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1. Introduction and Summary 

A random variable (rv)X(or its distribution) is said to be self-decomposable 
(self-dec), if for every c~ ~ (0, 1) there is a rv X~ such that 

X ~ X + X ~ ,  (1.1) 

where X and X~ are independent (Kmeans "equal in distribution"). In the 
special case that X~a=(1-:d)~/~X for some ?>0,  the r v X  is called stable (with 
exponent ?). Self-dec rv's derive their importance from the fact that they are 
the solutions to a central limit problem: the set of self-dec laws coincides with 
the set of limit laws of normalized partial sums of independent (in case of 
stability, also identically distributed) rv's. It is clear from (1.1) that a nonde- 
generate discrete distribution cannot be self-dec. In fact, the nondegenerate 
self-dec distributions are known to be absolutely continuous (cf. Fisz and 
Varadarajan (1963)). For details we refer to Lo6ve (1977). 

As an analogue (in distribution) of eX, i.e., of multiplication of a rv X by a 
constant c~(0, 1), in Steutel and Van Harn (1979) an operation c~QX is 
introduced for No-valued rv's, in such a way that e Q X  is again No-valued 
(No={0, 1,2, ...}). This "multiplication" is then used to define analogues for 
N0-valued rv's of the concepts of self-decomposability and stability. 

In the present paper a more general operation 7(3X is introduced by 
defining operators T~ on PGF, the set of nonconstant probability generating 
functions (pgf's), as follows: 

P~ox = T~Px, (1.2) 

where Pz denotes the p g f  of Z. It turns out (Sect. 2) that the only operators 
that can reasonably serve as analogues of multiplication as above are oper- 
ators of the form 

T~P = P o F_log~, (1.3) 
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where o denotes composition of functions and where F=(F,)t> o is a com- 
position semigroup of pgf's such as occur in continuous-time branching pro- 
cesses. Basic facts about such semigroups are collected in Sect. 3, where also 
some examples are given, one of which yields the special case considered by 
Steutel and Van Harn (1979). 

In Sect. 4 the concepts of F-self-decomposability and F-stability are dis- 
cussed. A pgf P is called F-self-dec if for every ~e(0, 1) there is a pgf P~ 
such that 

P=(T~P)P~, 

or, equivalently, if for every t > 0 there is a PgfPt such that 

P =(P o Ft)Pt; 

F-stability is defined correspondingly. 
Sect. 5 treats a natural injection of the classical self-dec distributions on 

[0, oo) into the F-self-dec distributions on No, which turns out to be a 
bijection when restricted to the classical stable and F-stable distributions. 

In Sects. 6 and 7 canonical representations are derived for F-self-dec and 
F-stable pgf's generalizing the representations in Steutel and Van Harn (1979), 
which in turn are close analogues to those in the classical case. Section 6 also 
indicates a correspondence between F-self-dec distributions and the invariant 
distributions of branching processes governed by F with immigration, estab- 
lished by Steutel, Vervaat and Wolfe (1980). 

In Sect. 8 a central limit problem is considered for sums of independent 
rv's normalized by means of the "multiplication" introduced in Sect. 2. In the 
case of identically distributed summands the F-stable distributions appear as 
limits, but in the general case only a subset of the F-self-dec distributions is 
obtained, viz. the range of the injection of Sect. 5. 

2. Algebraic Considerations 

Classical limit results for partial sums S, of independent realvalued rv's 
X1,X2,... are mostly in terms of "normalizations" (S,-b,)/a, with an>O. 
These normalizations also occur in the characterizations of several important 
classes of limit distributions, such as the self-dec and the stable distributions. 
Here we shall restrict our attention to limit distributions that occur for 
nonnegative X, without translation term: b ,=0.  In other words, we only 
consider nonnegative rv's X with normalizations T~(0< ~__< 1) given by 

T=X =~X 

(since a, ~ oe in most limit theorems, the restriction to ~ ~< 1 is harmless). By 
abuse of notation we let the transformations T~ also operate on the distribu- 
tion # of X. Let N denote the set of probability measures on [0, oe), not 
concentrated at zero, and fi the Laplace Stieltjes (LS) transform of # ~ ~', i.e., 

fi(~)=Ee-~X= ~ e-~l~(dx ) (r=0). 
[Gee) 
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Then the LS transform of T~# is given by 

and (T~)o<~=< 1 has the following properties: 

T~ maps C a into ca, 

T~Tp=T~p (so (T~)o<~_< z is a semigroup). 

L ( ~ ,  v) =(T~,),  (~v) (~, v ~ ca), 

L(P~ + (1 -p)v) =pT~ + (1 -p)7"~ 
T~ is continuous, 

(z>0), 

( 0 ~ p ~ l ; / , ,  v ~ ca), 

(2.1) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 

when ca is endowed with the topology of weak convergence, i.e., convergence 
in distribution of the corresponding rv's. 

In considering analogues of the concepts of self-decomposability and stabi- 
lity for distributions on No, Van H a m  (1978), w 3.3 and Steutel and Van Harn 
(1979) were interested in (T~)o<~< 1 satisfying (2.2b through e) that map proba- 
bility measure on N o on probability measures on N o . Clearly, the restriction 
of (2.1) to these measures does not have this property. One example of a (T~) 
having the desired property, was studied in the above publications. Here we 
will characterize all such (T~). 

For distributions on N o the most convenient transform is the probability 
generating function. The p g f  of a distribution (P,)n~No will mostly be denoted 
by the corresponding capital, i.e., 

e(z)= ~ p,z" (IzJ < 1). 
n=O 

In case P, = 1 we use the notation I, so I (z)=z for [z[ < 1. The collection of all 
pgf ' s  P with P ( 0 ) < I  will be denoted by PGF, and we define PGF+ 
= {P ~ P G F :  P(O) >0}. 

We now reformulate (2.2) in the present variant, and led T~ operate on 
PGF rather than on ca: 

T~ maps PGF into PGF, (2.3a) 

T, Tp = T~p (so (T~) o < ~=< i is a semigroup), (2.3 b) 

T~(PQ) = (T~P)(T=Q) (P, Q e PGF), (2.3 c) 

T~(pP + ( 1 - p ) Q ) = p T ,  P+(1-p)T~Q ( 0 < p <  1; P,Q~PGF), (2.3 d) 

T~ is continuous, (2.3e) 

when PGF is endowed with the topology of pointwise convergence. 

