On the Approximate Local Growth of Multidimensional Random Fields*

Donald Geman

University of Massachusetts at Amherst, Department of Mathematics, Amherst, Mass. 01002

We compute the approximate, local growth rate for a (nondifferentiable) random process $X(t), t=\left(t_{1}, \ldots, t_{N}\right) \in \mathbb{R}^{N}$, with values in \mathbb{R}^{d} which satisfies a condition on the distribution of $\|X(s)-X(t)\|$, namely: for some $0 \leqq k<N$ and Lebesgue almost every $t \in \mathbb{R}^{N}$, the function $\eta_{k}(s, t)=\sup _{\varepsilon>0} \varepsilon^{-d} P\left\{\| X\left(t_{1}, \ldots, t_{k}, s\right)\right.$ $-X(t) \| \leqq \varepsilon\}$ is locally integrable $(d s)$ over \mathbb{R}^{N-k}. Then, with $r=\frac{N-k}{d}$ and with probability one, the approximate limit as $s \rightarrow t$ of $\|X(s)-X(t)\| /\|s-t\|^{r}$ is infinite for almost every $t \in \mathbb{R}^{N}$, which means (for t fixed) that for every $Q>0$, the (Lebesgue) proportion of s with $\|s-t\|<\varepsilon$ and $\|X(s)-X(t)\| \leqq Q\|s-t\|^{r}$ is asymptotically (as $\varepsilon \downarrow 0$) equal to zero. When $X=\left(X_{1}, \ldots, X_{d}\right)$ is Gaussian, the largest $k<N$ for which η_{k} is integrable is computed in various special cases. For example, for i.i.d. components, $E X_{i}(t) \equiv 0, E\left(X_{i}(t)-X_{i}(s)\right)^{2}=\|s-t\|^{\alpha}, 0<\alpha$ $<2, \eta_{k}$ is integrable if and only if $k<N-\frac{\alpha d}{2}$.

§ 1

Let $X(t), t \in T^{N}=[0,1]^{N}$, be a random process with values in \mathbb{R}^{d}. We write $B_{m}(t, \varepsilon)$ for the closed ball in \mathbb{R}^{m} with center t and radius ε, relative to the usual Euclidean norm $\|\cdot\|$, and $\lambda^{m}(d t)$ for Lebesgue measure on \mathbb{R}^{m}. We are interested in results of the form

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \frac{\lambda^{N}\left\{\mathrm{~s} \in \mathrm{~B}_{N}(\mathrm{t}, \varepsilon): \frac{\|X(s)-X(t)\|^{d}}{\|s-t\|^{N-k}} \leqq Q\right\}}{\lambda^{N}\left\{B_{N}(t, \varepsilon)\right\}}=0 \quad \forall Q>0 \tag{1}
\end{equation*}
$$

where $0 \leqq k<N$ depends on the law of X and (1) is to hold, with probability 1 , at

[^0]λ^{N}-a.e. $t \in T^{N}$. When (1) holds at a particular t, it is customary to write
\[

$$
\begin{equation*}
\text { ap } \lim _{s \rightarrow t} \frac{\|X(s)-X(t)\|^{d}}{\|s-t\|^{N-k}}=\infty \tag{2}
\end{equation*}
$$

\]

Here, "ap lim" stands for approximate limit.
Actually, we are going to consider processes with a more general range, namely a metric space (Y, ρ). Any reformulation of (2) depends on how we measure the Borel subsets of Y. To this end, let $\phi(d y)$ be a measure on \mathscr{Y}, the Borel σ-field in Y, and let $B_{\rho}(y, \varepsilon)$ be the closed ball with center y and radius ε. We make the following assumptions.
(a) \mathscr{Y} is separable
(b) $\phi(A)<\infty$ for every bounded $A \in \mathscr{Y}$
(c) the ϕ-measure of $B_{\rho}(y, \varepsilon)$ is independent of y
(d) $\xi(\varepsilon) \equiv \phi\left(B_{\rho}(y, \varepsilon)\right)$ is strictly increasing on $[0, \infty)$
(e) $\varepsilon^{-1} \xi(\varepsilon)$ is continuous and non-decreasing on $(0, \infty)$
(f) $\varlimsup_{\varepsilon \downarrow 0} \xi\left(5^{N} \varepsilon\right) / \xi(\varepsilon)<\infty$.
(The reasons for $(d),(e)$, and (f) involve the existence of certain Vitali relations and will be discussed in the course of the proofs.) The analogue of (2) is

$$
\begin{equation*}
\operatorname{ap} \lim _{s \rightarrow t} \frac{\xi(\rho(X(s), X(t)))}{\|s-t\|^{N-k}}=\infty . \tag{4}
\end{equation*}
$$

(That is, (1) holds with $\|X(s)-X(t)\|^{d}$ replaced by $\xi(\rho(X(s), X(t)))$.)
Let (Ω, \mathscr{F}, P) be the probability space carrying $X(t, \omega)$, and let $\mathscr{B}^{m}\left(\mathscr{B}^{m}(T)\right)$ denote the Borel sets in \mathbb{R}^{m} (resp. T^{m}). We assume $X(t, \omega)$ is separable and measurable, $\mathscr{B}^{N}(T) \otimes \mathscr{F} \rightarrow \mathscr{Y}$. We now state Theorem A, one of our two main results. The other is Theorem B, upon which Theorem A is largely based, and which gives conditions for a non-random function $X: T^{N} \rightarrow Y$ to satisfy (4) at $\lambda_{N^{-}}$ a.e. $t \in T^{N}$. These conditions involve the "local time" of X. As far as we know, it was Berman [1] who first saw the close relationship between local times and approximate limits, and thereby introduced the latter into the analysis of random functions. (See the introduction to [4] and the references therein.) The proof of Theorem A and the statement and proof of Theorem B are given in $\S 2$, and $\S 3$ contains the details of the examples and illustrations mentioned after Theorem A.

Theorem A. Suppose there exists $a 0 \leqq k<N$ such that for λ^{N}-a.e. $t=\left(t_{1}, \ldots, t_{N}\right) \in T^{N}$,

$$
\begin{equation*}
\int_{T^{N-k}} \sup _{\varepsilon>0} \frac{1}{\xi(\varepsilon)} P\left\{\rho\left(X\left(t_{1}, \ldots, t_{k}, s\right), X(t)\right) \leqq \varepsilon\right\} \lambda^{N-k}(d s)<\infty . \tag{5}
\end{equation*}
$$

Then (4) holds at $\lambda^{N} \times P$-a.e. (t, ω).
The proof is based on the existence, and suitable regularity, of an "occupation density" for X. When (5) holds for $k=0$, the occupation density exists and is continuous as a measure on $\mathscr{B}^{N}(T)$, which means that with probability 1 :
$\phi(A)=0 \Rightarrow \lambda^{N}\left\{t \in T^{N}: X(t, \omega) \in A\right\}=0, A \in \mathscr{Y}$, and a version $\gamma(y, B, \omega)$ of the Radon-Nikodym derivative of the measure $\lambda^{N}\{t \in B: X(t, \omega) \in d y\}$ with respect to $\phi(d y)$ may be chosen such that $\gamma(y,\{t\}, \omega)=0 \quad \forall t \in T^{N}, y \in Y, \omega \in \Omega$. (Here, $\gamma(y,\{t\}, \omega)$ is the mass placed on t by the measure $\gamma(y, \cdot, \omega)$.) When (5) holds for 0 $<k<N$, then γ exists and the measure $B \rightarrow \gamma(y, B, \omega)$ has a k-dimensional "marginal" distribution which is absolutely continuous with respect to λ^{k}, i.e.

$$
\gamma(y, d s d t, \omega)=g(y, s, d t, \omega) \lambda^{k}(d s)
$$

all with probability one. (Also, see the note after Lemma 1.)
To fix the ideas and to compare our results with those in [4] and [6], we take $Y=\mathbb{R}^{d}, \phi=\lambda^{d}$, etc. for the remainder of this section. Obviously (3) holds. Now (2) is equivalent to the existence of a set $A_{t} \in \mathscr{B}^{N}(T)$ for which t is a point of (metric) density 1, i.e.

