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We compute the approximate, local growth rate for a (nondifferentiable) 
random process X(t), t=( t l  . . . . .  tN)~lR N, with values in 1R d which satisfies a 
condition on the distribution of [IX(s)- x(t) l l ,  namely: for some 0 < k < N and 
Lebesgue almost every t elR N, the function r/k(s, t )=sup e-e P{ I/X(tl ,  . . . ,  tk, s) 

~>o 

-X(t) ][ __< e} is locally integrable (ds) over IR N- k. Then, with r = ~ and with 

probability one, the approximate limit as s ~ t  of I[X(s)-X(t)ll/l[s-tl[ ~ is 
infinite for almost every t~lR N, which means (for t fixed) that for every Q >0, 
the (Lebesgue) proportion of s with [[s-t[[ <e and IlX(s)-X(t)l[ <QlLs-tl[ r is 
asymptotically (as e $0) equal to zero. When X =(X1, . . . ,  Xd) is Gaussian, the 
largest k < N for which qk is integrable is computed in various special cases. 
For  example, for i.i.d, components, EXi(t  ) =- O, E(Xi(t  ) - Xi(s)) 2 = II s -  t ll ~, 0 < c~ 

ad 
< 2, qk is integrable if and only if k < N - - -  

2 

w 

Let X(t), t~TN= [0, 1] N, be a random process with values in 1R d. We write Bm(t , e) 
for the closed ball in IR m with center t and radius 5, relative to the usual 
Euclidean norm [I. II, and 2m(dt) for Lebesgue measure on IR m. We are interested 
in results of the form 

2 N (~s ~UN(t , 5): II X(s)lls_tll N - k -  X(t)lid =< Q~t 

lim ) = 0  VQ>0, (1) 
st o )~N{BN(t, 0} 

where 0 = k < N depends on the law of X and (1) is to hold, with probability 1, at 
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).N-a.e. t~T N. When (1) holds at a particular t, it is customary to write 

II X(s)  - x(t)II d 
ap lira - oo. (2) 

s~* Ils--tl] ~-k 

Here, "ap lim" stands for approximate limit. 
Actually, we are going to consider processes with a more general range, namely 

a metric space (Y,, p). Any reformulation of (2) depends on how we measure the 
Borel subsets of Y. To this end, let 4)(dy) be a measure on qr the Borel a-field in 
Y,, and let Bo(y, ~) be the closed ball with center y and radius ~. We make the 
following assumptions. 

(a) ~r is separable 

(b) ~b(A)< oo for every bounded Ae~r 

(c) the ~b-measure of Bo(y, e) is independent of y (3) 

(d) ~(e)-4)(Bo(y, e)) is strictly increasing on [0, oo) 

(e) e" 1 ~(e) is continuous and non-decreasing on (0, oo) 

(f) lim ~(5 N 0/~(e) < oo. 
~],0 

(The reasons for (d), (e), and (f)  involve the existence of certain Vitali relations 
and will be discussed in the course of the proofs.) The analogue of (2) is 

~(p(X(s) ,  x ( t ) ) )  
ap lira -- oo. (4) 

s ~ t  L I s - t l l  N - k  

(That is, (1) holds with IIX(s)-X(t)N d replaced by ~(p(X(s), X(t))).) 
Let (~2, i f ,  P) be the probability space carrying X(t, co), and let Nm(Nm(T)) 

denote the Borel sets in IR m (resp. Tin). We assume X(t, co) is separable and 
measurable, N N ( T ) |  We now state Theorem A, one of our two main 
results. The other is Theorem B, upon which Theorem A is largely based, and 
which gives conditions for a non-random function X: T : ~  Y to satisfy (4) at )-N- 
a.e. tET  N. These conditions involve the "local time" of X. As far as we know, it 
was Berman [1] who first saw the close relationship between local times and 
approximate limits, and thereby introduced the latter into the analysis of random 
functions. (See the introduction to [4] and the references therein.) The proof of 
Theorem A and the statement and proof of Theorem B are given in w 2, and w 3 
contains the details of the examples and illustrations mentioned after Theorem 
A. 

Theorem A. Suppose there exists a 0 <= k < N such that for 2N-a.e. t = ( t l , . . . ,  tN) ~ T N, 

1 
5 sup P{p(X(~I , . . .  tk, s),X(t))<=e}).N-k(ds)<oO. (5) 

Then (4) holds at 2 N x P-a.e. (t, co). 