Theorem 2.1. Collections of operators (r~)o<~__< 1 satisfying (2.3) correspond one- 
to-one to collections (Ft)t> o ~ PGF that are composition semigroups: 

F,o F, =Fs+ , (s, t>0). (2.4) 

The correspondence is given by 

T , P = P o F  log ~ (0<c~< 1; P~PGF). (2.5) 
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Proof First we consider T =  T, (one fixed c~) satisfying (2.3 a, c, d, e). Set F = T(I), 
then by (2.3a) F e P G F ,  and by (2.3c) 

T(P) = P o F, (2.6) 

for P--I" ,  n e N  o. By (2.3d) it follows that (2.6) holds for each polynomial 
P ~ PGF, and hence, by (2.3 e), for all P ~ PGF. 

Now let (T~)o<~=< 1 satisfy (2.3). Set 

T~(I) = F_log e (0<~_<_1), (2.7) 

then, as has been proved above, FtsPGF (t>_O) and (2.5) holds. By (2.3b) it 
follows that for s, t > 0 

F~ o F t = Texp(_~)(I) o F t = Texp(_0 (T~• 

- ~  T e x p ( _ s _ O ( I ) - - ~ F s +  t �9 

The converse correspondence is easily verified. []  

Thus, analogues of ordinary multiplication (i.e., of (2.1)) for No-valued rv's 
are characterized by composition semigroups of pgf 's .  Such semigroups, how- 
ever, need not be very well-behaved. One could therefore impose (one of) the 
following additional regularity conditions, all of which, like (2.3), are very 
natural for analogues of scalar multiplication: 

lira T~P = P (P ~ PG F), (2.8) 
aT1 

lim T~P = 1 (P ~ PGF), (2.9) 
a*O 

(T~P)' (1)=aP'(1) ( P ~ P G F ;  0<c~__<l), (2.10) 

or in terms of the corresponding semigroup (F3t>_o (cf. (2.5))" 

lim Ft = I, (2.8') 
t$o 

lim F t - 1, (2.9') 
t~OO 

F[(1)=e -t (t>O). (2.10') 

As necessarily Fo=I  , a semigroup (Ft)t>o~PGF satisfying (2.8') is continuous 
at t=0 ,  and hence at all t>0 .  Such continuous semigroups are familiar to 
probabilists; they occur in branching processes. In the next section we sum- 
marize some properties of branching processes needed for studying the con- 
cepts of self-decomposability and stability for No-valued rv's. In Remark 3.1 
we return to conditions (2.9') and (2.10'). 

3. Continuous Semigroups and Markov Branching Processes 

Let (Ft)t>o~PGF be a continuous (composition) semigroup. As Ft~PGF , we 
have Ft~ 1 (t_>0), but henceforth we also exclude the trivial case Ft=l(t>O). It 
can be shown that the continuity requirement (2.8') implies that Ft(z ) is a 
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differentiable function of t >O with @'(z)=~zFt(z) ) 

where 

~F~(z) = U(F~(z))= U(z)El(z) (Izl ~ 1; t~0), (3.1) 

U(z)=~F~(z)[t=o=lim(F~(z)-z)/t (Izl <1) 
t,L0 

(3.2) 

is called the (infinitesimal) generator of (Ft)te 0. Furthermore, there exist an 
a > 0  and a pgfH(z)=~h,z" with h i = 0  and satisfying the non-explosion con- 
dition: 

IH(x)-x1-1 dx= oo (e >0), (3.3) 
(1 --~, 1) 

such that 
U(z)=a{H(z)-z} (IzI <1). (3.4) 

(Note that (3.3) is satisfied, for instance, if H'(1)< oo.) Conversely, if a > 0  and a 
pgf H, with h i = 0  and satisfying (3.3), are given, then there exists a unique 
continuous semigroup (Ft)t>=ocPGF satisfying (3.1) with U given by (3.4). All 
these results follow by combining Chapter V of Harris (1963) with Lamperti 
(1967a) or Silverstein (1968). They are also proved in Vervaat (1980). 

Now define the matrix (pij(t))i,jsNo for t>_0 by 

pij(t)zJ={Ft(z)} i (i~N0; t > 0 ;  ]zl < 1). 
j =0  

Then it is easily shown that (pij(t)) is a standard transition matrix, and hence a 
continuous-time Markov branching process (Zt)t>=o exists such that 

Ft(z)= ~ Pr[Zt=J[Zo=l]z j (t_>0; ]z]__<l). 
j =0  

The process (Z~)~ o allows the following "infinitesimal description" in terms of 
the quantities a and H (cf. Harris (1963) and Athreya and Ney (1972)): each 
individual in the process has probability aAt+o(At) of dying in an interval of 
(small) length At; if it dies, it is replaced by n individuals with probability h,. 

Next, consider a continuous s emigroup (Ft)t> - o with generator U(z)= a {H(z) 
-z} .  We give a few results needed later, which can be found in the books 
mentioned above. 

First we note that H'(1)< oo iff m=F~(1)< o% in which case 

m=exp  [a {H'(1)-  1}], F't(1 ) =m r (t>_O). (3.5) 

The extinction probability q=  Pr [lira Z t = 0 [ Z  o = 1] = lira F~(0) equals the smal- 

lest root in [0, 1] of the equation H(z)=z. It satisfies 

F~(q)=q (t>0), limF~(z)=q ([zl<l), (3.6) 
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and 
m < l  ~ q = l ,  m > l  ~ q < l .  (3.7) 

Remark 3.1. From (3.6) and (3.7) it follows that the regularity condition (2.9') is 
satisfied iff m=< 1. If m < !, then it is no restriction to take re=e-l, so - l o g  m 
=1 (this can be achieved by a change of time scale, i.e., by considering (fft)~>__o 
with/~=F~/(_log,,)), in which case condition (2.10') is also satisfied. 

We shall mainly be concerned with semigroups (Ft)t>__ o with m__<l. In this 
case q = 1 and 

U(z)>O (o____z < 1), (3.8) 

so that the first part of (3.1) can be rewritten as 

U(x)-ldx=t ( t>0;  0 < z < l ) .  (3.9) 
(z, Ft(z)) 

It follows that the function A, defined by 

A ( z ) = e x p [ -  ~ V(x)-ldx] ( 0 < z < l ) ,  
(0,z) 

which is decreasing from 1 to 0 (cf. (3.3)), has the following property: 

If m < 1, then 

A(Ftt(z))=e-tA(z ) ( t>0;  0 < z <  1). 

(3.10) 

(3.11) 

B(z) = lim F~(z) - Ftt (0) ( 0 < z < l )  (3.12) 
t - ~  1 - F d 0 )  

exists, and convergence is uniform on [0, 1]. B is a pgf with B(0)=0 and is 
related to A by 

B(z)=l-A(z)  -'~ (0NzN1). (3.13) 

From (3.12) it follows that 

1-F,(z)~(1-B(z)){1-F~(0)} ( t - ,  oo; uniformly on [0, 1]), (3.14) 

where by the semigroup property 

1 - F~+t(0) ~ mS { 1 - Ft(0)} ( t ~  oo; s>__0). (3.15) 

This means that the function V, defined by 

V(x) = 1 - F~ogx (0) (x > 1), (3.16) 

varies regularly at ~ with exponent logm, i.e., V(x )=x l~  for some 
slowly varying L. If ~' h,n log n < 0% then even 

V(x),,,x l~ (x ~ oo). (3.17) 

Finally we prove a property of the function A (and hence of the pgfB) that we 
need in Sect. 5. 
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Lemma 3.2. Let m < 1. 
(i) For all r > 0 : A ( 1  -zx)~vl / ( - l~  (x+O). 

