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Summary. If Xt ,X2, . . .  are identically distributed independent random 
matrices with a common distribution # then with the probability 1 the limit 

A.= lim -lln IIX,... Xtll 
n ~ o o  F/ 

exists. The paper treats the problem: is it true that A u ~ A u  if #k--+# in the 
weak sense? 

w O. Introduction 

Let Xt ,X2,  ... be identically distributed independent random m x m matrices 
with a common distribution # on the real unimodular group SL(m,R). The 
theorem of Furstenberg and Kesten (see [3] and [4]) establishes that with the 
probability 1 there exists 

A , =  lim l l n  112.x. 1... 211[ (0.1) 
n--* oo n 

provided 

~ln [Igl[ #(dg) < oo, (0.2) 

where A, is a constant depending only on #. Now let {/Zk} be a sequence of 
probability measures on SL(m, R) satisfying (0.2) such that 

#k~#  in the weak sense as k~oe .  (0.3) 

This paper studies conditions under which (0.3) yields 

A,,k--+A~, as k--+oo. (0.4) 

* Supported by a grant  from the United States-Israel Binational Sciencc Foundat ion  (BSF), 
Jerusalem, Israel. AMS Subject classification: 60B15. 

0044-3719/82/0061/0083/$02.60 



84 Y. Kifer 

The products of random matrices naturally arise in certain models of 
physics (see, for instance, [5] and [8]). The assertion A , > 0  plays there a 
decisive part. But physical results have to be stable under perturbations of 
parameters of a model since they cannot be determined exactly. In particular, 
it is relevant to the study of a probability distribution of some physical process 
that leads directly to the problem of the present paper. 

It is easy to see that under the "equiintegrability" condition (1.9) of w 1 
below, (0.3) always implies 

limsup A,~ < A n. (0.5) 
k~oo  

Indeed, let the norm satisfy the property 

[]A .BI[ < HAIl" [[B[I (0.6) 

for any two matrix A and B. Then 

a(,") = ~ In I[ g,... gl LI p(dgl) ... #(dg,) (0.7) 

is a subadditive sequence i.e. __,a (~+m) _-<a(~ ") +a(~ m~ and that is known to imply 

1 
Au=inf -a (~  "~ and Auk=inf la~2.  (0.8) 

n > l  F/ n > l  n 

By (0.3) it follows that a(")~a ("~ as k--*oo and so #k # 

1 

limsup Au~ = limsup inf 1 a~2 _< inf 1 limsup a~d = inf L (,) - 
k ~  k ~  n>__ln --n~ln k-- ,~ , ~ l n a ~ - A u  

that gives (0.5). 
The inequality (0.5) does not help even in the physical problem referred to 

above since the case A , > 0  and A , = 0  for all k, does not contradict (0.5) (and, 
indeed, this case occurs (see w But in the special case when A , = 0  the 
relation (0.5) implies (0.4) since, clearly, A,>__0 for any distribution gk on 
SL(m,R). In particular, it follows from [10-1 that A , = 0  when the support of g 
contains in the subgroup of unipotent matrices, solving the problem for this 
case. In this paper we shall improve (0.5) to (0.4) for some other classes of 
measures/t. 

We shall consider products of raPdom matrices only with determinants 
equal to one, but actually this is no restriction. Indeed, if X~,X2,... are 
independent random matrices with a common distribution t/ on the group 
GL(m, R) of nondegenerate matrices, then one can write 

l l n  IIXn"'XIII =~  l n n  (de X(~n)l/m "" (detXxo 1/m + ln k=l ~ ln ldet Xk[1/C 

If ~lnldetg] t/(dg)<oo then by the strong law of large numbers (see [2]) 
with the probability 1 as n--* 0% 

1 ~ In [ d e t X k [ ~ l n  [detg[ tl(dg ). (0.9) 
n k = l  
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The right hand  side of (0.9) is cont inuously  dependent  on r /wi th  respect to the 
weak convergence of  measures. Therefore the remaining problem concerns just 
the p roduc t  of  the matrices 

X 1 X 2 

(detX1) 1/m' (detX2) 1/m' --. 

having determinants  equal to one. 
Actually, this paper  studies the dependence on the distribution # of  the 

biggest L y a p u n o v  characteristic exponent  in the sense of  Oseledec (see [11]) 
for products  of  independent  matrices. 