The proof is based on the existence, and suitable regularity, of an "occu- 
pation density" for X. When (5) holds for k=0,  the occupation density exists 
and is continuous as a measure on N'N(T), which means that with probability 1: 
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O(A)=O~)]v{t~TN: X(t, CO)6A}=O, A~J ,  and a version y(y,B, co) of the 
Radon-Nikodym derivative of the measure 2N{t~B: X(t, co)~dy} with respect to 
O(dy) may be chosen such that y(y,{t},co)=0 Vt~T N, yeY,, coe(L (Here, 
~(y, {t}, co) is the mass placed on t by the measure 7(Y, ", co).) When (5) holds for 0 
<k<N,  then ~ exists and the measure B~7(y,B,  co) has a k-dimensional 
"marginal" distribution which is absolutely continuous with respect to 2 k, i.e. 

7(Y, ds dt, co) = g(y, s, dr, co) 2k(ds), 

all with probability one. (Also, see the note after Lemma 1.) 
To fix the ideas and to compare our results with those in [4] and [6], we 

take Y=IR e, r =2  d, etc. for the remainder of this section. Obviously (3) holds. 
Now (2) is equivalent to the existence of a set A, ENU(T) for which t is a point of 
(metric) density 1, i.e. 

lim 2N {BN(t' e) ~ At} = 1, 
~+o )~N{BN(t,e)} 

and for which 

lira [[X(t)-X(s)[I e = oe. (6) 
s ~ ,  H s - t j l  N - k  
seAt 

(Here, of course, t and co are fixed.) If one removes the restriction "s~At" in (6), 
i.e. considers the true limit, it may happen (depending on N, k, and d) that no 
function X: IRN~IR e can satisfy (6) on a set of t's of even positive 2N-measure. 
For  example, 

2~ { t~lR: lim ,s - t, - oQ } = 0  

for any function X: IR ~ ~ IR  1, a result due to Ban ach - see  [7, p. 270]. 
For X Gaussian and N > d, (5) is widely satisfied for k = N - d  when X fails 

to be differentiable. When N - - d  = 1, for example, (5) reduces to the integrability 
of s ~ (E(X(s)- X(t)) 2)- 1/2 over T 1 = [0, 1] for 21-a.e. te T 1 ; this and related 
matters were discussed in [4]. Roughly, the faster the growth of the incremental 
variance E ]1X(s)- X(t)J[ 2 in neighborhoods of its zeros, the larger may be chosen 
k. As an illustration, take X = ( X  1 ..... Xa) where X1, . . . ,X  d are independent, 
identically distributed Gaussian fields on T N and 

EXj(t)-O, EXj(t)Xj(s)=lltF+Jlsll =-II t -s l l  =, 0 < a < 2 .  (7) 

ad 
As will be seen in w (5) holds for k if and only if k < N - ~ .  Consequently, if 

ed 
0 < N - - -  

2 '  

apl im IlX(s'co)-X(t'co)][-re 2~-a.e., a.s. (8) 
s ~  I I s - t l l  ~ 

ed  
where r = N-k~ and k o is the greatest integer less than N - ~ - .  When N>d,_ we 
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c~d 
have O < N - d < N - - f -  so we can always take r = l  in (8). For d-dimensional 

Brownian motion on T N, c~ = 1 and we can choose r =  1/2 + 1/d for d even and r 
=1/2+1/2d for d odd. (The conclusion is the same for the "N-parameter 
Wiener process", i.e. 

N 

EXj( t )  X / s )  = [ I  (t~ A st), t = ( t l  . . . .  , t,,), s = ( s l , . . . ,  sN.).) 
i 

Whereas our results are chiefly applicable for processes on T u when the 
2N 

dimension d of the range is bounded above (e.g. d < - -  as above), the results in 
c~ 

[6] are basically for processes on IR u into high dimensional spaces. Extending 
the work of Dvoretzky and ErdSs [2], and others, K6no [6] considers Gaussian 
processes X = (X  1 .... ,X~) from IR N to IR d with i.i.d, components, aZ(s, t)= E(Xj (s) 
-Xj(t)) 2, and defines ~~ (resp. q/~ to be the class of continuous, non- 
decreasing 4): (0, oo)--+ (0, oo) such that with probability 1 (resp. 0) there is a 6(~o) 
for which 

0 <  Iltll <3(co) ~ IIX(t, co)-X(O,(o)l[ > o'(0, t) ~b(Lltl[). (9) 

Under various conditions on a, d, and N, K6no obtains integral tests for 
(beSf~ d) and ~be~176 Thus, for example, K6no retrieves a result of 
Dvoretzky and ErdSs which in turn implies that for Brownian motion f rom/R a 
to IR a 

IL x(t ,  co) - X ( s ,  ~)LI 
limpet ]t-sll/2[log[t-sLI -a=~176 for 21-a.e. t, a.s. (i0) 

More generally, for the family of processes described in (7), the conditions of 
ad 

Theorem 1 of [-6] are satisfied when N - ~ - < 0  and one easily checks that ~b(x) 