$$
\lim _{\varepsilon \downarrow 0} \frac{\lambda^{N}\left\{B_{N}(t, \varepsilon) \cap A_{t}\right\}}{\lambda^{N}\left\{B_{N}(t, \varepsilon)\right\}}=1,
$$

and for which

$$
\begin{equation*}
\lim _{\substack{s \rightarrow t \\ s \in A_{t}}} \frac{\|X(t)-X(s)\|^{d}}{\|s-t\|^{N-k}}=\infty \tag{6}
\end{equation*}
$$

(Here, of course, t and ω are fixed.) If one removes the restriction " $s \in A_{t}$ " in (6), i.e. considers the true limit, it may happen (depending on N, k, and d) that no function $X: \mathbb{R}^{N} \rightarrow \mathbb{R}^{d}$ can satisfy (6) on a set of t 's of even positive λ^{N}-measure. For example,

$$
\lambda^{1}\left\{t \in \mathbb{R}: \lim _{s \rightarrow t} \frac{|X(s)-X(t)|}{|s-t|}=\infty\right\}=0
$$

for any function $X: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$, a result due to Banach - see [7, p. 270].
For X Gaussian and $N \geqq d$, (5) is widely satisfied for $k=N-d$ when X fails to be differentiable. When $N=d=1$, for example, (5) reduces to the integrability of $s \rightarrow\left(E(X(s)-X(t))^{2}\right)^{-1 / 2}$ over $T^{1}=[0,1]$ for λ^{1}-a.e. $t \in T^{1}$; this and related matters were discussed in [4]. Roughly, the faster the growth of the incremental variance $E\|X(s)-X(t)\|^{2}$ in neighborhoods of its zeros, the larger may be chosen k. As an illustration, take $X=\left(X_{1}, \ldots, X_{d}\right)$ where X_{1}, \ldots, X_{d} are independent, identically distributed Gaussian fields on T^{N} and

$$
\begin{equation*}
E X_{j}(t) \equiv 0, \quad E X_{j}(t) X_{j}(s)=\|t\|^{\alpha}+\|s\|^{\alpha}-\|t-s\|^{\alpha}, \quad 0<\alpha<2 . \tag{7}
\end{equation*}
$$

As will be seen in $\S 3,(5)$ holds for k if and only if $k<N-\frac{\alpha d}{2}$. Consequently, if $0<N-\frac{\alpha d}{2}$,

$$
\begin{equation*}
\text { ap } \lim _{s \rightarrow t} \frac{\|X(s, \omega)-X(t, \omega)\|}{\|s-t\|^{r}}=\infty \quad \lambda^{N} \text {-a.e., a.s. } \tag{8}
\end{equation*}
$$

where $r=\frac{N-k_{0}}{d}$ and k_{0} is the greatest integer less than $N-\frac{\alpha d}{2}$. When $N \geqq d$, we
have $0 \leqq N-d<N-\frac{\alpha d}{2}$ so we can always take $r=1$ in (8). For d-dimensional Brownian motion on $T^{N}, \alpha=1$ and we can choose $r=1 / 2+1 / d$ for d even and r $=1 / 2+1 / 2 d$ for d odd. (The conclusion is the same for the " N-parameter Wiener process", i.e.

$$
\left.E X_{j}(t) X_{j}(s)=\prod_{i}^{N}\left(t_{i} \wedge s_{i}\right), \quad t=\left(t_{1}, \ldots, t_{N}\right), \quad s=\left(s_{1}, \ldots, s_{N} \cdot\right)\right)
$$

Whereas our results are chiefly applicable for processes on T^{N} when the dimension d of the range is bounded above (e.g. $d<\frac{2 N}{\alpha}$ as above), the results in [6] are basically for processes on \mathbb{R}^{N} into high dimensional spaces. Extending the work of Dvoretzky and Erdös [2], and others, Kôno [6] considers Gaussian processes $X=\left(X_{1}, \ldots, X_{d}\right)$ from \mathbb{R}^{N} to \mathbb{R}^{d} with i.i.d. components, $\sigma^{2}(s, t)=E\left(X_{j}(s)\right.$ $\left.-X_{j}(t)\right)^{2}$, and defines $\mathscr{L}^{0}\left(X^{d}\right)$ (resp. $\mathscr{U}^{0}\left(X^{d}\right)$) to be the class of continuous, nondecreasing $\phi:(0, \infty) \rightarrow(0, \infty)$ such that with probability 1 (resp. 0) there is a $\delta(\omega)$ for which

$$
\begin{equation*}
0<\|t\|<\delta(\omega) \Rightarrow\|X(t, \omega)-X(0, \omega)\|>\sigma(0, t) \phi(\|t\|) \tag{9}
\end{equation*}
$$

Under various conditions on σ, d, and N, Kôno obtains integral tests for $\phi \in \mathscr{L}^{0}\left(X^{d}\right)$ and $\phi \in \mathscr{U}^{0}\left(X^{d}\right)$. Thus, for example, Kôno retrieves a result of Dvoretzky and Erdös which in turn implies that for Brownian motion from \mathbb{R}^{1} to \mathbb{R}^{3}

$$
\begin{equation*}
\lim _{s \rightarrow t} \frac{\|X(t, \omega)-X(s, \omega)\|}{|t-s|^{1 / 2}|\log | t-s \|^{-3}}=\infty \quad \text { for } \lambda^{1} \text {-a.e. } t, \text { a.s. } \tag{10}
\end{equation*}
$$

More generally, for the family of processes described in (7), the conditions of Theorem 1 of [6] are satisfied when $N-\frac{\alpha d}{2}<0$ and one easily checks that $\phi(x)$ $=x^{\delta} \in \mathscr{L}^{0}\left(X^{d}\right)$ for any $\delta>0$. It then follows that

$$
\begin{equation*}
\lim _{s \rightarrow t} \frac{\|X(t, \omega)-X(s, \omega)\|}{\|t-s\|^{r}}=\infty \quad \text { for } \lambda^{N} \text {-a.e. } t \text {, a.s. } \tag{11}
\end{equation*}
$$

for any $r>\frac{\alpha}{2}$. (Kôno also considers "uniform" upper and lower classes: for σ^{2} as in (7), and assuming $2 N-\frac{\alpha d}{2}>0$, Theorem 4 of [6] would yield (11) for any $r>\frac{\alpha}{2}$ $+N\left(d-\frac{4 N}{\alpha}\right)^{-1}$ with " λ^{N}-a.e. t " replaced by "every t ".) To compare (8) and (11), consider the case $N \approx \frac{\alpha d}{2}$: if $\frac{\alpha \mathrm{d}}{2}=N+\varepsilon>N$ then (11) holds whereas (8) doesn't apply; if $\frac{\alpha d}{2}=N-\varepsilon<N$ then (8) holds with $r=\frac{\alpha}{2}+\frac{\varepsilon}{d}$ whereas the results in [6] don't apply.