To treat the other characteristic exponents one notices that  by [4J with the 
probabil i ty one there exists the limit 

A ^ e =  lim -l ln IIX2~.. X?~ll (0.10) ~a k �9 
n ~ o o  n 

where X1, . . . , X n ,  . . .  arc thc same as in (0.1) and g^e  denotes the fith exterior 
power of  g~SL(m,R). According to [10] the number  A u ~  is equal to the sum 
of the biggest fi characteristic exponents. Hence if Au~/~A,, ̂ ~ as k--+ oo for all 
/ ~ = 1 , 2 , . . . , m - 1  then one obtains the convergence of  all characteristic ex- 
ponents, as well. The minimal  characteristic exponent  )~i.  can also be repre- 
sented with the probabil i ty 1 as 

rain __ 1 in I1 X l  1 ' '  X n -  111 - -  A~/ 2 u - - lim . = 
n ~ o o  n 

where ~/(F)=#({g: g - l e F } )  for any Borel set FcSL(m,R). 
This paper consists of  two sections. In w 1 we shall show that  (0.4) is true 

provided the support  of  the measure p is not  conta ined in a reducible sub- 
group of  SL(m,R). We shall see that  such measures form an open everywhere 
dense set i.e. (0.4) holds in a "gener ic"  case. Nevertheless, we shall see in w 
that  (0.4) is not  always true. We exhibit an example suggested by Furstenberg 

with g concentra ted in one point  (a 0 ) a - 1 ,  and show that  (0.4) fails for it. But 
kV 

still, we shall prove in w that  if # concentra ted  in one point  AeSL(m, R) and 
the measure gk have supports  conta ined in some ne ighbourhood  of  A then (0.4) 
is true. Moreover  in this case one obtains some assertion on the stability of 
eigenvalues of  the matrix A with respect to its r andom perturbations.  

In view of  the papers [7J and [12] the results can be extended to the case 
when X~,X2 , . . .  form a matrix-valued Markov  stat ionary process. Using the 
theory of  representations similar results can be proved for general semi-simple 
groups in the spirit of  [4]. 

Acknowledgement. The problem studied here is the generalization of a question suggested by A. 
Katok who also pointed out to me the preprint [11] where (0.4) is proved for some examples. I 
would also like to thank H. Furstenberg for a number of very useful discussions and remarks. I 
appreciate very much the referee for certain suggestions improving the proofs of Theorems 1.1 and 
1.2 and for pointing out to me the more simple proof (referred to Y. Guivarch) than the original 
one for the counterexampte of w 2. 
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w 1. The "Generic" Case 

Let us first specify some notions.  All measures  we consider in this paper  are 
Borel probabi l i ty  measures  on the corresponding spaces. As above,  we do not  
indicate the domain  of in tegrat ion if an  integral  is t aken  over  the whole space 
under  considerat ion.  Suppose  we are given a sequence of measures  t/k together  
with a measure  q on a topological  space X. Then  we say that  t/k converges to t/ 
(i.e. r/k~t/) in the weak sense if Sf(x) tlk(dX)--*~f(x)~l(dx) for any bounded  
cont inuous  function f on X. 

The  constant  A,  in (0.1) does not  depend on a matr ix  no rm and we shall 
take some vector  no rm and a cor responding  matr ix  n o r m  satisfying (0.6). 

A group  G of m x m  real matr ices  acts in a na tura l  way on the m- 
dimensional  vector  space R m by left mult ipl ication.  The  group  G is called 
irreducible if the only subspaces  left fixed by all matr ices of  G are R m and {0}. 
Otherwise it is called reducible. 

The  real ( m - 1 ) - d i m e n s i o n a l  project ive space pm-1 is ob ta ined  f rom R " \ { 0 }  
by identifying two vectors if each is a scalar mult iple  of  the other. Clearly, if G 
is a g roup  of matrices,  then the act ion of G on R m induces the natura l  act ion 
of G on pro-1. 