=xa~s176 d) for any 6 >0. It then follows that 

II x(t,  o~)-X(s, o0)11 
lim~_~, lit_slit oo for 2N-a.e. t, a.s. (1I) 

0{ 
for any r > ~. (K6no also considers "uniform" upper and lower classes: for a2 as 

in (7), and assuming 2 N -  >0, Theorem 4 of [6] would yield (11) for any r > ~  

+ N  ( d -  with "2N-a.e. t" replaced by "every t".) To compare (8) and 

(11), consider the case N ~ - :  if ~ = N + e > N  then (11) holds whereas (8) 

~d ~ e 
doesn't apply; if ~ - =  N - ~  < N then (8) holds with r = ~ + ~  whereas the results 

in [6] don't apply. 
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w 

Let e(m)=2m(Bm(t, 1)), so 2m(Bm(t,e))=c~(m)e m, and Zo(e,t,Q)=2N{seBN(t,e): 
~(p(X(s, co), X(t,c@)< IIS--tllN-kQ}, ~, Q>0.  Under a (mild) additional assump- 
tion to (5), it is easy to show that 

ap lira ~(p(X(s), X(t))) oo 2 N x P-a.e., (12) 
, ~  Ils-tll N-k 

which means that 

limZ~ VQ>0,  2N x P-a.e. 
~+o ~(N)e N 

Assume that V t ~ constants M > O  and q >0  such that s~BN(t, ~) implies 

1 
sup P {p(X(t), X(s)) < e) 
~>0 

1 
__<M+sup P{p(X(t  1 . . . . .  tk, Sk+l,...,SN),X(t))<e}. 

e>O 

(For example, this is widely satisfied in the Gaussian case with M = 0 - s e e  (21) 
and (22).) Then for any t e T  N at which (5) holds and for any Q >0 :  

E lim e-N %(e, t, Q) < E lim n N %(1/n, t, Q) 
e$O n~oe 

_< lim E[n N ~ Ito,r 2N(ds)] 
n ~oo BN(t, 1/n) 

n~oe BN(t, 1/n) e>O 

< Q lim n k ~ M 
n~oo BN(t, 1/n) 

+sup P{p(X(t  1, ...,t~,sk+ D ...,Su),X(t)) <e 2U(ds) 
e>0 

where 

D = B N_k((tk+~,..., tu), 1/n). 

Thus, for each Q > 0  and 2N-a.e. t e T  u, l ime-N%(~, t ,Q)=0 a.s., and hence, 
~ 0  

being monotone in Q, 

l ime-N%(e,t ,Q)=O VQ>O, 2u x P-a.e. 
~$0 

We need several lemmas about occupation densities for real functions, a 
characterization of absolute continuity (Lemma 4) which is implicit in the 
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li terature but  included here for clarity, and a technical result (Lemma 2) about  
Vitali relations. The latter will permit  us to differentiate indefinite integrals over 
Y x IR '~ (of r x 2m-integrable functions) with respect to coverings which have no 
"paramete r  of regulari ty".  When Y=IR  e, etc. and the function of t ~T  N in (5) is 
integrable 2~(dt), L e m m a  2 is superfluous. Instead, we can use a classical result of 
Zygmund  [8] about  "s t rong derivatives" - see the Remark  at the end of this w 
and [7, pp. 128-133]. 

Let  x: T N ~  Y be measurable ~N(T) to N and define measures 

p(V; D) = ~ Iv(x(t)) 2S(d t), D ~NN(T), V e ~ ,  
D 

~(v) = ~(v; T~), 

Vk(V ) = ~ [v(X(t),t 1 . . . . .  tk))~N(dt), V ~ Q N k ( T ) ,  ( ) < k < n ,  
T N 

#t,k(V)= ~ Iv(X(t,s))2N-k(ds), V ~ ,  t~T  k, 0 < k < N .  
T N -  k 

If (Gl , (ql)  and (G2,(q2) are measurable spaces, by a kernel h on G 1 xC52 we 
mean a real function h(g, B), gEG1, B~(q2, such that  h(',/3) is measurable (N1 to 
~ )  for each Berg 2 and h(g,.) is a measure on N2 for each geG 1. 

L e m m a  1. For any 0 < k < N ,  the following are equivalent: 
(i) v k ~ 4 x 2 k, 

(ii) p<qb and there exists a kernel g on Y x  T k x N ~ - k ( T )  such that YyeY,, 
B e ~ ( T ) ,  AeNN-k(T) ,  

?(y, B x A)=  ~ g(y, s, A)2k(ds), (13) 
B 

where 14dy, D) = 7(Y, D) 4)(dy). 
(iii) #~,k~b for 2k--a.e. t e r  k. 

