Zeitschrift fur

Z. Wahrscheinlichkeitstheorie verw. Gebiete Wahrscheinlichkeitstheorie
61, 83-95 (1982) und verwandte Gebiete

© Springer-Verlag 1982

Perturbations of Random Matrix Products
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Swmmary. If X,,X,,... are identically distributed independent random
matrices with a common distribution p then with the probability 1 the limit

.1
A,=lim-In|X, ... X,|
nooo

exists. The paper treats the problem: is it true that A4, —A, if g —u in the
weak sense?

§ 0. Introduction

Let X,,X,,... be identically distributed independent random m x m matrices
with a common distribution g on the real unimodular group SL(m, R). The
theorem of Furstenberg and Kesten (see [3] and [4]) establishes that with the
probability 1 there exists

1
A,=1lim Zln X, X, ,... X, 0.1)
provided
fln gl udg) < oo, 0.2)

where 4, is a constant depending only on p. Now let {u,} be a sequence of

probability measures on SL(m, R) satisfying (0.2) such that
H,—p 1n the weak sense as k- co. (0.3)
This paper studies conditions under which (0.3) yields

A,—A, as k—ooo. (0.4)
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The products of random matrices naturally arise in certain models of
physics (see, for instance, [5] and [8]). The assertion A4,>0 plays there a
decisive part. But physical results have to be stable under perturbations of
parameters of a model since they cannot be determined exactly. In particular,
it is relevant to the study of a probability distribution of some physical process
that leads directly to the problem of the present paper.

It is easy to see that under the “equiintegrability” condition (1.9) of §1
below, (0.3) always implies

limsup 4, <4,. 0.5)

k-0

Indeed, let the norm satisfy the property
lA-B| =|4]- B (0.6)
for any two matrix 4 and B. Then

aP=fIn|g,...g.| udgy)... ndsg,) ©.7)

is a subadditive sequence ie. all ™™ <a{’ + 4 and that is known to imply

1
A,=inf-=a® and A, =inf- a(”) (0.8)

U
n>1H1 n>11

By (0.3) it follows that a%’—a{” as k—co and so

o ™ — @ —
limsup 4, =limsup 1nf a,) < inf — 11msup ay) = mf na A4,

ko0 k—oo nz1l nz1M koo

that gives (0.5).

The inequality (0.5) does not help even in the physical problem referred to
above since the case 4,>0 and 4, =0 for all k, does not contradict (0.5) (and,
indeed, this case occurs (see §2)). But in the special case when A4,=0 the
relation (0.5) implies (0.4) since, clearly, A, =0 for any distribution g, on
SL{m, R). In particular, it follows from [10] that A,=0 when the support of u
contains in the subgroup of unipotent matrices, solvmg the problem for this
case. In this paper we shall improve (0.5) to (0.4) for some other classes of
measures p.

We shall consider products of rardom matrices only with determinants
equal to one, but actually this is no restriction. Indeed, if X,,X,,... are
independent random matrices with a common distribution # on the group
GL(m, R) of nondegenerate matrices, then one can write
n|l—% X |

n

|(d t X, (det X )

—lnllX Xl = + Zln|detX|1/'"

If [In|detg|n(dg)<oo then by the strong law of large numbers (see [2])
with the probability 1 as n— oo,

n

1
- Y In|det X,|—{1n|det g| n(dg). 0.9)
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The right hand side of (0.9) is continuously dependent on n with respect to the
weak convergence of measures. Therefore the remaining problem concerns just
the product of the matrices

Xy X,
(det X )"/™ (det X,)1/m” "

having determinants equal to one.

Actually, this paper studies the dependence on the distribution u of the
biggest Lyapunov characteristic exponent in the sense of Oseledec (see [11])
for products of independent matrices.

To treat the other characteristic exponents one notices that by [4] with the
probability one there exists the limit

1
A F=Tim =1n | X .. X P4, (0.10)

n-oo 1

where X,..., X, ... arc thc same as in (0.1) and g"# denotes the 4th exterior
power of geSL(m, R). According to [10] the number A" is equal to the sum
of the biggest 4 characteristic exponents. Hence if 4, #—A,"# as k—co for all
£=1,2,...,m—1 then one obtains the convergence of all characteristic ex-
ponents, as well. The minimal characteristic exponent )y"f““ can also be repre-

sented with the probability 1 as

1

| i
Jmin— —lim ~In | X7 X, == A
n

R— 0O

where n(I')=u({g: g~'eI'}) for any Borel set I' < SL(m, R).

This paper consists of two sections. In § 1 we shall show that (0.4) is true
provided the support of the measure p is not contained in a reducible sub-
group of SL(m, R). We shall see that such measures form an open everywhere
dense set ie. (0.4) holds in a “generic” case. Nevertheless, we shall see in §2
that (0.4) is not always true. We exhibit an example suggested by Furstenberg

. . . 0 . .
with u concentrated in one point (g a“1> and show that (0.4) fails for it. But

still, we shall prove in §2 that if 4 concentrated in one point AeSL(m, R) and
the measure g, have supports contained in some neighbourhood of 4 then (0.4)
is true. Moreover in this case one obtains some assertion on the stability of
eigenvalues of the matrix A with respect to its random perturbations.