Let # be a probabi l i ty  measure  on the real un imodu la r  g roup  SL(m, R) and 
let G,  be the smallest  closed subgroup  of SL(m, R) containing the suppor t  of  # 
(supp #) which is the min imal  closed set having #-measure  equal  one. 

A space of all Borel probabi l i ty  measures  on SL(m, R) we denote  by J / .  
The  space J g  is a topological  one with respect to the weak convergence of 
measures.  

Set 
J/gir = {#sJ / t  : G,  is irreducible}. 

The  following result shows that  the p roper ty  #e~//gir is a "gener ic"  one. 

Theorem 1.1. The set J/tir is open and everywhere dense in JC{. 

Proof. First  let us show that  ~ i r  is open  in ~ .  To  do this we shall p rove  that  
dc'r = ~ \ ~ / ~ i r  is a closed set. 

Consider  a sequence of measures  #,  such that  

# , e ~  r and # ~ #  in the weak sense as n ~ o o .  (1.1) 

By the definition, the subgroup  G~, leaves invar iant  some nontr ivial  m,-dimen-  
sional subspace F, of  R m i.e. 0 < m, < m. Let  e (") e (") e(") be an o r thono rma l  1 , 2 ~ ' " , - m n  

basis of  F,. Clearly, one can choose a subsequence {ni} such that  for some 
m* > 0 we have m,, = m* for all i = 1, 2 . . . .  and  there exists 

l i m e  ("') - o* for any k = 1, 2, m*. (1.2) k - - ~ k  " ' ' ~  
i-~oo 

Set 

W =  { g e s u p p # :  there are a subsequence {nij} of  {ni} 

and matr ices  gjesupp#n~j such tha t  lim g j = g }  

where the convergence is t aken  with respect  to a matr ix  norm. 
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Let F* be the subspace generated by the basis el,* e2,* ..., %..* Take arbitrary 
g~W and ~eF*. Then g=! img~ for some sequence gf i supp# , i ;  Therefore 

J~cx~ 

there exists M 1 > 0 such that 

LI gill < M1 for all j = 1, 2,.. . ,  (1.3) 
and so by (1.2), 

ge* =(!im j~oo gj) j~oolim e k(nij) = j~oolim gj ek-(,ij) . (1.4) 

But ~ ~'e("~pEI'- , i j  and F,~j~F* as j ~  oo in the natural topology of m*-dimensional 

subspaces of R m. This together with (1.4) implies that g e k e F  for all k 
= 1, 2,.. . ,  m* and so 

gF* =F*  for any geW. (1.5) 
We shall now show that 

#(W) = 1. (1.6) 

Indeed, for any closed subset Q c SL(m, R), 

l i m ~ p  #,,(Q) < #(Q) (1.7) 

(see [1], Theorem 2.1). Taking 

Qk = U supp kt,, 
/_->k 

one obtains from (1.7) that 

#(Qk) = 1 for all k = 1, 2,.. . ,  

where .4 is the closure of the set A. 
Therefore 

supp # c (~ Qk = W 
k = l  

that proves (1.6). 
It remains to show that Jr is everywhere dense. First, notice that J/~r is 

not empty. Indeed, it is easy to see that, for example, the normalized Haar 
measure on the group SO(re, R) of orthogonal matrices with determinants 
equal one, belongs to JC/~r' 

Now take arbitrary # e ~  and t/EJ//~r. Define 

then #,e.//{~ since supp #n =supp #U supp t/. Besides, # , ~ #  in the weak sense as 
n~oo.  This completes the proof of Theorem 1.1. 

The main result of the present section is the following 

Theorem 1.2. Let  #~Jgir" For any sequence of  measures #ke~///{ such that 

# k ~ #  in the weak sense as k--*oo (1.8) 
and 

lim sup ~ ln(]lgU) #k(dg) = 0 (1.9) 
N~oo k {gzllgll _->N) 
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one has 
Au--*A u as k---to% (1.10) 

where A,  is defined in (0.1). 