Proof. Suppose (i) and define 

Vk(V;A)=~Iv(X(t),tl , . . . , tk)2N(dt),  Ae~N(T), Ve~| 
A 

Then for each AeNN(T)  there exists a measurable function h(y, t, A) on Y x T k 
such that  vk(dy dt, A) = h(y, t, A) (o x ),k(dy dr). Furthermore ,  changing h on null 
sets if necessary, we can assume h is a kernel on Yx  T ~ x ~N(T); some of the 
details of such matters  are in [5J, but  the construct ion of " regular  versions" of 
families of Radon-Nikodym derivatives, and of "regular  condit ional  measures",  
are well-known. Thus, for Ae~N-k(T) ,  BeNk(T), V e ~ :  

# ( V ; B x A ) = v k ( V x  B;A  x rk)= ~ h(y,t, A x r k) c~ x2k(dydO 
V •  

___ ~ qb(dy) ~ h(y, t, A x T k) ~.k(dt), 
V B 

and (ii) holds with g(y, t, A) = h(y, t, A x Tk). 
Assuming (ii), 

/~t, k(V) 2k(d t) ----- # (V; B x T N - k) = ~ 2k(d t) ~ g(y, t, T N - k) q~(d y), 
B B V 
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for all BE~k(T), V~CY. As a result, for any V~# there is a 2k-null set E v such 
that 

#t,k(V) = y g(y, t, T N-k) O(d y) (14) 
V 

h(a + b) <= h(a) + h(b), 

Now ~(u)], as u~ implies 
U 

O<_a<_b: 

for all t e e  v. Since both sides of (14) are measures on ~ and ~d is separable, (14) 
holds for every VEY/, for 2k-a.e.t. 

Finally, (iii) implies #~,k(dy)=e(y,t)O(dy) for some e: Yx Tk~[O, o0) which 
can be chosen ~ |  measurable. Integrating 2k(dt) over B yields 

Vk(VXB)= ~ ~(y,t)O(dy)2k(dt) V V ~ ,  B6~k(T), 
V x B  

which extends to dVk=~d(~ x 2k). 

Note. We exclude the case k = N  because it corresponds to ~/(y, dt)~2U(dt), 
which is impossible; indeed, y(y, dt)_L2N(dt) for q%a.e, y since 2N(My)=0, 
My =--{s6 TN: x(s)= y}, except at most for countably many y's, whereas 7(Y, M~)= 0 
for q%a.e, y, which follows from 

~ f(t ,  y) #(dy; dt) = ~  f (t, y) 7(Y, dt) (~(dy) (15) 

(for any non-negative, measurable f )  by choosing f(t ,  y)= 1M;(t ). 

Lemma 2. I f  0 < k < N and 
k 

V ( (y, s), 8)= B p(y, ~- l(eN-k)) X [I  [ Si-- 8, S i +~], 
1 

(y , s )6Yx T k, e>0, 

then 

X =  {((y,s), V((y,s),O), (y,s)EY• T k, e>O} 

is a 0 x 2k-VitaIi relation [3, p. 151]. 

Proof If V((y, s), e) is a closed ball in a suitable metric space, we use 2.8.17 and 
2.8.8. of [3]. 

Define 6 on (Yx IRk) x (Yx IR k) by 

1 

b((y, s), (z, t))--max {p(y, z)~'~, h( max Is~- t~t)}, 
l<i<=k 

1 

where h(u)=(~-l(uN-k))~,  u>=O. To verify that 6 is a metric it will suffice to 
check that 

a,b>=O. 
(-  

l(u)~ " as uS implies h(u) T as u~. Consequently, for 
U U 

) 
a+o - o o = 
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Let Bo((y, s), e) be the closed ball contered at (y, s) with radius e for 6: 

k 

B6((y, s), e) = B p(y, e N-k) x FI [ si - h - l(e), s i + h-  l(e)]. 
1 

Further,  let 

tl((y, s), e) = 05 x 2k(B~((y, s), e)) = ~(eN-k)(2h- ~(e))k. 

We want to show that  05 x 2 k is "diametrically regular" relative to 6 [3, p. 145]; 
this would imply that  

X -- {((y, s), Bo((y, s), a)), (y, s) e g x ]R k, ~ > 0} 

is a 05 x 2k-Vitali relation using 2.8.17 of [3]. For  diametric regularity we need 
a 1 < z < oo ~ for each (y, s) 3 C = C(y, s)~tl((y, s), (1 + 2z) ~) < C~((y, s), e) Ve small. 
But, 

1 

lim ~((y,s), 5e)_ 1Tm q((y,s),5eN~-k_ 1Tin [-~(5N ke)-]N~k< (3O. 
~+o ~((y,s),e) ~o ~((y,s),d ~N-k) ~o L ~(~) J 

Theorem B. Suppose for some 0 < k < N: 

~ 0 5  

7(y, dsd t )=g(y , s ,  dt)2k(ds) (i.e. (13)), (16) 

and 
g(y,s,{t})=O V t ~ T  N-k, 05x2k-a.e. 