In view of the papers [7] and [12] the results can be extended to the case
when X,,X,,... form a matrix-valued Markov stationary process. Using the
theory of representations similar results can be proved for general semi-simple
groups in the spirit of [4].

Acknowledgement. The problem studied here is the generalization of a question suggested by A.
Katok who also pointed out 10 me the preprint [11] where (0.4) is proved for some examples. I
would also like to thank H. Furstenberg for a number of very useful discussions and remarks. I
appreciate very much the referee for certain suggestions improving the proofs of Theorems 1.1 and
1.2 and for pointing out to me the more simple proof (referred to Y. Guivarch) than the original
one for the counterexample of § 2.



86 Y. Kifer
§ 1. The “Generic” Case

Let us first specify some notions. All measures we consider in this paper are
Borel probability measures on the corresponding spaces. As above, we do not
indicate the domain of integration if an integral is taken over the whole space
under consideration. Suppose we are given a sequence of measures #, together
with a measure # on a topological space X. Then we say that », converges to 4
(ie. n,—n) in the weak sense if |f(x)n(dx)—[f(x)n(dx) for any bounded
continuous function f on X.

The constant 4, in (0.1) does not depend on a matrix norm and we shall
take some vector norm and a corresponding matrix norm satisfying (0.6).

A group G of mxm real matrices acts in a natural way on the m-
dimensional vector space R™ by left multiplication. The group G is called
irreducible if the only subspaces left fixed by all matrices of G are R™ and {0}.
Otherwise it is called reducible.

The real (m— 1)-dimensional projective space P"~! is obtained from R™ {0}
by identifying two vectors if each is a scalar multiple of the other. Clearly, if G
is a group of matrices, then the action of G on R™ induces the natural action
of G on P"1,

Let u be a probability measure on the real unimodular group SL{m, R) and
let G, be the smallest closed subgroup of SL(m, R) containing the support of
(supp u) which is the minimal closed set having y-measure equal one.

A space of all Borel probability measures on SL(m,R) we denote by ..
The space .# is a topological one with respect to the weak convergence of
measures.

Set '
My ={peM: G, is irreducible}.

The following result shows that the property pue.#,, is a “generic” one.
Theorem 1.1. The set .#,, is open and everywhere dense in M.

Proof. First let us show that .4, is open in .#. To do this we shall prove that
M= M\ M, is a closed set.

Consider a sequence of measures g, such that
u,€M, and p,—p in the weak sense as n— oco. (1.1

By the definition, the subgroup G, leaves invariant some nontrivial m,-dimen-
sional subspace I, of R™ i.e. 0<m,<m. Let e, €%, ...,e% be an orthonormal
basis of I,. Clearly, one can choose a subsequence {n;} such that for some
m* >0 we have m, =m* for all i=1,2,... and there exists

lim e =e¥ forany k=1,2,..., m* (1.2)

Set

W ={gesupp u: there are a subsequence {n; } of {n;}
and matrices g;esupp Ha, such that }Hg g;=g}

where the convergence is taken with respect to a matrix norm.
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Let I'* be the subspace generated by the basis e¥, e%, ..., e%, Take arbitrary
geW and {el™ Then g=limg; for some sequence g;esuppu, . Therefore
jooo J

there exists M, >0 such that

lgl <M, forall j=1,2,..., (1.3)
and so by (1.2),
ger =(}1£r£10 g) Jlirg eliy =Jlg(r)10 geri. (1.4)

But g; e("h €l, and I -I'* as j—oo in the natural topology of m*-dimensional

subspaces of R’" Thls together with (1.4) implies that gefel™ for all k
=1,2,...,m* and so
gl*=Tr* for any geW. (L.5)
We shall now show that
u(W)y=1. (1.6)

Indeed, for any closed subset Q < SL(m, R),

limsup p, (Q) = 1(Q) (1.7)
(see [1], Theorem 2.1). Taking
= supp s,
one obtains from (1.7) that

w@)=1 forall k=12, ...,

where A is the closure of the set A.
Therefore

o0
suppuc [} Q=W
that proves (1.6).
It remains to show that .#,, is everywhere dense. First, notice that .#,, is
not empty. Indeed, it is easy to see that, for example, the normalized Haar
measure on the group SO(m,R) of orthogonal matrices with determinants

equal one, belongs to /..
Now take arbitrary pe.# and ne.#,,. Define

_ (1 1) n 1
= n 1 n’?
then u,e.#,, since supp p,=supp pusupp. Besides, y,—p in the weak sense as
n—co. This completes the proof of Theorem 1.1.

The main result of the present section is the following

Theorem 1.2. Let pe.#,, . For any sequence of measures u,e.# such that

w,— U in the weak sense as k— oo (1.8)
and

lim sup | In(|g]) p(dg)=0 (1.9)

N—oo k(g lgll 2N}
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one has
A,—~A4, as k—oo, (1.10)

where A, is defined in (0.1).