(ii) I f  p(x)+O, q(x)J,O, p(x)~q(x) (x$O), thenA(1-p(x))~A(1-q(x))  (x$O). 

Proof From (3.11) with z = 0  it is seen that the function V, defined by (3.16), 
satisfies 

V(x) = 1 - A -  (l/x) (x > 1), (3.18) 

where A ~ denotes the inverse function of A. From De Haan (1970), p. 22 or 
Seneta (1976), p. 24 it follows that the inverse V ~ of V,, which satisfies 

V - ( y ) = { A ( 1 - y ) } - I  ( 0 < y < l ) ,  

varies regularly at 0=V(oo) with exponent (logm) -1. This is equivalent to (i), 
and has part (ii) as a consequence (cf. De Haan (1970), p. 21). [] 

We conclude this section with three examples of continuous semigroups 
(Ft),a o with m <  1. In each case we start from (a,H) and calculate U,m,F,A and 
(if r e< l )  B by means of the relations (3.4), (3.5), (3.9), (3.10) and (3.13), 
respectively. 

Example 3.3. Take a > 0 and H = 1. Then 

U(z)=a(1-z); re=e-a; Ft(z)= l - m t ( 1 - z ) ;  

A(z)=(1 -z)l/a; B(z)=z. 

Example 3.4. Take a > 0  and H(z)= 1 - p + p z  2 with 0<p<�89  Then 

(i) p=�89189 +z2); U(z)=�89 -z)2;  m= 1; 

1 - z  . A(z)=exp[ 2 z ] 
Ft(z)  = 1 1 + 1 a t ( I - z )  ' -al-----~" 

(ii) p < � 8 9  m=e-"(1-2P); 

mr(1 - z )  
Ft(z ) = 1 

1 +p(1 - 2p)- ~ (1 - m~)(1 - z ) '  

A(z)=S! l-- p)(1-  z)'~ r B(z) -  (1 -2p )z  
( 1 - p - p z  J 1 - p - p z "  

Example 3.5. Take a > 0 and H(z) = z + (1 + p)- ~ (1 - z) ~ + o with 0 < p < 1. Then 

U(z)=a(l+p)-l(1-z)a+P; m = l ;  

Ft(z ) = 1 -{p(1 +p)-lat+(1 - z )  -~ -1/0; 

A(z) = exp [-- (ap)- 1 (1 +p) {(1 - z )  -p - 1}]. 

4. Self-Decomposability and Stability with Respect to (Ft)t>o 

For probability measures on [0, ~ )  the classical concepts of self-decomposa- 
bility and stability can be introduced as follows (cf. Lo6ve (1977) and Feller 
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(1971)). With the notation of (2.1), #e  ~ is said to be self-decomposable if 

#=(T~#).  fl~ ( 0 < e < l ) ,  (4.1) 

where # ~ .  In terms of LS transforms and rv's: 

fi(~)=fi(~)fi~(~) (~>=o), 
(4.1') 

X ~ ~ X + X~ (X, X~ independent). 

More specially, # ~ ~ is said to be stable if 

# = (T1/r (neN), (4.2) 

with c ,>0,  i.e., in terms of LS transforms and rv's: 

fi(z) = {/2(~/cn)}" (z >0), Xa--c;1(Xl+. . .+X,) ,  (4.2') 

where X1,Xa, . . .  are independent and Xk~=X (keN). There exists 7e(0,1] 
such that c, = n 1/~ (neN), in which case # is called stable with exponent 7 and 
(4.2) is equivalent to (cf. Feller (1971), p. 171) 

# = (T~ #) * (T(1 _~)l/, #) (0<~<1).  (4.3) 

Contrary to general conventions, we do not exclude degenerate distributions in 
from our definition of stability, so these are stable with exponent y = 1. 
We now want to generalize these concepts to the situation where multiply- 

ing nonnegative rv's by positive constants is replaced by applying semigroups 
(T~)0<~< 1 satisfying (2.3) to pg/'s. By Theorem 2.1 such a semigroup is charac- 
terized by a composition semigroup (Ft)t__> o c PGF, and applying T~ to P e PGF 
corresponds to composing P with F_~og ~. Thus, we are led to the following 
definition, in which, as in Sect. 3, F=(Ft)t>=ocPGF is required to be a con- 
tinuous semigroup with F t + I  (t > 0). 

Definition 4.1. P e PGF is said to be F-self-decomposable if 

p = (po Ft) Pt (t > 0), (4.4) 

where Pt ~ PGF. P e PGF is said to be F-stable if 

P =P"o F~ogr (n~N), (4.5) 
with c ,>  1. 
Using (2.3), the continuity of the semigroup F and the following obvious 
implications: 

T~P= T~P for some PePGF ~ ~=fl, 

T~P=T~Q for some es(0,1]  ~ P=Q,  

we can adapt p. 77, 78 of Lamperti (1966) to conclude that if P is F-stable then 
for some 7 > 0 

P = P~o Faog~)/~ (x > 1). (4.6) 
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In this case, we again call PF-stable with exponent 7, and it can easily be 
shown that this is equivalent to (cf. (4.3)) 

P=(PoF_,og~)(PoF_log(l_~)l/~ ) ( 0 < e < l ) ,  (4.7) 

or also 
P=(PoFt)(poF~) (s , t>0;  e - ~ t + e - ~ =  1). (4.7') 

Hence we can state the following result. 

Theorem 4.2. An F-stable P e PGF is F-self-dec. 

The concepts of F-self-dec and F-stability can be interpreted in the Markov 
branching process (Zt)t>_ 0 corresponding to F (cf. Sect. 3). If X has p g f P  and 
Zt(X ) denotes the number of individuals at time t, given X individuals at time 
0, then Zt (X  ) has pgf  P oF~, so that, for instance, (4.4) can be written in the 
form 

Zo(X)  a=Zt(X)+Xt (t>0), (4.8) 

with Xt~]N o independent of Zt (X  ). In view of (4.8) one may expect that only 
semigroups corresponding to branching processes with extinction probability q 
= 1 can have self-dec pgf's. Indeed, we have the following properties (recall 
that m =F;(1)). 