Then ap lim ~(p(x(s), x(t))) ~ [[s_t][N_k --oe 2N-a.e. 

Note. The case k = 0  refers to #~05 and y(y, dt) continuous (i.e. 7(y,{t})=0 
V t~ T N for 05-a.e. y). We will give the proof  only for the case 0 < k < N .  However, 
the proof for k = 0  is essentially a special case, but to incorporate it would 
require defining 2 ~ v0, etc. and is not worth the effort. All that  is needed is that  

{(y, Bp(y,Q), y~Y, e>0} 

is a 05-Vitali relation, which follows immediately from (3) and [3, 2.8.17]. 
Besides, the case k = 0  is merely a "higher dimensional"  version of what we did 
in [4] for real functions of one real variable. 

Proof. First, we can arrange to have g(y, s, {t})=0 Vy, s, t and we do. 

Next, since ~C is a 05 x 2 k Vitali relation, and since t/((y, s), h(e))=2-% -N, we 
know (according to [3, 2.9.8, p. 156]) that  for any f eU(05  x 2k): 

f ( Y , s ) = l i m 2 - %  -N ~ f d05 x2k (*) 
e~ 0 B~((y, s), h(e)) 

for 05 x 2k-a.e. (y, s). 
Let ~ be the collection of open rectangles in T N-k with rational vertices, 

and for each J s ~ ,  set 

fj(y, s) = g(y, s, J)~Ll(05 x 2k). 
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Choose Borel sets Es, Je~r ', such that ~b x2k(E~)=0  and (*) and (17) holds 
g(y, s)eE~. Consequently,  E -  (~ E j e ~ |  ~b x 2k(EC)=0, and hence by 
Lemm a  1 : J~ce 

Vk(EC)=0, i.e. (x(t), tl, ..., tk)eE J V J e W  for 2U-a.e. 

t =( t l ,  . . . , tN)eT  N. 
Now fix such a t e T  N and Q > I .  

2N {s~BN(t,e): ~(P(X(S)'X(t))) = 

< S IEO,e~-k](~(P(X(S),X(t))))vN(ds) 
BN(t, z) 

N 

< S 7(Y, I ]  [tl - e, t i + el) c)(dy) 
Bp(x( t ) ,~-  I (QEN-k))  1 

/ 

Bo (x ( t ) , { -  ~(QeN-k}) 1]1 [ti--e,t i+e] k+  1 \ /  

< ~ I,~(~,).~ ...... ~k.h(e~)) fJ de  x ~ 

for all small e if (tk+ ~,. . . ,  tN)eJe~t ~ It then follows from the remarks above that  

lim 8-N2 N SEBN(t, 8 )" 
~o I[s-tll N-k = J 

< 2-kQng(x(t), (tl, . . . ,  tk), J), 

for any J e W  containing (tk+ 1,---, tN). Lett ing J~(tk+ 1,, tN) completes the proof. 

Lem ma  3. Let #t,k(V; A)=  ~ Ir(x(t, S))2N-k(ds). Then (16) is equivalent to 
A 

#t,k~r for 2k-a.e. t e T  k, 
and 

~(y, t, {s})=0 Vse T N-k, r x 2k-a.e. (17) 

where 

#,,k(dy; ds)= c~(y, t, ds) ~)(dy). 

Proof. By Lemma  1, if either g or c~ exists, then so does the other, in which case 
we find from 

#(V; B x A)= ~ pt, k(V; A) 2k(dt) 
B 

that, for any Ae~N-k(T),  g(y, t, A) and a(y, t, A) have the same integrals against r 
x 2 k over rectangles V x  B in ~J| Since e(y, t,.) and g(y, t,.) are measures 

on N'N-k(T), which is separable, the results follows. Here, of course, we have 
assumed that  g and c~ are kernels on Y x T k x NN-k(T). 

Remark. In the p r o o f  of Lemma  4 and after that  of Theorem A many  of the 
arguments  about  the measurabil i ty of various derivatives will be left aside. As 
for L e m m a  4, these can be readily found in [3] in the section on "Derivates" .  As 
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for the integrals later on involving dP, etc., more or less all that is needed 
(beyond what is in [-3]) is to remark that the joint measurability of p(y, z) in (y, z) 
implies that of 1Bp(y ' ~)(X(t, r, co)) in (t, r, co, y, 0. 

Lemma 4. Let 71 be a finite measure on ~J. Then 

~'(y) = lim ~P(Bp(y, ~)) 
~o r 

exists finite or infinite ~-a.e. and ~P ~ ~ if and only if ~' < oo T-a.e. 