Remark 1.1. A partial case of Theorem 1.2 is proved in [6]. 

Proof of Theorem 1.2. If g~SL(m,R) and [[g][ =mm.ax[g j  then one can easily 

check that ][g-~[I < [[g[],,-1. Since all matrix norms are equivalent then 

IIg-lll _-<K ]lgll m-1 

where K depends just on the norm II. II but not on g. This together with (1.9) 
gives that also 

lim sup j" ln(qlg-111)#k(dg) =0. (1.11) 
N~oo k {g:lLgll >_-N} 

Theorem 1.1 asserts that J//ir is an open set. Since #eJ//~r then (1.8) implies 
that #k6J//~r for all k greater than some k 0. Without loss of generality we can 
assume that #k~J/r for all k =  1, 2 , . . . .  

Define the function p(g, 4) on the product of SL(m,R) and the projective 
space pm-~ by the formula 

IlguN 
p(g, i ) - - in  Ilul~' (1.12) 

where the vecto~ u~Rm\{0} and its scalar multiples represent after idenfication, 
the point ~epm-1. 

Employing Theorem 8.5 of [4] we obtain that 

AuK = ~S P(g, 4) #k(dg) Vk(d~), (1.13) 

for any probability measure v k on pro-1 satisfying the equation 

(1.14) flk * Vk ~Vk~ 

where #k* Vk is the measure on pro-1 defined by the equality 

~f(~)#k * Vk(d~)= ~ f  (g~) #k(dg)Vk(d~) (1.15) 

which holds for all Borel functions f on p,,-1. Here g ~ p , , - 1  denotes the 
result of applying g~SL(m,R) to ~ p , , - 1  according to the natural action of 
SL(m,R) on pro-1. 

The space pro--1 is a compact one, hence there is a subsequence ki~oo and 
a probability measure v on pro-1 such that 

Vki--~V in the weak sense as i--*oo. (1.16) 

This together with (1.8), (1.15) and the theorem on the weak convergence of 
product measures (see, for instance, Theorem 3.2 in Chapter 1 of [1]) imply 
that 

# k * V k ~ # * V  in the weak sense as i--*~. (1.17) 
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Therefore by (1.14) and (1.16), 
# , v = v .  (1.18) 

Hence by the Theorem 8.5 of [4] it follows that 

Au = 55 P(g, {) p(dg) v(d ~) (1.19) 

and this expression does not depend on the measure v provided it satisfies 
(1.18). 

Notice that if geSL(m, R) then 

ln[Ig]t>0 and lnHg-l l l>0.  

Indeed, []g]l >spec radg>lde tg l  1/m =1. Since g- leSL(m,R)  then the second in- 
equality in (1.26) also follows. 

It is easy to see that 
- In  tlg-lll =<p(g. g)<ln ]lgH (1.21) 

for any geSL(m,R) and {epm-1. 
Define the sequence of functions PN(g, {)=max(-N,  min(N,(g, {))). For N 

- -1 ,2 , . . . .  Set 
Au u = 5~ PN(g, {) #(dg) v(d{). (1.22) 

The numbers A N are defined in the same way by substituting #k for u in # k  A 

(1.22). 
By the theorem on the weak convergence of product measures ([13, Chap- 

ter 1) and (1.17) it follows that 
l imA N = N (1.23) 
i-+oo #ki An. 

Now by (1.13), (1.19), (1.21) and (1.22) it follows that 

IAuk _A,[< = [Auk _ AN[ +sup  5 ln(l]gl[)#,(dg) 
n {g: Ilgll- ->ely} 

+sup ~ ln(llg-~ II) #,(dg). (1.24) 
n {g: iig-*ll __>eN} 

Setting ki--+ oo and using (1.23) and then letting N-+oo one obtains by (1.9) and 
(1.11) that 

lim [A,-A,k[ =0. (1.25) 
i--+ OO z 

Actually, we have proved that from any sequence of integers f~ such that 
f ~ o o  as i~oo  one can choose a subsequence {f~j} with the property 

Autlj--+A~, as j ~  av. 