Lemma 4.3. (i) I f  there exists an F-self-dec P ~ PGF, then necessarily m < 1. I f  in 
addition P'(1)< o% then m< 1. 

(ii) I f  there exists an F-stable P EPGF (exponent 7), then necessarily m< 1 
and y <= - log m. I f  in addition P'(1) < oo, then ~ = - log m. 

(iii) I f  P ~ PGF is F-self-dec, then necessarily P ~ PGF+ (so P (0) > 0). 

Proof (i) Let P be F-self-dec, and suppose m > l  (possibly re=o o). Then 
necessarily q < l .  As Ft(q)=q(t>O), we see from (4.4) that Pt(q)=l (t>0) and 
hence P t -1  (t>0). But then it follows from (4.4) that F t=I ( t>0) ,  which 
contradicts m >  1. (Moreover, F t = I  (t>0) has been excluded.) Hence m <  1. If 
P '(1)< 0% then differentiation of (4.4) with respect to z and letting z~" 1 yield 

P'(1) {1 - m  t} = lim Pt'(z) > O, 
which implies m < 1. z ~ 1 

(ii) Let P be F-stable with exponent 7. Differentiation of (4.6) with respect 
to z gives 

lim P' (z)/P' (F(log x)/y (z))  = X m (l~ x)/~, _-- X 1 + (log m)/~ (4.9) 

Because of Theorem 4.2 and part (i) of the present lemma, we know that m < 1. 
Hence 

Ft(z) > z ( t>0;  0 < z <  1), (4.10) 

and as P' is increasing, it follows that the limit in (4.9) does not exceed 1, i.e., 
y<  - l o g m .  As 7>0, we also have m< 1. Finally, if P'(1)< 0% then the limit in 
(4.9) is equal to 1, and hence ~ = - l o g  m. 
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(iii) Let P s P G F  satisfy (4.4). Then limPt(z)=l (0<z=<l), so Pt(0)>0 for all 
t$o 

t sufficiently small. Again we have (4.10), hence also P(Ft(0))>0 for all t>0.  By 
(4.4) it now follows that P(0)>0. [] 

5. A Relation Between the Self-Dec Distributions on [0, oe) and Those on N O 

I t  will turn out that the necessary condition m < l  in Lemma 4.3 is not 
sufficient. However, if m < 1 then there always exist F-self-dec pgf's. This can 
be shown by means of a relation with the self-dec distributions on [-0, ~),  
which also gives a characterization of these distributions. So, consider through- 
out this section a fixed continuous semigroup (Ft)~__> 0 with m = e  -~ (cf. Remark 
3.1) and with A as in (3.10). Note that now A = I - B  with B the pgf in  (3.12). 
For 0 > 0 define the map n o = n0 F: ~ ~ PGF+ as follows: 

no#(Z)=fi(OA(z)) ( # ~ ;  0 < z < l ) .  

L e m m a  

(ii) 

(iii) 

(iv) 

(v) 

fi(~) = lim n0# (ex p [ - z  V(0)]) 
0~oo 

where V is defined by (3.16) (or (3.17)). 

Indeed, noI~ePGF+, as it is a mixture of compound Poisson pg/'s and no#O) 
=fi(0)>0. In the following lemma we summarize some simple properties of 
(no)o> o for later use. The operators T~ (0<~__<1) are defined on ~ by (2.1) and 
on PGF by (2.5). 

5.1. (i) n o is continuous with respect to weak convergence (0 > 0). 

no#=novfor  some 0 > 0  ~ kt=v ~ nolO=noV for all 0 > 0  (#,v ~ ) .  

n o(~ * v) = (no ~)(no v) (0 > 0; ~, v e ~). 
no(r~#)=T~(nop ) (0>0; 0<c~_-<l; # e ~ ) .  
For all # ~ 

(z~0), (5.1) 

Proof (i) and (iii) are trivial. (ii) expresses the well-known fact that an LS 
transform is determined by its values on a finite interval (cf. Widder (1946), 
Chap. IV). 

(iv) By (3.11) we can write 

no ( L u) ( z ) :  fi (~ 0 A (z)) = fi (0 A (F_ to,, (z))) 

: no # (~_ ~og, ( z ) ) :  L (~o ~) (z). 

(v) Let # ~ N  and ~>0. As /2 is continuous, for (5.1) it is sufficient to prove 
that 

A ( e x p [ - z V ( y - ~ ) ] ) ~ z y  (y$O). (5.2) 
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By the second part of (3.6) we have V(y-~)~O as y$0. Now, taking x =  V(y -1) 
in Lemma 3.2(i) and using (3.18), we see that 

A ( 1 - z V ( y - ~ ) ) ~ z y  (y$O), 

which by Lemma 3.2(ii) is equivalent to (5.2). [] 

Remark 5.2. Relation (5.1) expresses the fact that/2 is the weak limit (as 0 ~  ~ )  
of the measures / 2 0 ~ ,  where /20 assigns masses pn(O) to the points nV(O) 
(n e No) and (P,(O)),~No has Pgf~o/2. 

Now, using Lemma 5.1, we can easily show that (7c0)0> o maps the class of 
self-dec (stable) elements of ~ into that of PGF. 

Theorem 5.3. Let /2eN. Then /2 is self-dec iff ~ro/2 is F-self-dec for all 0>0.  
Similarly, if ye(0,1],  then # is stable with exponent 7 iff 7Co/2 is F-stable with 
exponent 7 for some, and then for all, 0 > 0. 

Proof. L e t / 2 e ~  be self-dec and 0>0.  Then, using (4.1) and Lemma 5.1, we can 
write for all cr e (0, 1) 

As /2~N,  we have 7Co/2~ePGF , and hence ~r0/2 is F-self-dec. Conversely, sup- 
pose ~0/2 to be F-self-dec for all 0 > 0 .  Then there exist pg f ' s  Po,, (0>0;  
0 < e <  1) such that 

rCo/2 = T~(rCo/2) Po,~ = uo( T~/2) Po,~. 

Now by Lemma 5.1(v) it follows that 

lim Po,~ (exp [ --c V(0)]) = ft(~)/ft(~z) ('c > 0), 
0~oo  

i.e. (cf. Remark 5.2),/~(~)//~(~) is the limit of a sequence of LS transforms, and 
hence, as /~(~)//~(c~r)-~ 1 for ~[0, is itself the LS transform of some / 2 ~ .  In 
view of (4.1') we conclude that/2 is self-dec. 

The final statement of the theorem is an immediate consequence (use 
Lemma 5.1(ii) for the "if"-part) of the following relation: 

~o((To-l~/2)*")= { T,-~,(~o/2)} n (heN), (5.3) 

which easily follows from Lemma 5.1(iii) and (iv). [] 

In case (Ft)t> o is given by Example 3.3, the preceding theorem has been 
proved by Forst (1979). Although he uses a relation like (5.1), his proof is 
rather indirect, via the canonical measures of the infinitely divisible (infdiv) 
distributions involved. In the case of Example 3.3 several other subclasses of 
and of PGF+ have been connected by means of (u0)0> o (cf. Goldie (1967), 
Hirsch (1975) and Forst (1978)). We now generalize the relation, implicitly 
given by Goldie. 