Proof. Set L =  {yr Y: ~'(y) = oo}, F = {y~ Y: V"(y) < oo}. The assumptions in (3) in 
conjunction with [3, 2.9.15, p. 160] imply that g*(.~/d) is the 0-absolutely 
continuous component of gJ. Hence 

~g = ~v~ + tPs, ~( ' ) -=  ~(" c~ L~), T~(') = gJ(- ~ L) 

is the Lebesgue decomposition of ~ with respect to qS. Moreover, qb(F ~) = 0  (see 
[3, 2.9.5, p. 154]) implies ~(F~)=0,  and hence ~'  exists finite ~-a.e.  and exists 
a t +  oo ~-a.e. Finally, if T ' <  oo T-a.e., then ~g~ lives on both L and /5, and 
hence vanishes. 

Proof of Theorem A. As with Theorem B, we are going to omit the case k = 0, 
the proof there being obvious f r o m -  and easier than - the proof for 0 < k < N. 

Defining #(V; n, o9), 7(y,D, o9), #t,k(V, og), etc. all relative X(',o9), we can and 
do assume these are appropriately measurable in co, i.e. 7(Y, D, o9) is a kernel on 
Y x ~N(T) x ~, etc. 

According to Lemma 4, for each t e T  k, o9~f2, 

lim #~' k(Bp(Y' 5)) exists (finite or infinite) 
~o ~(~) 

#,,g-a.e. and #,,k~q~ if and only if the limit is finite #t,g-a.e. In other words, 

1 
tim ~ I[o, ~(p(X(t, r, co), X(t, s, o9))) ~N-g(d r) (18) 
el0 ~ -~  T~-g 

exists for 2N-k-a.e. s, and #~,g~qb if and only if (18) is finite 2~-k-a.e. Using 
Fatou's lemma and Fubini's theorem, 

1 
E lira ( 1[o n ~1 (P (X( t, r,o9), X(t, s, o9))) ).N- k(d r) 

~(n- ~) r~'-~ ' n ~ o D  

1 
--<.~olim ~(n_ 1) T~P{p(X( t , r ,  og),X(t,s, o g ) ) < - _ n - 1 } ~  2N-k(dr) 

<=r~-k ~ sup~>o [~@~)P{p(X(t,r, og),X(t,s,a)))<=8}] 2N,~(dr). 

By (5), this is finite for 2~-a.e. (t, s)~T k x T ~-k, and hence for each s~Ft~N-k (T) ,  
t~A~.~k(T), where 2N--k(Ftc)=0 Vt~A, 2k(Ac)=0. 

Now fix a teA. For each seF~ there is an co null set off which (18) is finite, 
and consequently (using Fubini's theorem) #t,k~q~ with probability 1, say for 
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c o e ( 2  o, P(s 1. Moreover, since {(y, Bp(y, ~)), ye Y, e>0} is a q%Vitali relation, 
for any AE~N-k(T),  

1 
a(y, t, A, co) = ~iln ~ #t, k(Bo(Y, n- 1); A, co) ~b-a.e. (19) 

for coegJ o. Since the #t,k measure of the exceptional y-set in (19) is zero for each 
co e s we find that 

1 
~(X(t, s, co), t, A, co) = ,-~lim ~ #t.k(no(x(t, s, co), n-  1); A, co) (20) 

for ).N-k X P-a.e. (s, co). As a result, there are sets Ft~N-k(T) ,  2N-k(F.q 0 such 
that for each se/t ,  (20) holds simultaneously for all open rectangles A ~  T s-k 
with rational vertices with probability 1. 

For tea and seF~c~/~, choose a sequence Am of such rectangles, A~l{s}. 
Then 

E ~(X(t, s, co), t, {s}, co) = E lim a(X(t, s, co), t, Am, co) 
m 

1 
= E lira lim ~ ~ IEo ,._ xl(p(X(t, s, co), X(t, r, co)) 2 N-k(dr) 

A ~  

1 
< 1 ~  lim -- , A~ ~ P {p(X(t, s, co), X(t, r, co)) <= n- l}  2N-k(dr) 

_<li_m ~sup  [~-(o P{p(X(t,s, co),X(t,r, co)<=e}] 2N-k(dr) 
m A m  ~ > 0  

~ 0 .  

Finally, then, for each teA, 

e(X(t,s, co),t,{s},co)=O 2N-k X P-a.e. 

from which it follows with probability 1, 

0 = ~ a(X(t, s, co), t, {s}, co) 2 N-k(ds) = ~ ~ ~2(y, t, {s}, co) O(dy). 
T N - k  y s ~ T  N k 

The second equality is achieved via (15) just as in [4, p. 321]. 
In summary: for 2k-a.e. t e T  k, #t,k(',co)~O and a(y,t,{s},co)=O VseT"-k  O- 

a.e., both with probability 1. Interchanging null sets one last time, we obtain (17) 
with probability 1. In view of Theorem B and Lemma 3 this concludes the proof. 