This enables us to assert that (1.25) holds for any subsequence {k~}, completing 
the proof of (1.10). 
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w 2. Perturbations of a Single Matrix 

First consider the following counterexample which shows that (0.4) is not 
always true. Set 0) (0 ;) 

a -  1 , a > 0  and J =  

Let #= be the family of the probability measures on SL(2, R) defined by the 
formula 

#=({A})= l - e  and #=({J})=e, 

where {A} and {J} are the sets containing one element A and J, respectively. 
Clearly, #=~#o in the weak sense as e~0,  where #o is concentrated in the 

one point A. But we shall see that A :  defined by (0.1) does not converge to 
A,o. Namely 

Proposition 2.1. Let Xf, X~2 .... be identically distributed independent random 
matrices with the common distribution #= then 

A : = 0  if l>e>O and A,o=[lnal.  

Remark 2.1. The counterexample is based on the property of the matrix J to 
exchange the expanding and contracting directions of the matrix A. Similar 
examples can also be built in the multidimensional case. This is the only effect 
I know which results in the discountinuity of A, in #. 

Proof of Proposition 2.1. It is easy to see that #=~J/fir (but, of course, #0~JC'ir 
that distinguishes this case from the one of w 1). Let e and f be the points of p1 
represented by the vectors (0, 1) and (1,0), correspondingly. Set v=�89 
where b e and 6: are probability measure on Pa concentrated in e and f, 
respectively. Clearly, for any e 

fle*V=V 

and so by Furstenberg's formula (1.19) one computes readily that A : - - 0 .  
On the other hand, obviously, A:=lnspecradA=l lna l  that comples the 

proof. 
Now we shall prove that if the perturbation of a matrix A is "local" in 

some sense then (0.4) still holds. 
Let 6(A) be the probability measure concentrated in the one point 

AeSL(m,R). By the spectral radius theorem (see [9]), 

A(A) - Ao,A~ = in specrad A = in max 12 il, (2.1) 
" ' l < _ i < m  

where 2i, ..., 2 m are the eigenvalues of A. Set 

~(A) = {gsSL(m, R ) : / g - A l l  _-< r}. 

The main result of this section is the following: 

Theorem 2.1. For any matrix AeSL(m,R) there exists a number r (A)>0 such 
that if 
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#geM// and supp#k ~ Vr(A)(A) for all k =  1,2,... (2.2) 
and 

#k~b(A)  in the weak sense as k~o�9 
then 

(2.3) 

A . - ~ A ( A )  as k~oQ. (2.4) 

Remark 2.1. Let 2D. . . ,2  m be eigenvalues of A such that 1211>12z]>...>[2m[ 
then A(A^/ ' )=lnspecradA ~ =  ~ ln[2~l, where, recall, A ^~ is the /~-th ex- 

1<i<~ 
terior power of A. Let A 2 ~  be defined by (0.10) with/z k substituted for # then 
one can easily generalize Theorem 2.1 to obtain that A ~ - ~ A ( A  ~ )  as k--.oo 
for all ~=1 ,2 , . . . ,m ,  provided (2.2) and (2.3) are satisfied. Since by [10J the 
number A,~,~ is equal to the sum ~ 2 (~ of the biggest characteristic ex- 

1<i_<~ 
ponents of the product of independent matrices with the common distribution 
#k then 2~--,lnl2il as k ~ o e  for all i= l , . . . ,m .  This can be interpreted as the 
stability of the absolute values of eigenvalues of a matrix with respect to 
random perturbations that complements the classical result about the con- 
tinuous dependence on the matrix of its eigenvalues (see [9]). 

For the proof of Theorem 2.1 we shall need some auxiliary results from the 
matrix theory. 