$\S 2$

Let $\alpha(m)=\lambda^{m}\left(B_{m}(t, 1)\right)$, so $\lambda^{m}\left(B_{m}(t, \varepsilon)\right)=\alpha(m) \varepsilon^{m}$, and $\tau_{\omega}(\varepsilon, t, Q)=\lambda^{N}\left\{s \in B_{N}(t, \varepsilon)\right.$: $\left.\xi(\rho(X(s, \omega), X(t, \omega))) \leqq\|s-t\|^{N-k} Q\right\}, \varepsilon, Q>0$. Under a (mild) additional assumption to (5), it is easy to show that

$$
\begin{equation*}
\operatorname{ap} \varlimsup_{s \rightarrow t} \frac{\xi(\rho(X(s), X(t)))}{\|s-t\|^{N-k}}=\infty \quad \lambda^{N} \times \text { P-a.e. } \tag{12}
\end{equation*}
$$

which means that

$$
\varliminf_{\varepsilon \downharpoonright 0} \frac{\tau_{\omega}(\varepsilon, t, Q)}{\alpha(N) \varepsilon^{N}}<1 \quad \forall Q>0, \quad \lambda^{N} \times P \text {-a.e. }
$$

Assume that $\forall t \exists$ constants $M \geqq 0$ and $\eta>0$ such that $s \in B_{N}(t, \eta)$ implies

$$
\begin{aligned}
\sup _{\varepsilon>0} & \frac{1}{\xi(\varepsilon)} P\{\rho(X(t), X(s)) \leqq \varepsilon\} \\
& \leqq M+\sup _{\varepsilon>0} \frac{1}{\xi(\varepsilon)} P\left\{\rho\left(X\left(t_{1}, \ldots, t_{k}, s_{k+1}, \ldots, s_{N}\right), X(t)\right) \leqq \varepsilon\right\}
\end{aligned}
$$

(For example, this is widely satisfied in the Gaussian case with $M=0$-see (21) and (22).) Then for any $t \in T^{N}$ at which (5) holds and for any $Q>0$:

$$
\begin{aligned}
& E \varliminf_{\varepsilon \downarrow 0} \varepsilon^{-N} \tau_{\omega}(\varepsilon, t, Q) \leqq E \varliminf_{n \rightarrow \infty} n^{N} \tau_{\omega}(1 / n, t, Q) \\
& \quad \leqq \varliminf_{n \rightarrow \infty} E\left[n^{N} \int_{B_{N}(t, 1 / n)} I_{\left[0, \xi^{-1}\left(Q(1 / n)^{N-k}\right)\right]}(\rho(X(t), X(s))) \lambda^{N}(d s)\right] \\
& \quad \leqq Q \varliminf_{n \rightarrow \infty} n^{k} \int_{B_{N}(t, 1 / n)} \sup _{\varepsilon>0}\left[\frac{1}{\xi(\varepsilon)} P\{\rho(X(t), X(s)) \leqq \varepsilon\}\right] \lambda^{N}(d s) \\
& \quad \leqq Q \varliminf_{n \rightarrow \infty}^{\varliminf_{n \rightarrow \infty} n^{k} \int_{B_{N}(t, 1 / n)} M} \\
& \quad+\sup _{\varepsilon>0}\left[\frac{1}{\xi(\varepsilon)} P\left\{\rho\left(X\left(t_{1}, \ldots, t_{k}, s_{k+1}, \ldots, s_{N}\right), X(t)\right) \leqq \varepsilon\right] \lambda^{N}(d s)\right. \\
& \quad \leqq Q \varliminf_{n \rightarrow \infty}^{\varliminf_{D}} \int_{D} M+\sup _{\varepsilon>0}\left[\frac{1}{\xi(\varepsilon)} P\left\{\rho\left(X\left(t_{1}, \ldots, t_{k}, s\right), X(t)\right) \leqq \varepsilon\right\}\right] \lambda^{N-k}(d s)=0
\end{aligned}
$$

where

$$
D=B_{N-k}\left(\left(t_{k+1}, \ldots, t_{N}\right), 1 / n\right)
$$

Thus, for each $Q>0$ and λ^{N}-a.e. $t \in T^{N}, \varliminf_{\varepsilon \downarrow 0} \varepsilon^{-N} \tau_{\omega}(\varepsilon, t, Q)=0$ a.s., and hence, τ being monotone in Q,

$$
\varliminf_{\varepsilon \downarrow 0} \varepsilon^{-N} \tau_{\omega}(\varepsilon, t, Q)=0 \quad \forall Q>0, \quad \lambda^{N} \times P \text {-a.e. }
$$

We need several lemmas about occupation densities for real functions, a characterization of absolute continuity (Lemma 4) which is implicit in the
literature but included here for clarity, and a technical result (Lemma 2) about Vitali relations. The latter will permit us to differentiate indefinite integrals over $Y \times \mathbb{R}^{m}$ (of $\phi \times \lambda^{m}$-integrable functions) with respect to coverings which have no "parameter of regularity". When $Y=\mathbb{R}^{d}$, etc. and the function of $t \in T^{N}$ in (5) is integrable $\lambda^{N}(d t)$, Lemma 2 is superfluous. Instead, we can use a classical result of Zygmund [8] about "strong derivatives" - see the Remark at the end of this § and [7, pp. 128-133].

Let $x: T^{N} \rightarrow Y$ be measurable $\mathscr{B}^{N}(T)$ to \mathscr{Y} and define measures

$$
\begin{aligned}
& \mu(V ; D)=\int_{D} I_{V}(x(t)) \lambda^{N}(d t), \quad D \in \mathscr{B}^{N}(T), \quad V \in \mathscr{Y}, \\
& \mu(V)=\mu\left(V ; T^{N}\right), \\
& v_{k}(V)=\int_{T^{N}} I_{V}\left(x(t), t_{1}, \ldots, t_{k}\right) \lambda^{N}(d t), \quad V \in \mathscr{Y} \otimes \mathscr{B}^{k}(T), \quad 0<k<N, \\
& \mu_{t, k}(V)=\int_{T^{N-k}} I_{V}(x(t, s)) \lambda^{N-k}(d s), \quad V \in \mathscr{Y}, \quad t \in T^{k}, \quad 0<k<N .
\end{aligned}
$$

If $\left(G_{1}, \mathscr{G}_{1}\right)$ and $\left(G_{2}, \mathscr{G}_{2}\right)$ are measurable spaces, by a kernel h on $G_{1} \times \mathscr{G}_{2}$ we mean a real function $h(g, B), g \in G_{1}, B \in \mathscr{G}_{2}$, such that $h(\cdot, B)$ is measurable (\mathscr{G}_{1} to $\mathscr{B})$ for each $B \in \mathscr{G}_{2}$ and $h(g, \cdot)$ is a measure on \mathscr{G}_{2} for each $g \in G_{1}$.
Lemma 1. For any $0<k<N$, the following are equivalent:
(i) $v_{k} \ll \phi \times \lambda^{k}$,
(ii) $\mu \ll \phi$ and there exists a kernel g on $Y \times T^{k} \times \mathscr{B}^{N-k}(T)$ such that $\forall y \in Y$, $B \in \mathscr{B}^{k}(T), A \in \mathscr{B}^{N-k}(T)$,

$$
\begin{equation*}
\gamma(y, B \times A)=\int_{B} g(y, s, A) \lambda^{k}(d s), \tag{13}
\end{equation*}
$$

where $\mu(d y, D)=\gamma(y, D) \phi(d y)$.
(iii) $\mu_{t, k} \ll \phi$ for $\lambda^{k}-$ a.e. $t \in T^{k}$.

Proof. Suppose (i) and define

$$
v_{k}(V ; A)=\int_{A} I_{V}\left(x(t), t_{1}, \ldots, t_{k}\right) \lambda^{N}(d t), \quad A \in \mathscr{B}^{N}(T), \quad V \in \mathscr{Y} \otimes \mathscr{B}^{N}(T) .
$$

Then for each $A \in \mathscr{B}^{N}(T)$ there exists a measurable function $h(y, t, A)$ on $Y \times T^{k}$ such that $v_{k}(d y d t, A)=h(y, t, A) \phi \times \lambda^{k}(d y d t)$. Furthermore, changing h on null sets if necessary, we can assume h is a kernel on $Y \times T^{k} \times \mathscr{B}^{N}(T)$; some of the details of such matters are in [5], but the construction of "regular versions" of families of Radon-Nikodym derivatives, and of "regular conditional measures", are well-known. Thus, for $A \in \mathscr{B}^{N-k}(T), B \in \mathscr{B}^{k}(T), V \in \mathscr{Y}$:

$$
\begin{aligned}
\mu(V ; B \times A)=v_{k}\left(V \times B ; A \times T^{k}\right) & =\int_{V \times B} h\left(y, t, A \times T^{k}\right) \phi \times \lambda^{k}(d y d t) \\
& =\int_{V} \phi(d y) \int_{B} h\left(y, t, A \times T^{k}\right) \lambda^{k}(d t),
\end{aligned}
$$

and (ii) holds with $g(y, t, A)=h\left(y, t, A \times T^{k}\right)$.
Assuming (ii),

$$
\int_{B} \mu_{t, k}(V) \lambda^{k}(d t)=\mu\left(V ; B \times T^{N-k}\right)=\int_{B} \lambda^{k}(d t) \int_{V} g\left(y, t, T^{N-k}\right) \phi(d y),
$$

for all $B \in \mathscr{B}^{k}(T), V \in \mathscr{Y}$. As a result, for any $V \in \mathscr{Y}$ there is a λ^{k}-null set E_{V} such that

$$
\begin{equation*}
\mu_{t, k}(V)=\int_{\boldsymbol{V}} g\left(y, t, T^{N-k}\right) \phi(d y) \tag{14}
\end{equation*}
$$

for all $t \notin E_{V}$. Since both sides of (14) are measures on \mathscr{Y} and \mathscr{Y} is separable, (14) holds for every $V \in \mathscr{Y}$, for λ^{k}-a.e. t.