Remark. Certainly (5) holds if 

1 
"~N(dt) S sup n{p(X(t l  .... ,tk,s),X(t))<=~}2N-k(ds)<~. (5') 

T N T N k 8 > 0  

Now (5') implies that g(y, t, TN-k, co)eL2(~b x 2 k) with probability one, which in 
turn implies that for Y= ]R d, gb = 2 d, etc. we can substitute a well-known result of 
Zygmund [8] for Lemma 2. 

First, here is why (5') implies g is a.s. square-integrable. We know from the 
proof that the conditions of Lemma 3 are in force with probability one, and for 
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such co: 

4,(dy) S g~(Y, s, r ~-~, co),~(ds) 
g T k 

= ~ gp(dy) ~ g(y, s, T N-k, co) y(y, ds dt, co) (by (13)) 
y T k 

= S g(X(t, co), tx, ..., tk, T N-k, co) 2N(dt) (#(dy, dt) = y(y, dr) O(dy)) 
TZr 

= j" 2k(dt) ~ a(X(t, s, co), t, T N-k, o~) 2 N-k(ds) 
T k T N -  k 

= ~2k(dt) ~ t l im 1 ~,[o,_i](p(X(t,s ,  co),X(t,r, co))2N_k(dr)} 
T~ T " ~ L .  ~ ( n - 1 ) ~  " ~  

�9 2N-k(ds), 

from (20) with A = T u-k. It follows that 

E ~ (o(dy) ~ g2(y, s, T N-k, co) ff(ds) 
y T k 

1 
<~2k(dt) ~ 2N-k(ds) ~ sup n{p(X(t,s),X(t,r))<e} 2N-k(dr)< oo. 

T k T N - k  T N - k e > 0  

As for Lemma 2, Zygmund [8] showed that the theorem of Lebesgue that 

lira (e(m))- a e- ~ S f(s) )Y(ds) = f(t) 2m-a.e. 
e ,~ 0 B ~ ( t ,  e) 

for any feLl(lR ~) could be extended by replacing the (closed) balls Bm(t,O by 
any family of rectangles in IR" with sides parallel to the axes and contracting to t, 
provided feLP(IR ") for some l < p < o e .  Since the B~'s in Theorem B can be 
enclosed in such a family of rectangles in IR e+k, the proof there works if 
geL2(R d+k) without Lemma 2. 

w  

First, we will mention some general sufficient conditions for (5), then proceed to 
specific examples for the case Y= IR d and X Gaussian. 

When Y is a normed linear space, p(y, z)= Ily-z]L, and when the distribution 
of X(s)-X( t ) ,  s.i:t, is absolutely continuous with respect to ~b, say 

P(X(s) - X(t)edy) = qS(y; s, t) qS(dy), 

then a sufficient condition for (5) is 

Y supO(y;(tD'",tk,  s),t)2N-k(ds) <~ 2N-a.e. 
T l q - k  y e Y  

This can be readily applied in the Gaussian case with y = R d .  Let X =  
(X I . . . . .  Xd) be Gaussian, EXi(t)=-O, and suppose that for each s+-t (or just 
2ZN-a.e. (s,t) will do), {Xi(t)-Xi(s)}d=l has a Lebesgue density d?(y;s,t), yelR d, 
i.e. IN(s, t)[ :t: 0 where IA(s, t)] is the determinant of the covariance matrix A(s, t) of 
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{Xi(t) - Xi(s)}~= 1 . Then 

supr  s, t)=(2~) -a/2 lAG t)[-1/2 
y E ~  a 

Consequently,  a sufficient condit ion for (5) is 

[A((q . . . . .  t k, s), t)[- 1/2 2N- k(ds) < Go )~N-a.e. (21) 
T N - k  

In fact, (21) is also necessary for (5): since q~(y; s, t) is cont inuous at y=O, for 
s=l= t, 

supe-aP(lIX(s)-X(t)[I < 0 > l i m e  -d ~ q~(y;s,t)U(dy) 
s > O  ~.~0 Ba(O,s) 

= .(d) qS(0; S, t )=  g(C0(2g) -d/2 lAG t)[- 1/2. 

When the components  X 1 . . . .  , X a are independent,  a2i(s, t)=E(Xi(s )-Xi(t))  2, 
i =  1, .. . ,d, then (21) reduces to 

d - - i  

S [17I~ . . . .  ,tk,s),t)] 2u-k(ds) < oo 2U-a.e. (22) 
T N - k  i =  1 

Example 1. Suppose N > d and ai(s , t) > T([Is- t[]), i = 1, . . . ,  d, where 

~o dt r < oo and sup = c < oo. 
o <r  < ~ 7 q r )  

(If ~ is mono tone  and 1 /~  is integrable, then ~(r)--+mr so c <  m.)  