Theorem 5.4. L e t / 2 e ~ .  Then/2 is inf div iff Tro/2 is inf div for all 0>0.  
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Proof The "only if"-part is a consequence of the subordination theorem of 
Feller (1971), Chap. XVII (see also Steutel (1970)), but is also immediate from 

~=(~.)*" ~ zc0~=(~0~.)" (neN). 

Conversely, if ~0//is infdiv for all 0>0,  then from (5.1) and Remark 5.2 it is 
seen that # is the weak limit of infdiv measures, and hence is itself infdiv. [] 

On the one hand Theorem 5.3 gives necessary and sufficient conditions for 
/ ~ e :  to be self-dec or stable. On the other hand, starting from well-known 
self-dec or stable measures # e ~ ,  by means of this theorem we can construct 
pgf's that are F-self-dec or F-stable. It is well known that the LS transforms of 
the stable measures/~ e ~ with exponent y (0 < 7 < 1) are given by the functions 
of the following form (cf. Feller (1971), Chap. XIII): 

/~(z) = exp [ - 2z 7] (z > 0), (5.4) 

where 2 > 0. Hence, by Theorem 5.3, all functions P of the form 

P(z )=exp[ -2A(zy]  (0__<z<l), (5.5) 

with 2 > 0, are F-stable pgf's with exponent 7. In Sect. 7 (and again in Sect. 8) 
we shall show that there are no other F-stable pgf's. 

For self-dec measures no representation like (5.4) in the stable case seems 
to be known. However, using the method of proof to be applied for Theorem 
6.1, we obtain the following representation theorem (already mentioned briefly 
in Steutel and Van Harn (1979)). 

Theorem 5.5. A function 0 on [0, oe) is the LS transform of a self-dec # e ~  iff (o 
has the form 

q~ (z) = exp [ .[ a - 1 log ~(o') da] (z > 0), (5.6) 
(o, ~) 

where v e ~  is inf div and such that the integral n (5.6) is finite. 

Let # e ~ have an LS transform of the form (5.6) with v inf div. Then, by 
Theorem 5.3, for all 0 > 0  the following function is an F-self-dec pgf (see also 
(3.10)): 

re0 kt(z)= exp [ S ~ -  i log ~(a) d~] 
(0, 0,,l(z)) 

= e x p [  S U(x) -llogr (5.7) 
(z, 1) 

By Theorem 5.4 it now follows that re0# has the form 

~0#(z)=exp[  ~ U(x)-llogS(x)dx] ( 0 < z < l ) ,  (5.8) 
(z, 1) 

where S is an infdiv pgf  such that the integral in (5.8) is finite. In the next sec- 
tion we shall show that the class of F-self-dec pgf 's coincides with the class of 
functions of the form (5.8), also if m= 1. However, (5.8) is more general than 
(5.7) (cf. Example 6.6). 
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6. F-Self-Dec PGF's and Branching Processes with Immigration 

Let (F~)t>=ocPGF be a continuous semigroup with m < l  (cf. Lemma 4.3(i)). 
Here we derive a representation theorem for the F-self-dec pgf's. The method 
of proof is similar to that used for the discrete self-dec pgf's (see Steutel and 
Van Harn (1979)), i.e., the pgf's that are self-dec with respect to the semigroup 
of Example 3.3. 

Theorem 6.1. A function P on [0, 1] is an F-self-dec element of PGF iff P has the 
form 

P ( z ) = e x p [ - 2  ~ 1-Q(X)dx]  (0=<z_<__l), (6.1a) 
(z,l~ U(x) 

or, equivalently, 

P ( z ) = e x p [ - 2  ~ {1-Q(Ft(z))}dt ] ( 0 < z < l ) ,  (6.1b) 
(0, oo) 

where 2 > 0  and Q is a pgf  with Q(0)=0 such that 

1-Q(X) dx < ~.  (6.2) 
(0, 1) U(X) 

The representation (2, Q) in (6.1) is unique. 

Proof. Let PePGF be F-self-dec, i.e., for all t > 0  let there be PtePGF such that 
(4.4) holds. As noted in (3.8), we have U(z)>0 for all ze[0 ,  1). Since by (3.2) 

Ft(z) -z=tU(z)+o( t  ) (t$0; 0 < z <  1), 
we have 

P(~(z))-P(z)=tV(z)P'(z)+o(t) (t$0; 0<z<l ) ,  

and hence for 0 < z < 1 and t 10 

P(F  t(z))- P(z)'~-i 1 U P ' -  1. 
P~(z) = 1 + P(z) J { + t (z) (z)/P (z) + (t)} o 

Now, take ? > 0 and t, = ~/n (n e N). Then it follows that 

lim {Pt,(z)}" = 1 +-Y U(z)P'(z)/P(z)+ o 
n ~ o o  n 

= exp [ - y U(z) P'(z)/P(z)]. 

Since by (3.5) and Lemma 1.1 in Steutel and Van Harn (1979) 

lira U (z) P' (z)/P (z) = ( - log m) lim (1 - z) P' (z) = 0, 
zl"l z t l  

we conclude from the continuity theorem for pgffs (cf. Feller (1968)) that S ~, 
with S(z)=exp [-U(z)P ' (z) /V(z)] ,  is a pgf for all V >0, i.e., S is an infdivpgf, 
or, equivalently (cf. Feller (1968)), S is compound Poisson. It follows that there 
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exist 2 > 0  and a pgfQ with Q(0)=0 such that 

R ( z ) = d  logP(z)= -logS(Z)u(z) - 2  1-Q(Z)u(z) , (6.3) 

which yields (6.1a). Clearly, (6.2) must hold, otherwise we would have P - 0 .  
For the equivalent form (6.1b) we note that by (2.8'), the second part of (3.6) 
and (3.1), together with Fubini's theorem 

1-Q(x) 
I 

(z, 1) 
- - d x =  ~ U(x) - i  .[ Q'(Ft(x))~Ft(x)dtdx 

(z, 1) (0, oo) 

= ~ ~ Q'(Ft(x))Ft'(x)dxdt 
(0, oc) (z, 1) 

= ~ {1-Q(Ft(z)l}dt, 
(O,c~) 

also when the integrals are infinite. 
Conversely, let P be a function of the form (6.1b) with 2 and Q as 

indicated. Then the function R in (6.3) satisfies 

R(z)=2(o!~) ~--~Q(Ft(z))dt, 

which is an absolutely monotone functon. As l imP(z )= l ,  it follows that P is a 
z l ' l  

pgf even an infdivpgf  (ef. Feller (1968)). Similarly, it can be shown that for all 
t > 0 the function Pt(z)= P(z)/P(Ft(z)), which by the semigroup property satisfies 

Pt(z)=exp[ - 2  .I {1-Q(F~(z))}ds] (0__<z__<l), (6.4) 
(o,t) 

is an infdivpgf. Thus we have verified Definition 4.1, and P is an F-self- 
dec pgf. [] 

Corollary 6.2. I f  PsPGF is F-self-dec, then P, and its factors Pt ( t>0;  cf. (4.4)), 
are inf div. Furthermore, the distribution (P,),~o of which P is the pgf, has pn>0 
for all n ~ ]N o. 