Let Fm~ x and Fmi n be the eigenspaces of the matrix A corresponding to the 
eigenvalues having absolute values equal to the spectral radius of A and less 
than it, respectively. Clearly, Rm=Fmax+Fmin and any vector ( e R  m has the 
unique representation 

(=Hm,x~ +Hmi,~ , (2.5) 

where ff/max~@Fmax and//minff~Fmin. We shall need 

Lemma 2.1. There is a natural N(A)>0  and a number r (A)>0 depending on the 
matrix A such that if matrices B i have the property: BieV~(A)(A ) for all 
i = 1,..., N(A) then 

BN(A)...BI U(A) ~ U(A), (2.6) 
where 

U(A)={~ERm: IlHm.x([I > I[Hmin~H}. (2.7) 

Proof. If NAIl ~ r > 0  and Bi~V~(A ) then, clearly, IlBilt ~2IIA[I and so 

IIBw...B 1 --ANI[ ~ 2  N-11[AIIN-INr (2.8) 
for any natural N. 

From the definition of Fma x it is easy to see that for each to>0 there is 
C~>0 so that for any ~Fmax, 

IIAN~II ~ C~ e(A(A)-K)N 11311 for all N =  1, 2 , . . . .  (2.9) 

On the other hand, by the definition of Fmi n one can find ~>0  and C > 0  
such that for any t/eFmi,~, 

IlZNt/l/_-< ~e(a(A)-~')Nllr/ll for all N =  1, 2, . . . .  (2.10) 
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By (2,8) and (2.9) we obtain for B1, . . . ,BNeV,(A ) and ~eR m that 

[[HmaxBN...B1 ~ll >= IIHmaxAN ~ll - II/-/max(BN...B1 --AN)~H 

> C~e(A(A)-~)N [i//ma~ ~11 

-[lllmaxlt(211AII)N-1Nr(l111~,x~ll + I]/--/minff][ ) (2.11) 

since ffImaxAN=ANl-lmax and I1~11 <[I//maxffll +ll//min~][, where Hma ~ is the pro- 
jection operator acting according to (2.5). 

Similarly, by (2.8) and (2.10) 

[]HminBN...B~ ~11 ~ IIl-lminAN ~ll + II11min(BN...B1 -- AN ~) 

< ~e(A(A)-~)N I]/-/minffl/ 

+ ll/Tm~xl1-1(2 IIAtl)N-1Nr(ItHm~x~tl + IlHmin~ll). (2.12) 

Now let ~EU(A) i.e. 11/Tr~x~l [ >ll/7min~l[. It is easy to see from (2.11) and 
(2.12) that in order to obtain 

I[HmaxBN...Bx ~]1 __> II HminBN...B 1 ~ll 

it suffices to find r, ~: and N such that 

CKe(A(A)-K)N >= ~e(A(A)-~,)N + 4[I/--/max II -1( 2 IIA II) N -1Nr. (2.13) 

To do this one can take K=~, then choose N(A) so that N(A) 
> 27-1 ln(2 C C ~ )  and, finally, set 

Z 

1 (A(A)-~)N(A) 1 r(A)=min (IIAII, 8 - - ~ e  (21lZll)  -N(A)). 

Lemma 2.2 For any e > 0 there is a natural K(s)> 0 and a number r(e, A)> 0 such 
that if  Bi~V,(,,A)(A ) for all i= 1, . . . ,N(e,A), with 

N(~, A) = K(e) N(A), (2.14) 
then 

I1/ImaxBN(e,A)'" .B1 ~ll ~ e(A(A)-e)N(e'A) II//m.x Cll (2.15) 

provided ~U(A) ,  where N(A) and U(A) are defined in Lemma 2.1. 

Proof By (2.11) it follows for ~ U ( A )  that 

][HmaxBN...B1 ~ll > ( c ~  e(A(A) -~c)N _ 2 ]] Hmax[ I (2 ][A[]) N - 1 N r )  []/-/max ~ [I 
: e(A(A) -- e)N 1]//max ~ [I (C~: e (e - ~)N 

- 2  ][HmaxH (2 liAI])N-1Nre(*-A(A))N). (2.16) 

Now take ~:=~, then choose K(e) such that 

K(e) > 2(,N(A)) --1 ln(2 Cg2 ~) 
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and, finally, set r(e,A)= min(r(A), re), where 

re =�89 U Hmax[ ] -1 .  (2 IIA II) 1 -K(ON(A)(K(e)N(A)) -1 e (a(a)- ~)~:(~)ma) 

and r(A) is defined in Lemma 2.1. 
Then, clearly, (2.15) is satisfied. 