Then  with k = N - d ,  r~T k, teTa: 
d - 1  

T a i T a 

Va- r a- 1 21 (dr~ 
<const .  f - - m  
- ; ( ~ ' ( r ) ) ~  

dr 
<const .  c d - l ~  ~ <  oo. 

( dt ) 
Of course, when d = 1, we need only assume ~ ~ < oe. Thus 

ap lim 11X(s) - X(t)]l 
s+, Hs-t[[ oo 2N-a.e., a.s. (23) 

Example 2. Here, a2(s, t) = [[ s -  t[[~, 0 < ~ < 2, the components  again being inde- 
pendent.  Changing to polar  coordinates  in (22), it is easy to check that  (22) holds 

only if O < k < N - ? .  'Naturally,  we then want to choose the largest if and 

possible k.) 
For  example, for d-dimensional ("isotropic")  Brownian motion,  we have 

= 1 so that  if N > d/2, the largest integer smaller than N - d / 2  is N -  1 -  d/2 if d 
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is even and N -  d/2 - !/2 if d is odd, which yields (8) with r = 1/2 + lid for d even 
and r =  1/2+ 1/2d for d odd. 

Similarly, for index c~=3/2, we obtain (8) for r = l - u / d  where u is the 
greatest integer smaller than d/4. (Here, of course, we must assume N > �88 d.) 

Example3 ("N-parameter Wiener process"). X = ( X  1,...,Xd) has independent, 
identically distributed components, 

N 

EX~(t)  - O, EX~(t) X~(s) = 1~ (t~ A s~), t = ( t l , . . . ,  tN), s = ( s l , . . . ,  sN). 
i = 1  

The incremental variance is 

N N N 

~f(s, t)= lq t~ + [I  s , -  217 (t, A s~), 
1 i 1 

and (22) holds if and only if 
[N-k N N-k ] -a/2 

T N - k  1 

( p r o v i d e d h h + 0 ) .  T h u s w e w i s h t o d e t e r m i n e t h o s e v a l u e s o f m > l a n d f i > 0  
1 

for which 
[ ~ m  m m ] - / ~  

i | |  si + H r i - 2 [ - [  (riA si)] 2m(ds) < o% 2m-a.e. (25) 
T m L 1  1 1 

Now the integral in (25) splits into 2" pieces, and by symmetry a "typical" 
term is 

i m . . . . . .  r~+[Isl-2 si ri ds 1 . . .  d s m ,  (26) 
0 t ' j+ l  l*ra 1 1 

0 =<j < m. Since the only singularity of the integral in (25) occurs when s = r, the 
integral in (26) will converge if and only if 

J I  I " J  ri+ s , - 2 H s ~ H r ,  d S l " " d S m  (27) 
0 0 r y + l  rm 1 1 j + l  

converges. When j = m, a change of variables transforms (27) into 

( m \1-~ [1 m -p (28) 

In fact, for any 0_-<j_-< m, (27) will converge 2m-a.e. if and only if the integral in 
(28) converges. For O<j<m, make the change of variables G=Sk, k= 1,...,j, 
Uj+k =2rj.+k--Sj+k, k =  1,..., m - j ,  so (26) becomes 

"'" H ri - H ui + g(rl, ' " ,  rm, ul, " ' ,  u,,) dul. . ,  dum, (29) 
o \ 1  1 

m j j 

g=l]u +IIu  fI (2 ri - u3 - 2 H ui 
1 1 j + l  1 j + l  
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But g > 0  for 0 < u i < rl, i=  1, ..., m, and hence the integral in (28) dominates the 
integral in (29), which shows that (25) holds if and only if the integral in (28), call 
it Q(m, fl), is finite. 

Finally, notice that Q(m, f i )<Q(m-l ,  fi), m>2,  and an easy computation 
shows that Q.(m, fi) < oo if and only if Q(m + 1, fl + 1) < oo. Let [a] be the greatest 
integer less than or equal to a. We are interested in the case m= N - k ,  fi = d/2. 

d 
For O<_k < N - -  

- -  2 '  

Q( ,~)< o o ~  

d < � 8 9  F o r k > N  d since ~ _  ]2J" - - 2 '  

Q ( 1 , 1 ) = o o - Q ( 2 , 2 ) = o o ~ . . . ~ Q ( [ ~ ] ,  [ ~ ] ) = ~  

Hence, the conclusions here concerning (8) are the same as for the d-dimensional 
isotropic Brownian motion. 
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