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1. Introduction 

Let qb denote a characteristic function (c.f.). If ~b is such that for every positive 
~<1 

- o o < t < o o  (1) 

where ~b~ denotes a c.f., then it is called a self-decomposable c.f. and the 
corresponding distribution is called a self-decomposable distribution. It is well 
known that every self-decomposable distribution and the distribution cor- 
responding to ~b~ in the representation (1) for every self-decomposable c.f. ~b are 
infinitely divisible (i.d.) (c.f. Lukacs [4] p. 162). 

In the present paper we establish that for every gamma random variable 
(r.v.) Z, the distribution of logZ is self-decomposable. In particular, if Z is 
exponential we obtain that logZ has a self-decomposable distribution with c.f. ~b 
satisfying (1) where ~b~ denotes the c.f. of -c~log Y~ with Y~ as a stable r.v. having 
left extremity zero and characteristic exponent c~. Thus, if Z is exponential then 
we have for 0 < c~ < 1 

(2) 

where Y~ is as defined above and is independent of Z. Using (2), the absolute 
moments of Y~ and those of any symmetric stable r.v. are given and an extension 
of Goldie's [3] result that every scale mixture of exponential distribution is i.d. 
is obtained. In addition, an alternative proof, without involving probability 
density functions is given for Cressie's [1] result that 

e 1 
'z  asc --,0, 

where X~ and Z respectively denote a strict stable random variable with 
characteristic exponent c~ and other parameters independent of c~ and an 
exponential random variable. 
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From our results several interesting facts are revealed. Among these are self- 
decomposability of the distributions of log It[ and logF and infinite divisibility 
of the distributions of all powers __>2 of t and any symmetric stable random 
variable where t and F denote Student's t and Snedecor's F respectively. 

2. The Main Theorems 

In the present section we shall establish three theorems. In these theorems and 
elsewhere in what follows by an extreme stable random variable we mean a 
positive stable random variable with Laplace transform e x p ( - t  ~) and by 
gamma and exponential random variables we mean the corresponding random 
variables with unit scale parameters. Theorem 1 given below establishes the 
relation (2) mentioned in the introduction. Equivalently it proves that the 
distribution of the logarithm of an exponential r.v. is self-decomposable with the 
distribution corresponding to c.f. ~b~ of (1) as that of -c~ log Y~ where ~ is an 
extreme stable r.v. with characteristic exponent c~. Theorem 2 establishes that the 
distribution of the logarithm of a gamma variable is self-decomposable and 
Theorem 3 derives explicitly the absolute moments of symmetric stable r.v.'s in 
addition to showing that the logarithm of the modulus of such a r.v. is i.d. 

Theorem 1. Let Y~ be an extreme stable r.v. with characteristic exponent ~ and let 
Z be an exponential r.v. independent of Y~. Then (Z/Y~) ~ is distributed as Z. That is 
(2) holds. 

Proof. For u > 0 

Z ~ 
P ( (-f~ ) >=u) = P(Z>= Y~ ul/~) 

e-yU'/~dp(y <y) 
0 

=e u=P(Z>=u). 
d 

Hence we have (Z/Y~)~=Z. 

Corollary 1. I f  Y~ is an extreme stable r.v. with characteristic exponent ct then 

E(Y~-r)= F ( r + l )  for r>-c~,  

or equivalently 

F(1 - r/c~) 
E(Yf)= F ( 1 - r )  for r<c~. 

Theorem 2. I f  Z has a gamma distribution with index parameter r then log Z has a 
self-decomposable distribution. 
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Proof. Let 0<c~<1 and let r be the c.f. of logZ. Then 

, ,  F(r+it)  
e U ) = ) , - o o < t < o o .  

The c.f. ~ is stir-decomposable if the function s given by s  is a c.f. 
We have yat~u 

f ( r  + i t) 
s  - o o < t < o o .  

Using the definition of gamma function (see e.g. [8]) we get 

(r+iat) ei't(a- fie~ [((l  +(r+iat)/n) 1 e it(1-a)/n] L ( t ) -  
(r+it) 1)~= 1 [ \ ( l+( r+i t ) /n )  / 

( l+-~/r))  e-i't(1 -~) lim I~ [ (1 
k . . . .  , +it/ g+nt. 