Finally, (iii) implies $\mu_{t, k}(d y)=\alpha(y, t) \phi(d y)$ for some $\alpha: Y \times T^{k} \rightarrow[0, \infty)$ which can be chosen $\mathscr{Y} \otimes \mathscr{B}^{k}(T)$ measurable. Integrating $\lambda^{k}(d t)$ over B yields

$$
v_{k}(V \times B)=\int_{V \times B} \alpha(y, t) \phi(d y) \lambda^{k}(d t) \forall V \in \mathscr{Y}, \quad B \in \mathscr{B}^{k}(T),
$$

which extends to $d v_{k}=\alpha d\left(\phi \times \lambda^{k}\right)$.
Note. We exclude the case $k=N$ because it corresponds to $\gamma(y, d t) \ll \lambda^{N}(d t)$, which is impossible; indeed, $\gamma(y, d t) \perp \lambda^{N}(d t)$ for ϕ-a.e. y since $\lambda^{N}\left(M_{y}\right)=0$, $M_{y} \equiv\left\{s \in T^{N}: x(s)=y\right\}$, except at most for countably many y^{\prime} s, whereas $\gamma\left(y, M_{y}^{c}\right)=0$ for ϕ-a.e. y, which follows from

$$
\begin{equation*}
\iint f(t, y) \mu(d y ; d t)=\iint f(t, y) \gamma(y, d t) \phi(d y) \tag{15}
\end{equation*}
$$

(for any non-negative, measurable f) by choosing $f(t, y)=I_{M_{y}^{c}}(t)$.
Lemma 2. If $0<k<N$ and

$$
\begin{aligned}
V((y, s), \varepsilon)= & B_{\rho}\left(y, \xi^{-1}\left(\varepsilon^{N-k}\right)\right) \times \prod_{1}^{k}\left[s_{i}-\varepsilon, s_{i}+\varepsilon\right] \\
& (y, s) \in Y \times T^{k}, \quad \varepsilon>0
\end{aligned}
$$

then

$$
\mathscr{K}=\left\{((y, s), V((y, s), \varepsilon)),(y, s) \in Y \times T^{k}, \varepsilon>0\right\}
$$

is a $\phi \times \lambda^{k}$-Vitali relation [3, p. 151].
Proof. If $V((y, s), \varepsilon)$ is a closed ball in a suitable metric space, we use 2.8 .17 and 2.8.8. of [3].

Define δ on $\left(Y \times \mathbb{R}^{k}\right) \times\left(Y \times \mathbb{R}^{k}\right)$ by

$$
\delta((y, s),(z, t))=\max \left\{\rho(y, z)^{\frac{1}{N-k}}, h\left(\max _{1 \leqq i \leqq k}\left|s_{i}-t_{i}\right|\right)\right\},
$$

where $h(u)=\left(\xi^{-1}\left(u^{N-k}\right) \frac{1}{N-k}, u \geqq 0\right.$. To verify that δ is a metric it will suffice to check that

$$
h(a+b) \leqq h(a)+h(b), \quad a, b \geqq 0 .
$$

Now $\frac{\xi(u)}{u} \uparrow$ as $u \uparrow$ implies $\frac{\xi^{-1}(u)}{u} \uparrow$ as $u \downarrow$ implies $\frac{h(u)}{u} \uparrow$ as $u \downarrow$. Consequently, for $0 \leqq a \leqq b$:

$$
h(a+b)=\frac{h(a+b)}{a+b}(a+b) \leqq \frac{h(b)}{b}(a+b)=\frac{h(b)}{b} a+h(b) \leqq h(a)+h(b) .
$$

Let $B_{\delta}((y, s), \varepsilon)$ be the closed ball contered at (y, s) with radius ε for δ :

$$
B_{\delta}((y, s), \varepsilon)=B_{\rho}\left(y, \varepsilon^{N-k}\right) \times \prod_{1}^{k}\left[s_{i}-h^{-1}(\varepsilon), s_{i}+h^{-1}(\varepsilon)\right] .
$$

Further, let

$$
\eta((y, s), \varepsilon)=\phi \times \lambda^{k}\left(B_{\delta}((y, s), \varepsilon)\right)=\xi\left(\varepsilon^{N-k}\right)\left(2 h^{-1}(\varepsilon)\right)^{k} .
$$

We want to show that $\phi \times \lambda^{k}$ is "diametrically regular" relative to δ [3, p. 145]; this would imply that

$$
\mathscr{K}=\left\{\left((y, s), B_{\delta}((y, s), \varepsilon)\right),(y, s) \in Y \times \mathbb{R}^{k}, \varepsilon>0\right\}
$$

is a $\phi \times \lambda^{k}$-Vitali relation using 2.8 .17 of [3]. For diametric regularity we need a $1<\tau<\infty \ni$ for each $(y, s) \exists C=C(y, s) \ni \eta((y, s),(1+2 \tau) \varepsilon)<C \eta((y, s), \varepsilon) \forall \varepsilon$ small. But,

$$
\varlimsup_{\varepsilon \downarrow 0} \frac{\eta((y, s), 5 \varepsilon)}{\eta((y, s), \varepsilon)}=\varlimsup_{\varepsilon \downarrow 0} \frac{\eta\left((y, s), 5 \varepsilon^{\left.\frac{1}{N-k}\right)}\right.}{\eta\left((y, s), \varepsilon^{1 / N-k}\right)}=\varlimsup_{\varepsilon \downarrow 0}\left[\frac{\xi\left(5^{N-k} \varepsilon\right)}{\xi(\varepsilon)}\right]^{N-k}<\infty .
$$

Theorem B. Suppose for some $0 \leqq k<N$:

$$
\begin{aligned}
& \mu \ll \phi \\
& \gamma(y, d s d t)=g(y, s, d t) \lambda^{k}(d s) \quad \text { (i.e. (13)), }
\end{aligned}
$$

and

$$
g(y, s,\{t\})=0 \quad \forall t \in T^{N-k}, \quad \phi \times \lambda^{k} \text {-a.e. }
$$