Proof From (6.3) it follows that Pl/Po =R(O)=2/U(O)>O, so Pl >0. But then all 
p ,>0 ,  as P is infdiv (cf. Steutel (1970)). [] 

We now examine Condition (6.2). 

Theorem 6.3. (i) I f  m < 1, then (6.2) is equivalent to 

~ q, l ogn<  ~ .  (6.5) 
. = 1  

(ii) I f  re= l ,  then for (6.2) it is necessary that (6.5) holds and U"(1)=H"(1)  
= o% and sufficient that for some c > 0 and p e (0, 1) 

Q ' ( 1 ) < ~  and U(z),,,c(1-z) l+p (zi"l), (6.6) 
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or, more generally, that l - Q ( 1 - . )  varies regularly at 0 with exponent a~[0,  1] 
and U ( 1 -  .) varies regularly at 0 with exponent fie [1, 2] and fl-c~< 1. 

Proof (i) By (3.7) we have U(x)~( - logm)( t -x )  as x] ' l .  Hence (6.2) is equiva- 
lent to 

1 - Q ( x )  
b 

dx<oo, i.e., ~ qk ~ n<oo, (6.7) 
(o,~) 1 - x  k = ,  . = 1  

which is equivalent to (6.5). 
(ii) If m = l ,  then U' (1)=logm=O, so for x close to 1 we have 

1 - (2 (x )  > 1 - (2 (x )  

U ( x )  - 1 - x  

By (6.7) it follows that (6.2) implies (6.5). If U"(1)< 0% then the middle factor 
in the right-hand side of 

1 - Q ( x )  1-Q(x ) (1 -x )  2 1 
U(x) 1 - x  U(x) 1 - x  

tends to 2 U"(1) -1 as xT 1, while the first factor tends to Q'(1)e (0, oo], implying 
the divergence of the integral in (6.2). Hence U"(1)= oo if (6.2) holds. If (6.6) 
holds, or more generally, the condition following (6.6), then the integrand in 
(6.2) varies regularly at 1 with exponent c ~ - f l e ( - 1 , 0 ] ,  so (6.2) holds by 
D e H a a n  (1970) or Seneta (1976). [] 

Remark 6.4. By similar considerations we see that if P is F-self-dec with 
representation (6.1) then P ' (1)< oo iff m< 1 and Q'(1)< oo. 

In Steutel, Vervaat and Wolfe (1980) the set  of F-self-dec pgf's is shown to 
coincide with the set of invariant distributions of F-branching processes with 
immigration. More specifically, consider a branching process with immigration, 
where branching is governed by (F,)t__> 0 and immigration occurs according to 
an increasing No-valued process with stationary independent increments, i.e., 
according to a compound Poisson process with, say, intensity 2 > 0  and batch 
size p g f  Q. Then (6.4) gives the pgf  of the process at time t, starting with 0 
individuals at time 0 (cf. Harris (1963), p. 118 and Sevast'janov (1957, 1971)), 
from which by letting t-+ oo it follows that the invariant distribution exists and 
is given by (6.1b) iff (6.1b) makes sense, i.e., iff (6.2) holds. 

Thus, Condition (6.2) is necessary and sufficient for ergodicity of an F- 
branching process with immigration according to a compound-Poisson-(A,Q) 
process. This generalizes results of Sevast'janov (1957) and Foster and William- 
son (1971). In case m < l  Sevast'janov proves ergodicity assuming Q'(1)<oo, 
which condition is stronger than (6.2) cf. Theorem 6.3(i)). Foster and William- 
son consider discrete-time processes, and obtain instead of (6.2) 

S 1-O.(x) d x < ~  (6 .8 )  
0,1) F1 (x) - x 
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as a criterion, which can be shown to be equivalent to (6.2) in the continuous- 
time case. They also obtain Theorem 6.3(i) with (6.2) replaced by (6.8). 

We conclude this section with two examples. 

Example 6.5. Consider the discrete stable pgf's (i.e., F-stable with F as in 
Example 3.3) with exponent ? ~ (0, 1), i.e., the functions P of the form 

P(z) = exp [--2(1 -zy-] ( 0 < z <  1), (6.9) 

with 2>0.  From Theorems 6.1 and 6.3(ii) with Q(z)=z we see that these pgf's 
are self-dec with respect to the semigroup (Ft)t>o of Example 3.5 with p =  1-7 ,  
that is with respect to a semigroup with m = 1. 

Example 6.6. There exist semigroups (Ft)t_> 0 with m=e -1, for which not all F- 
self-dec pgf's are of the form rc 0 # with #e  N self-dec (cf. Section 5). In fact, 
suppose that P=~o#, with # self-dec, has the form (6.1a). Then by (5.7) there 
exists an infdiv v e N such that 

2{Q(A~(z))- l}=log~(z)  (0<=z=<l). 

As v is infdiv, - d l o g ~ ( z )  is completely monotone (comp mon) on (0, oo), a n d  

so necessarily 
d 

d'c Q(A~ (z)) is comp mon on (0, 1]. (6.10) 

Now, consider (Ft),>__ o from Example 3.4(ii) with a=(1-2p)  -1, take Q(z)=z 
and 2=p/(1-2p).  Then it follows that 

P(z) = (1 - 2p)/(1 - p - p z )  

is F-self-dec. But, as A ~ =A in this case, we see that the function in (6.10) is 
equal to B'(z), which is not comp mon on (0, 1]. It can even be shown that 
P r ~c0 (~). 

In Sect. 8 it will be shown that the class of F-self-dec pgf ' s  of the form 
~0# with # e ~  self-dec coincides with the set of limit distributions in a "central 
limit problem". 

7. Canonical Representation of F-Stable PGF's 

Let (Ft)t>__ocPGF be a continuous semigroup with m < l .  By Lemma 4.3 (ii) 
only such semigroups can have F-stable pgf's and the exponent ? of an F- 
stable pgf  satisfies 0<  ~ _-<-log m. We have the following representation theo- 
rem. 