(In the above expressions 7 is the Euler's Constant.) Note that, since 0 < ~ < 1, for 
p > 0 the function fl given by 

1 - ~  
r/(t) =~-~ l + i t / p '  - oo < t <  c~ 

is a mixture c.f. of a conjugate exponential distribution and a degenerate 
distribution. Hence it follows that f~ is the limit of a sequence of characteristic 
functions. Since f~ is continuous at zero it must be a c.f. Theorem 2 is thus proved. 

Corollary 2. I f  X has a normal distribution with mean zero then log fXI has a self- 
decomposable distribution. Also log I t[ and log F have self-decomposable distri- 
butions when t and F have respectively Student's t and Snedecor's F distributions, 

Corollary 3. The distribution functions G 1 and G2 given by 

G l ( X ) = l - e x p { - e x p x } ,  - o o < x < o o  

and 

G2(x) =exp { - e x p ( -  x)}, - oo < x <  oo 

are self-decomposable. 

Theorem 3. I f  X~ is a symmetric stable r.v. with characteristic exponent c~ < 2 and 
scale 1 then log IX~l is i.d. and 

E IX=I a = 2a F((1 + 3)/2) F(1 - a/c 0 
v 0 / 2 )  r ( 1  - a/2)  

for - l < a < c <  

Proof. Let V,/2 be an extreme stable r.v. with characteristic exponent (c~/2) and 
let U be a standard normal r.v. independent of V~/2. Then it easily follows that 

d 
X~ = 2 */2 U V~}/2 z, (3) 
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and hence 

log IX~l a=�89 log 2 +log IUI +�89 V~/2. 

Since loglU[ (c.f. Corollary2) and logV~/2 are i.d. (this latter result follows 
because of Theorem 1 and the fact that in (1) q~(t) is an i.d.c.f.) it follows that 
log IX~l is also i.d. Next, we have from (3), for - 1  <~ < e  

E IX~ 16 -- 2 ~/2 E(IUI ~) E (V~/~ 2 ) 

~_ 26/2 E((U2) 6/2) E(V~/22). 

Recalling that (U2)/2 is gamma with index parameter (1/2), we then have the 
result from Corollary 1. 

Using Mellin-Stieltjes Transforms Zolotarev has derived some of these results 
(see e.g. [9]). 

3. An Alternative Proof  of  a Result of  Cressie and D u M o u c h e l  

We shall now state the following due to Cressie [1]. 

Theorem 4. I f  Y~ is a strict stable r.v. with characteristic exponent ~ < 1 and scale 1 
then ] Y~I ~ converges in distribution to l /Z ,  as ~ -+ 0, where Z is exponential. 

This Theorem seems to have been originally proved by DuMouchel  [2] but 
certain steps in his proof were not justified. A rigorous proof of the Theorem has 
been given recently by Cressie [1] assuming implicitly a corollary of Scheff6's 
theorem that if the probability density function s of I Y~nl ~" converges to that of 
1/Z then I Y~,l ~" converges in distribution to 1/Z. In what follows we prove 
Cressie's theorem as a simple application of our Theorem 1. 

Proof  of  Theorem 4. We shall first prove the result for extreme stable r.v.'s. From 
Theorem 1 we have 

(y~/Z) ~ L 1/z.  (4) 

Allowing e ~ 0  we see that Iz2 - d > 1 
Z 

Now suppose that Y~ is strictly stable. Then 

Y~ a=_ cl/~ Y1 ~ - (1 - c) 1/~ Yz~ (5) 

where 0_<c_<l and Y~ and Y2~ are independent and are cos times 

extreme stable r.v.'s with exponent c~. If c = 0  or 1 in (5) then using (4) we 
get the result. Suppose 0 < c < l .  Define U ~ = m i n { c Y ~ ,  (1 -c )Y~}  and V~ 
= max {c u  ( 1 -  c)Y~}. Then UJV~ converges in distribution to a r.v. Y where 
Y< 1 a.s. Now write 

I Y=I ~ L Ic ~/~ YI~ - ( 1  - c) 1/~ Y2=I = 

= v~ 1 - \ W  I " 
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It is easy to show that in the last term V~ converges in distribution to 

max ' Z-2- where Z~ and Z 2 are independent exponential r.v.'s and that 

(UjV~) 1/~ converges in probability to zero and hence that 

]1-(U~/V~)~/~[~ 1 in probability. 