Then $\operatorname{ap} \lim _{s \rightarrow t} \frac{\xi(\rho(x(s), x(t)))}{\|s-t\|^{N-k}}=\infty \quad \lambda^{N}$-a.e.
Note. The case $k=0$ refers to $\mu \ll \phi$ and $\gamma(y, d t)$ continuous (i.e. $\gamma(y,\{t\})=0$ $\forall t \in T^{N}$ for ϕ-a.e. y). We will give the proof only for the case $0<k<N$. However, the proof for $k=0$ is essentially a special case, but to incorporate it would require defining λ^{0}, v_{0}, etc. and is not worth the effort. All that is needed is that

$$
\left\{\left(y, B_{\rho}(y, \varepsilon)\right), y \in Y, \varepsilon>0\right\}
$$

is a ϕ-Vitali relation, which follows immediately from (3) and [3, 2.8.17]. Besides, the case $k=0$ is merely a "higher dimensional" version of what we did in [4] for real functions of one real variable.
Proof. First, we can arrange to have $g(y, s,\{t\})=0 \forall y, s, t$ and we do.
Next, since \mathscr{K} is a $\phi \times \lambda^{k}$ Vitali relation, and since $\eta((y, s), h(\varepsilon))=2^{-k} \varepsilon^{-N}$, we know (according to [3, 2.9.8, p. 156]) that for any $f \in L^{1}\left(\phi \times \lambda^{h}\right)$:

$$
\begin{equation*}
f(y, s)=\lim _{\varepsilon \downarrow 0} 2^{-k} \varepsilon^{-N} \int_{B_{\delta}((y, s), h(\varepsilon))} f d \phi \times \lambda^{k} \tag{*}
\end{equation*}
$$

for $\phi \times \lambda^{k}$-a.e. (y, s).
Let \mathscr{H} be the collection of open rectangles in T^{N-k} with rational vertices, and for each $J \in \mathscr{H}$, set

$$
f_{J}(y, s)=g(y, s, J) \in L^{1}\left(\phi \times \lambda^{k}\right) .
$$

Choose Borel sets $E_{J}, J \in \mathscr{H}$, such that $\phi \times \lambda^{k}\left(E_{J}^{c}\right)=0$ and (*) and (17) holds $\forall(y, s) \in E_{J}$. Consequently, $E \equiv \bigcap_{J \in \mathscr{H}} E_{J} \in \mathscr{Y} \otimes \mathscr{B}^{k}(T), \phi \times \lambda^{k}\left(E^{c}\right)=0$, and hence by Lemma 1:

$$
\begin{aligned}
& v_{k}\left(E^{c}\right)=0, \quad \text { i.e. }\left(x(t), t_{1}, \ldots, t_{k}\right) \in E_{J} \forall J \in \mathscr{H} \quad \text { for } \quad \lambda^{N} \text {-a.e. } \\
& t=\left(t_{1}, \ldots, t_{N}\right) \in T^{N} \text {. } \\
& \text { Now fix such a } t \in T^{N} \text { and } Q \geqq 1 \text {. } \\
& \lambda^{N}\left\{s \in B_{N}(t, \varepsilon): \frac{\xi(\rho(x(s), x(t)))}{\|s-t\|^{N-k}} \leqq Q\right\} \\
& \leqq \int_{B_{N}(t, \varepsilon)} I_{\left[0, Q_{\varepsilon}{ }^{N-k]}\right.}\left(\xi(\rho(x(s), x(t))) \lambda^{N}(d s)\right. \\
& \leqq \int_{B_{\rho}\left(x(t), \xi-1\left(Q^{2} \varepsilon^{N-k}\right)\right)} \gamma\left(y, \prod_{1}^{N}\left[t_{i}-\varepsilon, t_{i}+\varepsilon\right]\right) \phi(d y) \\
& =\int_{B_{\rho}\left(x(t), \xi^{-1}\left(Q \varepsilon^{N-k}\right)\right)} \phi(d y)_{{\underset{k}{k}}^{\prod_{1}}\left[t_{i}-\varepsilon, t_{i}+\varepsilon\right]} g\left(y, s, \prod_{k+1}^{N}\left[t_{i}-\varepsilon, t_{i}+\varepsilon\right]\right) \lambda^{k}(d s) \\
& \leqq \int I_{B_{o}\left(x(t), t_{1}, \ldots, t_{k}, h\left(Q_{\varepsilon}\right)\right)} f_{y} d \phi \times \lambda^{k}
\end{aligned}
$$

for all small ε if $\left(t_{k+1}, \ldots, t_{N}\right) \in J \in \mathscr{H}$. It then follows from the remarks above that

$$
\begin{aligned}
& \overline{\lim }_{\varepsilon \downarrow 0} \varepsilon^{-N} \lambda^{N}\left\{s \in B_{N}(t, \varepsilon): \frac{\xi(\rho(x(s), x(t)))}{\|s-t\|^{N-k}} \leqq Q\right\} \\
& \quad \leqq 2^{-k} Q^{N} g\left(x(t),\left(t_{1}, \ldots, t_{k}\right), J\right)
\end{aligned}
$$

for any $J \in \mathscr{H}$ containing $\left(t_{k+1}, \ldots, t_{N}\right)$ Letting $J \downarrow\left(t_{k+1},,_{N}\right)$ completes the proof.
Lemma 3. Let $\mu_{t, k}(V ; A)=\int_{A} I_{V}(x(t, s)) \lambda^{N-k}(d s)$. Then (16) is equivalent to

$$
\mu_{t, k} \ll \phi \quad \text { for } \quad \lambda^{k} \text {-a.e. } \quad t \in T^{k}
$$

and

$$
\begin{equation*}
\alpha(y, t,\{s\})=0 \quad \forall s \in T^{N-k}, \quad \phi \times \lambda^{k} \text {-a.e. } \tag{17}
\end{equation*}
$$

where

$$
\mu_{t, k}(d y ; d s)=\alpha(y, t, d s) \phi(d y)
$$

Proof. By Lemma 1, if either g or α exists, then so does the other, in which case we find from

$$
\mu(V ; B \times A)=\int_{B} \mu_{t, k}(V ; A) \lambda^{k}(d t)
$$

that, for any $A \in \mathscr{B}^{N-k}(T), g(y, t, A)$ and $\alpha(y, t, A)$ have the same integrals against ϕ $\times \lambda^{k}$ over rectangles $V \times B$ in $\mathscr{Y} \otimes \mathscr{B}^{k}(T)$. Since $\alpha(y, t, \cdot)$ and $g(y, t, \cdot)$ are measures on $\mathscr{B}^{N-k}(T)$, which is separable, the results follows. Here, of course, we have assumed that g and α are kernels on $Y \times T^{k} \times \mathscr{B}^{N-k}(T)$.

Remark. In the proof of Lemma 4 and after that of Theorem A many of the arguments about the measurability of various derivatives will be left aside. As for Lemma 4, these can be readily found in [3] in the section on "Derivates". As
for the integrals later on involving $d P$, etc., more or less all that is needed (beyond what is in [3]) is to remark that the joint measurability of $\rho(y, z)$ in (y, z) implies that of $I_{B_{\rho}(v, \varepsilon)}(X(t, r, \omega))$ in $(t, r, \omega, y, \varepsilon)$.
Lemma 4. Let Ψ be a finite measure on \mathscr{G}. Then

$$
\Psi^{\prime}(y)=\lim _{\varepsilon \downarrow 0} \frac{\Psi\left(B_{\rho}(y, \varepsilon)\right)}{\phi\left(B_{\rho}(y, \varepsilon)\right)}
$$

exists finite or infinite Ψ-a.e. and $\Psi \ll \phi$ if and only if $\Psi^{\prime}<\infty \Psi$-a.e.
Proof. Set $L=\left\{y \in Y: \Psi^{\prime}(y)=\infty\right\}, F=\left\{y \in Y: \Psi^{\prime}(y)<\infty\right\}$. The assumptions in (3) in conjunction with $\left[3,2.9 .15\right.$, p. 160] imply that $\Psi\left(\cdot \cap L^{C}\right)$ is the ϕ-absolutely continuous component of Ψ. Hence

$$
\Psi=\Psi_{a}+\Psi_{s}, \quad \Psi_{a}(\cdot)=\Psi\left(\cdot \cap L^{c}\right), \quad \Psi_{s}(\cdot)=\Psi(\cdot \cap L)
$$

is the Lebesgue decomposition of Ψ with respect to ϕ. Moreover, $\phi\left(F^{c}\right)=0$ (see $\left[3,2.9 .5\right.$, p. 154]) implies $\Psi_{a}\left(F^{c}\right)=0$, and hence Ψ^{\prime} exists finite Ψ_{a}-a.e. and exists at $+\infty \Psi_{s}$-a.e. Finally, if $\Psi^{\prime}<\infty \Psi_{\text {-a.e., then }} \Psi_{s}$ lives on both L and L^{c}, and hence vanishes.

Proof of Theorem A. As with Theorem B, we are going to omit the case $k=0$, the proof there being obvious from - and easier than - the proof for $0<k<N$.