Proof of Theorem 2.1. Let the number r(A) of Theorem 2.1 be the same as in 
Lemma2.1.  Take an arbitrary e > 0  and by Lemma2.2  find K(e) and 
r(e, A) <= r(A) satisfying (2.14) and (2.15). 

From (2.2) and (2.4) it follows that for each c~>0 there is a natural k(c~,0 
such that 

#k(Vr(A)(A)\Vr(e,A)(A))<=O: for any k>k(a, e). (2.17) 

It is easy to see that there is q(N, r )> 0 so that 

][Brv.--BI ~11 ~ q(N, r)[[ ~1[ (2.18) 

for any N =  1, 2, ... and (eR",  provided B1, ...,BN~Vr(A ). 
Define N(e,A) by (2.14) then it follows from (2.6) that 

BN(~,A)...B 1 U(A) c U(A) (2.19) 

provided B1,...BN(~,A)e V~(A)(A ). Hence by (2.18) for any ~E U(A). 

2 II FlmaxUN(~,A)...Bl~ll ---IIHEaxBN(e,A) "" .B1 ~11 + IIHEi, BN(~,A),..B1 ~II 

> IIBN(~,A)...BI(II 

>q~ [I ~ll > q~ I[//maxl1-1. [I//max(tl ' (2.20) 

where we put q, = q(N(e, A), r(A)). 
Now let X(lk), ..., X(~), ... be independent random matrices with the common 

distribution #k" By (2.17), 

pN,k=P{X(lg)~v~(~,A)(A), (g) . . . ,X  N ~V,(~,A)(A)} >(1 _a)N, (2.21) 

for any k>k(e,e) and N = 1 , 2 , . . . ,  where P{.}  denotes the probability of the 
event in brackets. 

Introduce the events 

Qi(k ) = Iv(k) = ( '~ iN(e,A)+j~ Vr(e,A) for all j = 1, ..., N(e, A)} 

and define the random values M(L, k) as follows 

L 
M(L, k)= ~ Za,(k), (2.22) 

i=1 

where Za denotes the indicator of the event Q. Then by (2.15) and (2.20) we 
conclude that 
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1 
In (g) (g) L-1 M(L,  k)(A(A) - e) IIl]maxXL.N(~,A)'"Xl ~ll--> L . N ( e , A )  

+(LN(e, A))-: (L - M(L, k))ln(�89 q, 11 Hm~xU -~ II Hm~x ff II ) (2.23) 

for any (G U(A). 
By the s t rong law of large numbers  (see [-2]) with the probabi l i ty  one, 

M(L, k) 
L -'9"PN, k a s  L ~  o% (2.24) 

where Pink is defined in (2.21). 
Since 

x(~) .x~k)ll > [[Hmaxll-x (k) (k) I[HmaxXL.N(~,A)'"XI II L'N(e,A)'" 
and 

1 
Auk = lim 

L-,~ L .  N(e ,A)  
(k) (k) 

In IIXLN(~,A)...X: It 

then by (2.21), (2.23) and  (2.24), 

lim in f A,,,. => (1 - c0 N(~' A)(A (A) - e) + (1 - (1 - ~x) N (*'A)) I n (�89 q~ [I if/max I I - 2). 

Here  letting e--*0 one obtains  

l im inf Auk _> A(A) - e 
k~cc 

and since e is arbi t rar i ly  small  then 

lim inf Auk > A(A) = A~(A). 
k ~  

(2.25) 

By the general  assert ion (0.5) 

l im sup A. k <= A~(A)' 

that  together  with (2.25) gives (2.4). 

Remark 2.2. One can see f rom the p roo f  that  the assumpt ion  on x]k),. . . ,  X~) , . . .  
to be independent  is too strong. Some s ta t ionar i ty  and  ergodicity condi t ions 
on this matr ix  valued process would be enough. 
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