Theorem 7.1. Let 0<7__<-logm. Then a function P on [0,1] is an F-stable 
element of PGF with exponent ? iff P has the form 

with 2 > O. 
P(z )=exp[ -2A(zy]  ( 0 < z < l ) ,  (7.1) 
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Proof Let P be an F-stable pgf  with exponent 7. Then we have (4.6), from 
which by taking x = ~  -~ ( 0 < e <  1) and z = 0  we see that 

log P(F_log~(0)) = - 2~' (0 < c~ _-< 1), (7.2) 

with 2=  - l o g  P(0). From (3.11) with z = 0  and t =  - l o g 7  we obtain A(F log~(0)) 
=c~, which together with (7.2) and the continuity of the semigroup implies (7.1). 

The converse statement follows by reduction to the case m = e  -~ (cf. Re- 
mark 3.1) and applying the results of Sect. 5. We can also argue, however, in 
a direct way as follows. If P has the form (7.1), then P(z )=exp[2(Q(z ) - l ) ] ,  
where Q ( z ) = l - A ( z )  y is a pgf  because of (3.13). Hence P is a (compound 
Poisson) pgf  which by (3.11) satisfies (4.6), i.e., P is an F-stable pgf  with 
exponent 7. [] 

Contrary to the self-dec case (cf. Example 6.6), by (5.4) we can state the 
following correspondence. 

Corollary 7.2. Let m = e-1 and 0 < y < 1. Then P ~ PGF is F-stable with exponent 
y iff there exists a stable # ~ ~ with exponent ~ such that P = fto A. 

Remark 7.3. Representation (6.1a) reduces to (7.1) if we take Q ( z ) = I - A ( z ) L  
Hence from Remark 6.4 we obtain the following improvement of the last part 
of Lemma 4.3(ii): if P is F-stable with exponent 7 then P'(1)< oo iff 7= - l o g m  
and B'(1)<o% i.e. (cf. Athreya and Ney (1972)), iff 7 = - l o g m  and 
~ h, n logn<  oo. 

8. Central Limit Problem 

The self-dec and stable elements of ~ can be identified as the limits of certain 
central limit problems. Recall that ~ consists of all probability measures on 
[-0, oo) that are not concentrated at zero. 

Definition 8.1. Let #~N,  and suppose there exist a,>O (n~N) and independent, 
nonnegative fv's X1, X2, ... such that the distribution of a#iS , ,  with S , = X  1 
+. . .  + X,  (n E N), converges to # (n ~ oo). 

(i) If in addition 

lim max Pr [a21Xk>e] =0 (e>0), (8.1) 
n ~ o o  k ~ n  

then # is said to be in the class 5f. 

(ii) If in addition all X k have the same distribution, then # is said to be in 
the class Y .  

Let v k denote the distribution of X k in Definition 8.1 (keN). Then the 
distribution of a~ 1S, converges to # iff 

lim [~I vk(z/an)=fl("c) (z~O), (8.2) 
n ~ o O  k =  l 
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and, adapting Sect. 23.2A of Lo6ve (1977), one can show that (8.1) is equiva- 
lent to 

lim min ~k (z/a,) ---- 1 (z > 0). (8.3) 

By Schwarz' inequality (p(Z)=,~k(z/a,) (z>O) is log-convex, so qS(~)>q~(�89 z 
(z > 0); hence (8.3) is equivalent to 

lim rain ~k(1/a,) = 1. (8.3') 
n ~  k<=n 

Finally, we note (cf. Lo~ve (1977)) that for # ~ 2 '  every sequence (a,),~ N occur- 
ring in Definition 8.1 necessarily satisfies 

lim a, = ~ .  (8.4) 

Theorem 8.2. Let # ~ ~.  Then 

(i) # ~  iff # is self-dec; 
(ii) #~5  P iff # is stable (with some exponent 7e(0, 1]). 

Proof. The major part of the theorem is classical (cf. Lo6ve (1977), Sects. 24.3, 
4, 5). Adapting Sect. 24.3 of Lo6ve to our restrictions, we obtain (i); note in 
particular that no subtraction by constants occurs in the first part of the proof 
of his criterion A. Similar considerations prove (ii) for nondegenerate #. On the 
other hand, we have termed degenerate p e n  stable with exponent 7=  1, but 
for these # (ii) is trivial. [] 

Now, let F=(Ft)t>ocPGF be a fixed continuous semigroup. We want to 
solve the analogous central limit problem for N0-valued rv's, replacing or- 
dinary scalar multiplication e X  by the multiplication e@ X, as defined by (1.2) 
and (1.3). Thus we obtain the following analogue of Definition 8.1. 

Definition 8.3. Let P sPGF, and suppose there exist %>1  (n~N) and inde- 
pendent, No-valued rv's X 1 , X 2 ,  . . .  such that the pgf of c, -1 @S,, with S , = X I  
+ ... + X ,  (nsN),  converges to P (n---> o9). 

(i) If in addition 

lira max Pr [c 21 @ Xk > e] = 0 (e > 0), (8.5) 
/1--}OO k ~ n  

then P is said to be in the class ~F" 
(ii) If in addition all X k have the same distribution, then P is said to be in 

the class 5Pp. 

Let Qk denote the p g f  of X k in Definition 8.3 (keN). Then the p g f  of 
c21@ S, converges to P iff 

n 

lim H Qk ~ F~og c, = P, (8.6) 
n ~ c ~  k =  1 

and it is easily shown that Condition (8.5) is equivalent to 

lim min Qk(Flog c.(O)) ---- 1. (8.7) 
n ~  k < n  
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Furthermore, if P e s then the c, in Definition 8.3 necessarily satisfy (cf. (8.4)) 

lira c, = Go. (8.8) 
. ~ O O  

In fact, if not so, then there is a subsequence (c,j)j~N such that lim % = c < Go. 
j~oc 

As P ~ I ,  there exists k o e N  such that Qko~l. Since from (8.7) we see that 
Qko(Flog~, (0))~1 as j ~ o v ,  it follows that Flog~(0)=l , i.e., Flog - 1  , which has 
been excl~tded. 

Basic to our further considerations is the following theorem. Here again we 
restrict ourselves to the case m=e -1 if m < l  (cf. Remark 3.1), and we use the 
function V defined in (3.16) and the map u0 v defined in Sect. 5. 

Theorem 8.4. Let (S , ) ,~  be a sequence of No-valued rv's with pgf's P, (neN). 

(i) Let m=e  -1. Then there exist c , ~  o~ and P ePGF such that lira P, oF1og~. 
~ 0 0  

=P iff there exist a--+oo and # e ~  such that the distribution of a;~ S, con- 
verges to # (n-~ oe). In this case 

and 

l ima ,  V(c,) = 0 
. ~ o o  

(ii) Let m > 1. Then P. o Fxog c, 
C n - '~  0 0 .  