Defining $\mu(V ; D, \omega), \gamma(y, D, \omega), \mu_{t, k}(V, \omega)$, etc. all relative $X(\cdot, \omega)$, we can and do assume these are appropriately measurable in ω, i.e. $\gamma(\gamma, D, \omega)$ is a kernel on $Y \times \mathscr{B}^{N}(T) \times \Omega$, etc.

According to Lemma 4 , for each $t \in T^{k}, \omega \in \Omega$,

$$
\lim _{\varepsilon \downarrow 0} \frac{\mu_{t, k}\left(\mathrm{~B}_{\rho}(y, \varepsilon)\right)}{\xi(\varepsilon)} \text { exists (finite or infinite) }
$$

$\mu_{t, k^{-}}$-a.e. and $\mu_{t, k} \ll \phi$ if and only if the limit is finite $\mu_{t, k}$-a.e. In other words,

$$
\begin{equation*}
\lim _{\varepsilon\rfloor 0} \frac{1}{\xi(\varepsilon)} \int_{T^{N-k}} I_{[0, \varepsilon]}(\rho(X(t, r, \omega), X(t, s, \omega))) \lambda^{N-k}(d r) \tag{18}
\end{equation*}
$$

exists for λ^{N-k}-a.e. s, and $\mu_{t, k} \ll \phi$ if and only if (18) is finite λ^{N-k}-a.e. Using Fatou's lemma and Fubini's theorem,

$$
\begin{aligned}
& E \not \varliminf_{n \rightarrow \infty} \frac{1}{\xi\left(n^{-1}\right)} \int_{T^{N-k}} I_{\left[0, n^{-1}\right.}(\rho(X(t, r, \omega), X(t, s, \omega))) \lambda^{N-k}(d r) \\
& \quad \leqq \varliminf_{n \rightarrow \infty} \frac{1}{\xi\left(n^{-1}\right)} \int_{T^{N-k}} P\left\{\rho(X(t, r, \omega), X(t, s, \omega)) \leqq n^{-1}\right\} \lambda^{N-k}(d r) \\
& \quad \leqq \int_{T^{N-k}} \sup _{\varepsilon>0}\left[\frac{1}{\xi(\varepsilon)} P\{\rho(X(t, r, \omega), X(t, s, \omega)) \leqq \varepsilon\}\right] \lambda^{N-k}(d r)
\end{aligned}
$$

By (5), this is finite for λ^{N}-a.e. $(t, s) \in T^{k} \times T^{N-k}$, and hence for each $s \in \Gamma_{t} \in \mathscr{B}^{N-k}(T)$, $t \in \Delta \in \mathscr{B}^{k}(T)$, where $\lambda^{N-k}\left(\Gamma_{t}^{c}\right)=0 \forall t \in \Delta, \lambda^{k}\left(\Delta^{c}\right)=0$.

Now fix a $t \in \Delta$. For each $s \in \Gamma_{i}$ there is an ω null set off which (18) is finite, and consequently (using Fubini's theorem) $\mu_{t, k} \ll \phi$ with probability 1, say for
$\omega \in \Omega_{0}, P\left(\Omega_{0}\right)=1$. Moreover, since $\left\{\left(y, B_{\rho}(y, \varepsilon)\right), y \in Y, \varepsilon>0\right\}$ is a ϕ-Vitali relation, for any $A \in \mathscr{B}^{N-k}(T)$,

$$
\begin{equation*}
\alpha(y, t, A, \omega)=\lim _{n \rightarrow \infty} \frac{1}{\xi\left(n^{-1}\right)} \mu_{t, k}\left(B_{\rho}\left(y, n^{-1}\right) ; A, \omega\right) \quad \phi \text {-a.e. } \tag{19}
\end{equation*}
$$

for $\omega \in \Omega_{0}$. Since the $\mu_{t, k}$ measure of the exceptional y-set in (19) is zero for each $\omega \in \Omega_{0}$, we find that

$$
\begin{equation*}
\alpha(X(t, s, \omega), t, A, \omega)=\lim _{n \rightarrow \infty} \frac{1}{\xi\left(n^{-1}\right)} \mu_{t, k}\left(B_{\rho}\left(X(t, s, \omega), n^{-1}\right) ; A, \omega\right) \tag{20}
\end{equation*}
$$

for $\lambda^{N-k} \times P$-a.e. (s, ω). As a result, there are sets $\Gamma_{t} \in \mathscr{B}^{N-k}(T), \lambda^{N-k}\left(\bar{\Gamma}_{t}^{c}\right)=0$, such that for each $s \in \bar{\Gamma}_{t}$, (20) holds simultaneously for all open rectangles $A \subset T^{N-k}$ with rational vertices with probability 1.

For $t \in \Delta$ and $s \in \Gamma_{t} \cap \bar{\Gamma}_{t}$, choose a sequence A_{m} of such rectangles, $A_{m} \downarrow\{s\}$. Then

$$
\begin{aligned}
& E \alpha(X(t, s, \omega), t,\{s\}, \omega)=E \lim \alpha\left(X(t, s, \omega), t, A_{m}, \omega\right) \\
& =E \lim _{m} \lim _{n} \frac{1}{\xi\left(n^{-1}\right)} \int_{A_{m}} I_{\left[0, n^{-1}\right]}\left(\rho(X(t, s, \omega), X(t, r, \omega)) \lambda^{N-k}(d r)\right. \\
& \leqq \frac{\varliminf_{m}}{\lim } \int_{A_{m}} \frac{1}{\xi\left(n^{-1}\right)} P\left\{\rho(X(t, s, \omega), X(t, r, \omega)) \leqq n^{-1}\right\} \lambda^{N-k}(d r) \\
& \leqq \underline{\lim _{m}} \int_{A_{m}} \sup _{\varepsilon>0}\left[\frac{1}{\xi(\varepsilon)} P\{\rho(X(t, s, \omega), X(t, r, \omega) \leqq \varepsilon\}] \lambda^{N-k}(d r)\right. \\
& =0 .
\end{aligned}
$$

Finally, then, for each $t \in \Delta$,

$$
\alpha(X(t, s, \omega), t,\{s\}, \omega)=0 \quad \lambda^{N-k} \times P \text {-a.e. }
$$

from which it follows with probability 1 ,

$$
0=\int_{x^{N-k}} \alpha(X(t, s, \omega), t,\{s\}, \omega) \lambda^{N-k}(d s)=\int_{Y} \sum_{s \in T^{N-k}} \alpha^{2}(y, t,\{s\}, \omega) \phi(d y) .
$$

The second equality is achieved via (15) just as in [4, p. 321].
In summary: for λ^{k}-a.e. $t \in T^{k}, \mu_{t, k}(\cdot, \omega) \ll \phi$ and $\alpha(y, t,\{s\}, \omega)=0 \forall s \in T^{n-k} \phi$ a.e., both with probability 1 . Interchanging null sets one last time, we obtain (17) with probability 1. In view of Theorem B and Lemma 3 this concludes the proof.
Remark. Certainly (5) holds if

$$
\int_{T^{N}} \lambda^{N}(d t) \int_{T^{N-k}} \sup _{\varepsilon>0} \frac{1}{\xi(\varepsilon)} P\left\{\rho\left(X\left(t_{1}, \ldots, t_{k}, s\right), X(t)\right) \leqq \varepsilon\right\} \lambda^{N-k}(d s)<\infty .
$$

Now (5^{\prime}) implies that $g\left(y, t, T^{N-k}, \omega\right) \in L^{2}\left(\phi \times \lambda^{k}\right)$ with probability one, which in turn implies that for $Y=\mathbb{R}^{d}, \phi=\lambda^{d}$, etc. we can substitute a well-known result of Zygmund [8] for Lemma 2.