{ ~  1z2c } Thus IY.I ~ d C > max , which is distributed as 1/Z. 

Remarks. The limit distribution obtained in Theorem4 is i.d. (c.f. Steutel [6] 
p. 131). Theorem 4 implies Cressie's (2.10). 

4. An Extension of Goldie's Result 

It has been established by Goldie [-3] that if Z is an exponentially distributed 
r.v. and if W is a non-negative r.v. independent of Z then W Z  has an i.d. 
distribution. It is evident from Theorem2.3.1 [7] that if Z r has a gamma 
distribution with index parameter 0 < r < 1 and W is any r.v. (not necessarily non- 
negative) independent of Zr, then WZ,  has an infinitely divisible distribution. 
(Note that for r <  1, Zr d__ VrZ1 where V r is a r.v. independent of Z1 and having a 
beta distribution.) From Theorem 2 it follows that for every p >  1 there exists a 
positive random variable Yp independent of Z r such that 

Z r d 
- -  P 

- - Z  r . 

Considering a r.v. W independent of Z r and Yp, we have 

Z r d 
w - - =  wz , 

gp 
which implies because of the above observation that W. Z, p has an infinitely 
divisible distribution. Hence we have the following. 

Theorem 5. I f  Z~ is a r.v. distributed according to a gamma distribution with index 
parameter 0 < r < l  and W is a r.v. independent of Z~, then for every p>__ 1 the r.v. 
W.  Z~ has an i.d. distribution. 

It may be noted that the distribution of Z~ is not i.d. if 0 <p  < 1. This follows 
because of Ruegg's [5] result. Consequently, we have that Theorem 5 does not 
remain valid if we allow p to have any value in (0, 1). 

From Theorem 5 we get the following two results. 

Corollary4. Let p > 2  and let X~ and t respectively have a symmetric stable 
distribution and Student's t distribution. I f  W 1 and W 2 are any r.v.'s independent 
respectively of X~ and t then WI lX~I p and W21tl p are i.d. 

Corollary 5. Every scale mixture of the distribution F given by 

F ( x ) = l - e x p ( - 2 x ~ ) ,  x > 0 ,  0<~_-<1, 2 > 0  

is i.d. 
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I t  is obvious  tha t  W 1 [S  2 ] p has an i.d. d i s t r ibu t ion  if p >_-2 and  hence it follows 
tha t  W2lt l  p has an i.d. d i s t r ibu t ion  if p > 2 .  Because of  (3) it further  follows tha t  
WllS=l p has an i.d. d i s t r ibu t ion  if 0 < c ~ < 2  and p > 2 .  This establ ishes 
Coro l l a ry  4, while the  Coro l l a ry  5 is obvious.  I t  m a y  be no ted  tha t  Coro l l a ry  4 
does not  r ema in  val id  if we a l low p to have any value in (0, 2). This  is because  
the result  of Ruegg [5] gives tha t  for every 0 < p  < 2 the r.v. IX21 p canno t  have an 
i.d. d i s t r ibu t ion  and  since there exists a sequence of  t d i s t r ibu t ions  converging  
weakly  to a s t anda rd  n o r m a l  d i s t r ibu t ion  it follows tha t  given a posi t ive  p < 2 we 
should  have some t var iab le  such tha t  Itl p is no t  i.d. Because any symmet r i c  r.v. 
V has  the represen ta t ion  v~-IVIU where U is a symmet r ic  Bernoul l i  r.v. 
i ndependen t  of IVl, C o r o l l a r y 4  remains  val id  if IX~l, Itl and  p are  rep laced  
respect ively by  X~, t and  integer  n > 2. As an immedia t e  consequence  of this we 
have tha t  the d i s t r ibu t ions  of  t 2, t 3, . . . ,  and X 2, X~ . . . .  are i.d. 
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