Proof Convergence of the distribution of a;  1 S, to # e ~ is equivalent to 

lim P,(e-~/"n) = (p(z), (8.11) 

with ~b =fi, pointwise for r e [0, c~), or pointwise for r e [0, ~J (some e >0), or, as 
we have continuous monotone functions, uniformly in z e[O,e] (some e>O). 
Consequently, the same convergence is equivalent to 

lim P, (1 - z/a,) = 4) (z) (8.12) 
. ~ O O  

in any mode of convergence stated for (8.11). Moreover, if the limit ~b in (8.11) 
or (8.12) exists for zs[0 ,e]  (some e>0) and is continuous at zero, then there 
exists a unique # e N  such that ~b(r)=fi(r) for r e  [0, el. 

(i) Let m = e-1. Then we can write 

for some 0 > 0. (8.9) 

P=u~# .  (8.10) 

does not converge to a Pgf gv 1 for any sequence 

P,(Flogc.(z))=P,(1--a,V(c,)C(c,,z)/a,) (heN;  0 < z <  1), 

where (cf. (3.13) and (3.14)) 

(8.13) 

1 - Flogt(Z ) 
C(t,Z)=l_F~og,(O) ~A(z) (t-~@; uniformly in zel-0,1]). (8.14) 

Now, suppose that the distribution of a ; l S ,  converges to # e ~  for a , ~  c~. 
Then we have (8.12) with ~b=fi, and, as by (3.6) and (3.7) lim V(x)=0, we can 

x ~ o o  
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choose 0 > 0  and c , ~  oo such that (8.9) holds. By (8.13) and (8.14) it follows 
that 

lira P, (Flog~.(z)) =/~(0A (z)) = rc~ #(z), 
n ~ o o  

which indeed belongs to PGF. 
Conversely, suppose that lim P, o F~og ~. = P e PGF for e, ~ oo. Choose 0 > 0 

. ~ O G  

and G--* oo such that (8.9) holds. Then by (8.13) and (8.14) it follows that 

SO 

lira P, (1 -OA(z ) /G)=P(z  ) (uniformly in ze  [-0, 1]), 

lim P,(1 - z / G  ) =P(A  ~ (z/O)) (z e [0, 0]), 
. ~ O O  

which function is continuous at z =0. From the observations in the beginning 
of the present proof we now conclude that the distribution of a# 1S, converges 
to some # e ~ as n ~ Go. 

Finally, let a , ~  oo and c , ~ o o  be such that both a# lS ,  and c# 1 @S, 
converge in distribution (in N and PGF). Choose %-~ oo such that c~, V(c,)--* 1. 
By the preceding paragraph also ~21S, converges in distribution (in ~), so by 
the convergence of types theorem a J G  ~ 0 for some 0 > 0, and (8.9) follows. 

(ii) Let m__>l, and suppose that p, oFlogc, converges to a p g f P  as n ~ o o  
with c , ~  oo. For all ee(0, 1) we have 

Ft(z)= 1 -  {1-Ft(0)}(1 +o(1)) ( t ~  oo; uniformly inz  e [0, el). 

For m > 1 this follows from (3.6) and (3.7), and for m = 1 from Athreya and Ney 
(1972), p. 16-18. Consequently, for z e [0, e] 

P(z) = l im P.(1 - { 1 -F~og r (1 + o(1)))  = P(O), 
. ~ 0 0  

and hence P-=I. [] 

From Theorem 8.4 we see that we may expect solutions to our central limit 
problem only if m < 1. The next theorem characterizes the sets of solutions. 

Theorem 8.5. I f  m = e-  1, then for all 0 > 0 

I f  m>__l, then ~v=SPr=~J. 

Proof. .By (8.6) and (8.8) the final statement is an immediate cnsequence of 
Theorem 8.4(ii). So let rn=e -1. We set again 7r0=~0 F, and because T0#~s if 
# e ~  (0>0), it is sufficient to consider the case 0=1. First, let P ~ F .  Then 
there exist e,--*oo and pgf's Qk ( k e N )  such that (8.6) and (8.7) hold. By 
Theorem 8.4(i) it follows that P = ~ I #  with #~_qo, as soon as we have proved 
(8.3'), with qk(r)=Qk(e-*). Indeed, by (8.9) with 0= 1 we have 
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lim min ~k(1/a,) = lim min Qk(1 -- 1~an) 
n--*oo k < n  n~cx~ k<=n 

= lira rain Qk(1 -- V(cn) ) 
n ~ o c  k<_n 

= lim min Qk (F~og c,(0)) = 1. (8.15) 

Conversely, let P = n l #  with # ~ o .  Then there exist a , ~  ~ and V k ~  ( k ~ N )  
such that (8.2) and (8.3') hold. By Lemma 5.1 it follows that 

P = rc 1 # = lim rc 1 T1/a,V k = lim T1/an(gl  1)k) 
n ~ o o  1 n ~ o ~  k =  1 

= l i m  f i  (~lVk)OF~og, . 
n ~ c ~  k =  1 

Hence P satisfies (8.6) with Qk=~lVk and cn=a .. As 

Qk (Flog c. (0)) = ~1 (Tx/a.Vk)(O) = Vk(1/an), 

we also have (8.7), so that P ~ ~F .  
The identity 5~F=~0V(5 ~ is proved similarly. [] 

Remark 8.6. By (3.17) we conclude from (8.15) that if ~ h ,  n l o g n < o o ,  then 
Condition (8.5) is equivalent to (8.1) with a n replaced by % 

We make some concluding remarks. If m < 1, then by Theorems 5.3 and 8.5 
s v is a subset of the set of all F-self-dec pgf's. However, contrary to the 
classical case, this subset can be proper (cf. Example 6.6). Also, if m=  1, then 
5ev=0, but there may exist F-self-dec pgf ' s  (cf. Example 6.5). By Corollary 7.2 
5~v does coincide with the set of all F-stable pgf's. 

From Theorems 8.4(ii) and 8.5 one can deduce once more that F-stable 
pgf ' s  exist only when m< 1 and belong to ~0v(9 ~ (so, have the form (7.1)). 

From Theorems 8.2, 8.4(i) and 8.5 it follows that the domains of attraction 
of all F-stable distributions with exponent 7 ( re=e- l )  are the same as the 
intersections with PGF of the domains of attraction of the stable distributions 
in ~ with exponent 7. 

Finally, we note that Lamperti (1967b, c) studies the possible limit distri- 
butions of (Zn(c . ) -b . ) /a  n. The particular case b .=0,  a . = l  (Lamperti (1967b), 
Theorem 2.2) coincides with a special case of the central limit problem of this 
section, with S. = c n degenerate. 
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