First, here is why (5^{\prime}) implies g is a.s. square-integrable. We know from the proof that the conditions of Lemma 3 are in force with probability one, and for
such ω :

$$
\begin{aligned}
& \int_{Y} \phi(d y) \int_{T^{k}} g^{2}\left(y, s, T^{N-k}, \omega\right) \lambda^{k}(d s) \\
& \quad=\int_{Y} \phi(d y) \int_{T^{k}} g\left(y, s, T^{N-k}, \omega\right) \gamma(y, d s d t, \omega) \quad(\text { by }(13)) \\
& \quad=\int_{T^{N}} g\left(X(t, \omega), t_{1}, \ldots, t_{k}, T^{N-k}, \omega\right) \lambda^{N}(d t) \quad(\mu(d y, d t)=\gamma(y, d t) \phi(d y)) \\
& \quad=\int_{T^{k}} \lambda^{k}(d t) \int_{T^{N-k}} \alpha\left(X(t, s, \omega), t, T^{N-k}, \omega\right) \lambda^{N-k}(d s) \\
& \quad=\int_{T^{k}} \lambda^{k}(d t) \int_{T^{N-k}}\left\{\lim _{n} \frac{1}{\xi\left(n^{-1}\right)} \int_{T^{N-k}} I_{\left[0, n^{-1}\right]}\left(\rho(X(t, s, \omega), X(t, r, \omega)) \lambda^{N-k}(d r)\right\}\right. \\
& \quad \cdot \lambda^{N-k}(d s),
\end{aligned}
$$

from (20) with $A=T^{N-k}$. It follows that

$$
\begin{aligned}
& E \int_{Y} \phi(d y) \int_{T^{k}} g^{2}\left(y, s, T^{N-k}, \omega\right) \lambda^{k}(d s) \\
& \quad \leqq \int_{T^{k}} \lambda^{k}(d t) \int_{T^{N-k}} \lambda^{N-k}(d s) \int_{T^{N-k}} \sup _{\varepsilon>0} \frac{1}{\xi(\varepsilon)} P\{\rho(X(t, s), X(t, r)) \leqq \varepsilon\} \lambda^{N-k}(d r)<\infty
\end{aligned}
$$

As for Lemma 2, Zygmund [8] showed that the theorem of Lebesgue that

$$
\lim _{\varepsilon \downarrow 0}(\alpha(m))^{-1} \varepsilon^{-m} \int_{B_{m}(t, \varepsilon)} f(s) \lambda^{m}(d s)=f(t) \lambda^{m} \text {-a.e. }
$$

for any $f \in L^{1}\left(\mathbb{R}^{m}\right)$ could be extended by replacing the (closed) balls $B_{m}(t, \varepsilon)$ by any family of rectangles in \mathbb{R}^{m} with sides parallel to the axes and contracting to t, provided $f \in L^{p}\left(\mathbb{R}^{m}\right)$ for some $1<p \leqq \infty$. Since the B_{δ} 's in Theorem B can be enclosed in such a family of rectangles in \mathbb{R}^{d+k}, the proof there works if $g \in L^{2}\left(\mathbb{R}^{d+k}\right)$ without Lemma 2.

§3

First, we will mention some general sufficient conditions for (5), then proceed to specific examples for the case $Y=\mathbb{R}^{d}$ and X Gaussian.

When Y is a normed linear space, $\rho(y, z)=\|y-z\|$, and when the distribution of $X(s)-X(t), s \neq t$, is absolutely continuous with respect to ϕ, say

$$
P(X(s)-X(t) \in d y)=\phi(y ; s, t) \phi(d y),
$$

then a sufficient condition for (5) is

$$
\int_{T^{N-k}} \sup _{y \in Y} \phi\left(y ;\left(t_{1}, \ldots, t_{k}, s\right), t\right) \lambda^{N-k}(d s)<\infty \quad \lambda^{N} \text {-a.e. }
$$

This can be readily applied in the Gaussian case with $Y=\mathbb{R}^{d}$. Let $X=$ $\left(X_{1}, \ldots, X_{d}\right)$ be Gaussian, $E X_{i}(t) \equiv 0$, and suppose that for each $s \neq t$ (or just $\lambda^{2 N}$-a.e. (s, t) will do), $\left\{X_{i}(t)-X_{i}(s)\right\}_{i=1}^{d}$ has a Lebesgue density $\phi(y ; s, t), y \in \mathbb{R}^{d}$, i.e. $|\Lambda(s, t)| \neq 0$ where $|\Lambda(s, t)|$ is the determinant of the covariance matrix $\Lambda(s, t)$ of
$\left\{X_{i}(t)-X_{i}(s)\right\}_{i=1}^{d}$. Then

$$
\sup _{y \in \mathbb{R}^{d}} \phi(y ; s, t)=(2 \pi)^{-d / 2}|\Delta(s, t)|^{-1 / 2}
$$

Consequently, a sufficient condition for (5) is

$$
\begin{equation*}
\int_{T^{N-k}}\left|\Lambda\left(\left(t_{1}, \ldots, t_{k}, s\right), t\right)\right|^{-1 / 2} \lambda^{N-k}(d s)<\infty \quad \lambda^{N}-\text { a.e. } \tag{21}
\end{equation*}
$$

In fact, (21) is also necessary for (5): since $\phi(y ; s, t)$ is continuous at $y=0$, for $s \neq t$,

$$
\begin{aligned}
& \sup _{\varepsilon>0} \varepsilon^{-d} P(\|X(s)-X(t)\| \leqq \varepsilon) \geqq \lim _{\varepsilon \downarrow 0} \varepsilon^{-d} \int_{B_{d}(0, \varepsilon)} \phi(y ; s, t) \lambda^{d}(d y) \\
& =\alpha(d) \phi(0 ; s, t)=\alpha(d)(2 \pi)^{-d / 2}|\Lambda(s, t)|^{-1 / 2}
\end{aligned}
$$

When the components X_{1}, \ldots, X_{d} are independent, $\sigma_{i}^{2}(s, t)=E\left(X_{i}(s)-X_{i}(t)\right)^{2}$, $i=1, \ldots, d$, then (21) reduces to

$$
\begin{equation*}
\int_{T^{N-k}}\left[\prod_{i=1}^{d} \sigma_{i}\left(\left(t_{1}, \ldots, t_{k}, s\right), t\right)\right]^{-1} \lambda^{N-k}(d s)<\infty \quad \lambda^{N} \text {-a.e. } \tag{22}
\end{equation*}
$$

Example 1. Suppose $N \geqq d$ and $\sigma_{i}(s, t) \geqq \Psi(\|s-t\|), i=1, \ldots, d$, where

$$
\int_{0}^{\sqrt{d}} \frac{d t}{\Psi(t)}<\infty \quad \text { and } \quad \sup _{0<r<\sqrt{d}} \frac{r}{\Psi(r)}=c<\infty .
$$

(If Ψ is monotone and $1 / \Psi$ is integrable, then $\frac{\Psi(r)}{r} \rightarrow \infty$ so $c<\infty$.)
Then with $k=N-d, r \in T^{k}, t \in T^{d}$:

$$
\begin{aligned}
\int_{T^{d}}\left[\prod_{i=1}^{d} \sigma_{i}((r, s),(r, t))\right]^{-1} \lambda^{d}(d s) & \leqq \int_{T^{d}}[\Psi(\|s-t\|)]^{-d} \lambda^{d}(d s) \\
& \leqq \text { const. } \int_{0}^{\sqrt{d}} \frac{r^{d-1} \lambda^{1}(d r)}{(\Psi(r))^{d}} \\
& \leqq \text { const. } c^{d-1} \int_{0}^{\sqrt{d}} \frac{d r}{\Psi(r)}<\infty .
\end{aligned}
$$

(Of course, when $d=1$, we need only assume $\int \frac{d t}{\Psi(t)}<\infty$.) Thus

$$
\begin{equation*}
\operatorname{ap} \lim _{s \rightarrow t} \frac{\|X(s)-X(t)\|}{\|s-t\|}=\infty \quad \lambda^{N} \text {-a.e., a.s. } \tag{23}
\end{equation*}
$$

Example 2. Here, $\sigma_{i}^{2}(s, t)=\|s-t\|^{\alpha}, 0<\alpha<2$, the components again being independent. Changing to polar coordinates in (22), it is easy to check that (22) holds if and only if $0 \leqq k<N-\frac{\alpha d}{2}$. (Naturally, we then want to choose the largest possible k.)

