s ~) 91p. In view of (2.18) this 
p~M 

union is disjoint, so that we can define a mapping Z: ~?- ,M by Z(#)=p, if #~91p. 
Now we define the local characteristic exactly as before: 

1 
//~(#, A)= p(G)U~ m ~'. .~lA(e~ + ... +e~ +#X..~ ) p(dxl)...p(dxu(~,), (2.19) 

where G ~ o , A ~ " , # ~ Y 2  and P=X(#). The conditions (2.4), (2.5) and (2.6) are 
satisfied again, so that we can consider 15 (//). The same procedure as above leads 
us to the following results: The essential part of the boundary o f / / i s  M and each 
Pe  15(//) has the integral representation 

P= ~ Po V(dp). (2.20) 
~t 

That is, P is a Cox process built on a probability measure V on M (for details see 
Krickeberg [10]). We conjecture that (2.20) is valid for wider classes of M having 
the property (pa, p2~M, Pa =t=P2 ~ Pp~-i-Po)" 
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w 3. The Stationary Case 

Now let G be a locally compact group which acts continuously on X. In this case 
the mappings g: x ~ gx (g~ G) are homeomorphisms of X. Since f o g  is an element 
of J~V(X) if f~3 f (X) ,  g~G,  

(g#)(f )  = # ( f o  g) ( f ~ d ( X ) ,  #~gJl) (3.1) 

defines for any g ~ G a homeomorphism of 93l with respect to the vague topology 
in 93l. Assume that 

there exists a nontrivial Radon measure )~ on X invariant under G. (3.2) 

The mapping # --, g# with g# defined by (3.1), which we denote again by g, induces 
in the same way a mapping g on the set of all probability measures P on 93l: 

(gP)(go) = P(9  o g). (3.3) 

We call P stationary if P = g P  for any g~G.  
If the local characteristic H is built on 2 (i.e. if we take 2 instead ofp in (2.3)) then 

Theorem 1 implies immediately that 15(//) coincides with the set 15o(//) of all 
stationary canonical Gibbs states for/7.  Assume now that 

for every G, G' ~ ~o there exists g ~ G such that G c~ g (G') = 0. (3.4) 

Then it is well known (see Preston [14]) that Pe15(H) is an extreme point if and 
only if P is ergodic with respect to the a-field or of G-invariant elements of ~-". 
If we assume finally that 

)~ is in an infinite Radon measure on X,  (3.5) 

then we have as a corollary of Theorem 2: 

Theorem 3. Let P be a stationary mixed Poisson process in X. The following con- 
ditions are equivalent: 

(1) P is an extreme point of 15(/7). 

(2) P is a Poisson process with intensity measure z.  ). for some z>O. 

(3) P is ergodic with respect to J .  

In particular we have proved that every stationary Poisson process P~z in X is 
ergodic. In many cases of interest the assumptions (3.2), (3.4) and (3.5) are satisfied: 

Examples. A. (Lattice models.) Let X = Z  r and G be the group of translations. 
The measure 2 defined through 2 {x} = 1 for any x E X  is the (unique) G-invariant 
measure in X. 

B. (Continuous models.) Let X = I R  r and G the group of translations. Here ,~ 
is the r-dimensional Lebesgue measure. 

C. (Line processes.) Here the underlying space X is the set of all oriented lines 
in the plane. We choose for a natural reference system a fixed line d o and a fixed 
point 0 on d o. The normal  coordinates of an oriented line are (% p), where �9 is the 
angle it makes with d o and p its signed distance from 0: X = [ 0 ,  2n) x IR. Let G be 
the group of transformations in X which are induced by the Euclidean motions 
of IR 2. It is well known [15] that d2=dzdp is the (unique) measure invariant 
under G. 
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Remark. It should be mentioned that the class of mixed Poisson processes with 
infinite intensity measures models infinite particle systems in a general state 
space in which there is no interaction between the particles. Canonical Gibbs 
states with interaction have been studied in the cases of lattice and continuum 
systems by Georgii [6, 7]. 

We are grateful to U. Blanke, H. Engmann, R. Lang and H. Ziezold for a discussion of the results. 
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Note Added in Proof. 1. After having submitted this paper for publication we became aware of a paper 
of Nawrotzki (cf. Nawrotzki, K.: Ein Grenzwertsatz fiir homogene zuf:~illige Punktfolgen (Verall- 
gemeinerung eines Satzes von A. Renyi), Math. Nachr. 24, 201-217 (1962)) where Theorem l can be 
found in the case of the real line. We became also aware of the book Kerstan, J., Matthes, K., Mecke, J.: 
Unbegrenzt teilbare Punktprozesse, Berlin: Akademie-Verlag (1974), where Theorem t and the equiv- 
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alence (2)-(3) of Theorem 2 can be found in the same generality as below. We think, however, that the 
mixed Poisson processes are more easily and more completely treated by the methods below. 

2. Slimulated by a discussion with H.-O. Georgii and in order to be more complete we remark 
that our considerations are valid also in the case when the underlying intensity measure p is finite. 
(In fact they are more easily in this case.) Theorem 1 then has the following form: I fP  is a point process 
in X and p a f i n i t e  Radon measure on X, then P is a canonical Gibbs measure with local characteristic 
/7 if and only if P satisfies 

P = P ( N ( X )  = n ) .  Z ,  
n = 0  

where Z,(r) denotes the image of r with respect to )~,: (x l  . . . .  , x , ) ~ - , %  + . . .  +ex, (xjeX); this means 

that P is a mixture of the measures )~, , n = 1, 2, .... Theorem 2 characterizes in the finite case 

the extremal points of 15 (//) as the measures )~, , n = 1, 2, . . . .  