For example, for d-dimensional ("isotropic") Brownian motion, we have α $=1$ so that if $N>d / 2$, the largest integer smaller than $N-d / 2$ is $N-1-d / 2$ if d
is even and $N-d / 2-1 / 2$ if d is odd, which yields (8) with $r=1 / 2+1 / d$ for d even and $r=1 / 2+1 / 2 d$ for d odd.

Similarly, for index $\alpha=3 / 2$, we obtain (8) for $r=1-u / d$ where u is the greatest integer smaller than $d / 4$. (Here, of course, we must assume $N>\frac{3}{4} d$.)
Example 3 (" N-parameter Wiener process"). $X=\left(X_{1}, \ldots, X_{d}\right)$ has independent, identically distributed components,

$$
E X_{i}(t) \equiv 0, \quad E X_{i}(t) X_{i}(s)=\prod_{i=1}^{N}\left(t_{i} \wedge s_{i}\right), \quad t=\left(t_{1}, \ldots, t_{N}\right), \quad s=\left(s_{1}, \ldots, s_{N}\right)
$$

The incremental variance is

$$
\sigma_{i}^{2}(s, t)=\prod_{1}^{N} t_{i}+\prod_{1}^{N} s_{i}-2 \prod_{1}^{N}\left(t_{i} \wedge s_{i}\right)
$$

and (22) holds if and only if

$$
\int_{T^{N-k}}\left[\prod_{1}^{N-k} s_{i}+\prod_{k+1}^{N} t_{i}-2 \prod_{1}^{N-k}\left(s_{i} \wedge t_{i+k}\right)\right]^{-d / 2} \lambda^{N-k}(d s)<\infty
$$

(provided $\prod_{1}^{k} t_{i} \neq 0$). Thus we wish to determine those values of $m \geqq 1$ and $\beta>0$ for which

$$
\begin{equation*}
\int_{T^{m}}\left[\prod_{1}^{m} s_{i}+\prod_{1}^{m} r_{i}-2 \prod_{1}^{m}\left(r_{i} \wedge s_{i}\right)\right]^{-\beta} \lambda^{m}(d s)<\infty, \quad \lambda^{m} \text {-a.e. } \tag{25}
\end{equation*}
$$

Now the integral in (25) splits into 2^{m} pieces, and by symmetry a "typical" term is

$$
\begin{equation*}
\int_{0}^{r_{1}} \cdots \int_{0}^{r_{j}} \int_{r_{j+1}}^{1} \cdots \int_{r_{m}}^{1}\left[\prod_{1}^{m} r_{i}+\prod_{1}^{m} s_{i}-2 \prod_{1}^{j} s_{i} \prod_{j+1}^{m} r_{i}\right]^{-\beta} d s_{1} \ldots d s_{m} \tag{26}
\end{equation*}
$$

$0 \leqq j \leqq m$. Since the only singularity of the integral in (25) occurs when $s=r$, the integral in (26) will converge if and only if

$$
\begin{equation*}
\int_{0}^{r_{1}} \cdots \int_{0}^{r_{j}} \int_{r_{j+1}}^{2 r_{j+1}} \cdots \int_{r_{m}}^{2 r_{m}}\left[\prod_{1}^{m} r_{i}+\prod_{1}^{m} s_{i}-2 \prod_{1}^{j} s_{i} \prod_{j+1}^{m} r_{i}\right]^{-\beta} d s_{1} \ldots d s_{m} \tag{27}
\end{equation*}
$$

converges. When $j=m$, a change of variables transforms (27) into

$$
\begin{equation*}
\left(\prod_{1}^{m} r_{i}\right)^{1-\beta} \int_{T^{m}}\left[1-\prod_{1}^{m} s_{i}\right]^{-\beta} \lambda^{m}(d s) \tag{28}
\end{equation*}
$$

In fact, for any $0 \leqq j \leqq m$, (27) will converge λ^{m}-a.e. if and only if the integral in (28) converges. For $0 \leqq j<m$, make the change of variables $u_{k}=s_{k}, k=1, \ldots, j$, $u_{j+k}=2 r_{j+k}-s_{j+k}, k=1, \ldots, m-j$, so (26) becomes

$$
\begin{align*}
& \int_{0}^{r_{1}} \cdots \int_{0}^{r_{m}}\left(\prod_{1}^{m} r_{i}-\prod_{1}^{m} u_{i}+g\left(r_{1}, \ldots, r_{m}, u_{1}, \ldots, u_{m}\right)\right)^{-\beta} d u_{1} \ldots d u_{m} \tag{29}\\
& g=\prod_{1}^{m} u_{i}+\prod_{1}^{j} u_{i} \prod_{j+1}^{m}\left(2 r_{i}-u_{i}\right)-2 \prod_{1}^{j} u_{i} \prod_{j+1}^{m} r_{i}
\end{align*}
$$

But $g \geqq 0$ for $0 \leqq u_{i} \leqq r_{i}, i=1, \ldots, m$, and hence the integral in (28) dominates the integral in (29), which shows that (25) holds if and only if the integral in (28), call it $Q(m, \beta)$, is finite.

Finally, notice that $Q(m, \beta) \leqq Q(m-1, \beta), m \geqq 2$, and an easy computation shows that $Q(m, \beta)<\infty$ if and only if $Q(m+1, \beta+1)<\infty$. Let [a] be the greatest integer less than or equal to a. We are interested in the case $m=N-k, \beta=d / 2$. For $0 \leqq k<N-\frac{d}{2}$,

$$
\begin{aligned}
Q\left(1, \frac{1}{2}\right)<\infty \Rightarrow Q\left(2, \frac{3}{2}\right)<\infty \Rightarrow \cdots & \Rightarrow Q\left(\left[\frac{d}{2}\right]+1,\left[\frac{d}{2}\right]+\frac{1}{2}\right)<\infty \\
& \Rightarrow Q\left(N-k,\left[\frac{d}{2}\right]+\frac{1}{2}\right)<\infty \\
& \Rightarrow Q\left(N-k, \frac{d}{2}\right)<\infty
\end{aligned}
$$

since $\frac{d}{2} \leqq \frac{1}{2}+\left[\frac{d}{2}\right]$. For $k \geqq N-\frac{d}{2}$,

$$
\begin{aligned}
Q(1,1)=\infty \Rightarrow Q(2,2)=\infty \Rightarrow \cdots & \Rightarrow Q\left(\left[\frac{d}{2}\right],\left[\frac{d}{2}\right]\right)=\infty \\
& \Rightarrow Q\left(N-k,\left[\frac{d}{2}\right]\right)=\infty \\
& \Rightarrow Q\left(N-k, \frac{d}{2}\right)=\infty
\end{aligned}
$$

Hence, the conclusions here concerning (8) are the same as for the d-dimensional isotropic Brownian motion.

References

1. Berman, S.: Gaussian processes with stationary increments: local times and sample function properties. Ann. Math. Statist. 41, 1260-1272 (1970)
2. Dvoretzky, A., Erdös, P.: Some problems on random walk in space. Proc. 2nd, Berkeley Sympos. Math. Statist. Probab. Univ. Calif. 1951, 353-367
3. Federer, H.: Geometric Measure Theory. Berlin-Heidelberg-New York: Springer 1969
4. Geman, D.: A note on the continuity of local times. Proc. Amer. Math. Soc. 57, 321-326 (1976)
5. Geman, D., Horowitz, J.: Local times and supermartingales. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 29, 273-293 (1974)
6. Kôno, N.: Sur la minoration asymptotique et la caractère transitoire des trajectoires des functions alétoires gaussiennes à valeurs dans \mathbb{R}^{d}. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 33, 95-112 (1975)
7. Saks, S.: Theory of the Integral. New York: Dover 1964
8. Zygmund, A.: On the differentiability of multiple integrals. Fund. Math. 23, 143-149 (1934)

[^0]: * This work was partially supported by National Science Foundation grant MPS72-04813 A03