Remark 1.1. A partial case of Theorem 1.2 is proved in [6].

Proof of Theorem 1.2. If geSL(m,R) and |g|| =mmax |g;;| then one can easily
L

check that ||g~|| £ g™ . Since all matrix norms are equivalent then
g~ 1<K |lg|™*

where K depends just on the norm |.|| but not on g. This together with (1.9)
gives that also
lim sup [ In(|g™"]))mldg)=0. (1.11)

Nooo k {g:lgll 2N

Theorem 1.1 asserts that .#,, is an open set. Since pe.#;, then (1.8) implies
that y,e.#,, for all k greater than some k,. Without loss of generality we can
assume that y,e.#; for all k=1,2,....

Define the function p(g, &) on the product of SL(m,R) and the projective
space P"~! by the formula

lgull

M&@=m]mp (1.12)

where the vector ue R™\ {0} and its scalar multiples represent after idenfication,
the point £eP™ 1.
Employing Theorem 8.5 of [4] we obtain that

A, =[{ p(g, &) m(dg) vi(d?), (1.13)
for any prbbability measure v, on P"~! satisfying the equation
Up V=V, “ (1.14)
where p, * v, is the measure on P"~! defined by the equality

§ 1 (O e vildO) =[] 1 (%) mldg)vi(d?) (1.15)

which holds for all Borel functions f on P™~! Here géeP™ ! denotes the
result of applying geSL(m,R) to £eP™~! according to the natural action of
SL(m,R) on P"~*.

The space P"~! is a compact one, hence there is a subsequence k;— o0 and
a probability measure v on P"~! such that

v,,—Vv in the weak sense as i—co. (1.16)

This together with (1.8), (1.15) and the theorem on the weak convergence of
product measures (see, for instance, Theorem 3.2 in Chapter 1 of [1]) imply

that
Wy, * Vi~ 1 * v in the weak sense as  i— 0. (1.17)



Perturbations of Random Matrix Products 89

Therefore by (1.14) and (1.16),
Urv=v, (1.18)

Hence by the Theorem 8.5 of [4] it follows that
A,={[ p(g, &) w(dg) v(d&) (1.19)

and this expression does not depend on the measure v provided it satisfies
(1.18).
Notice that if geSL(m, R) then

Injgl20 and Infg~"(20.

Indeed, |g| =specrad g=|detg|/™ =1. Since g~*eSL(m, R) then the second in-
equality in (1.26) also follows.

It is easy to see that
—Injlg7| =p(g- O <Injg| (1.21)

for any geSL(m,R) and éeP™ !,
Define the sequence of functions py(g, £)=max(—N, min(N,(g, £))). For N

=1,2,.... Set
AN = ([ py(g, &) u(dg) v(d?). (1.22)

The numbers A} are defined in the same way by substituting g, for u in
(1.22).
By the theorem on the weak convergence of product measures ([1], Chap-
ter 1) and (1.17) it follows that
lim Aﬁ’k. =Al. (1.23)

Now by (1.13), (1.19), (1.21) and (1.22) it follows that

J/luki—A,llél/lﬁki—A,’YIJrSUP{ !Hj; eN}ln(IlgH)un(dg)
n o {g:llgllz

+sup [ In(lg7)p,(de). (1.24)

" sl 2eM)

Setting k;— oo and using (1.23) and then letting N — oo one obtains by (1.9) and
(1.11) that
lim[4,—4, |=0. (1.25)
Actually, we have proved that from any sequence of integers #; such that
/;—co as i— oo one can choose a subsequence {/ij} with the property

—-A, as j—o .
Awi_ u J

7

This enables us to assert that (1.25) holds for any subsequence {k;}, completing
the proof of (1.10).
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§ 2. Perturbations of a Single Matrix

First consider the following counterexample which shows that (0.4) is not

always true. Set 0 0 —1
a -—
A=<O a‘l)’ a>0 and J=(1 0).

Let 1* be the family of the probability measures on SL(2,R) defined by the
formula
w({dh)=1-¢ and p({J}h=¢,

where {4} and {J} are the sets containing one element A and J, respectively.

Clearly, u*—p° in the weak sense as e—0, where u° is concentrated in the
one point A. But we shall see that A, defined by (0.1) does not converge to
A,0. Namely

Proposition 2.1. Let X[ X5,... be identically distributed independent random
matrices with the common distribution u® then

A,=0 if 1>e>0 and A,=|lnal

Remark 2.1. The counterexample is based on the property of the matrix J to
exchange the expanding and contracting directions of the matrix A. Similar
examples can also be built in the multidimensional case. This is the only effect
I know which results in the discountinuity of 4, in p.

Proof of Proposition 2.1. It is easy to see that u‘e.#;, (but, of course, u’¢.#,
that distinguishes this case from the one of § 1). Let e and f be the points of P!
represented by the vectors (0, 1) and (1, 0), correspondingly. Set v=%(6,+4,),
where J, and 6, are probability measure on P' concentrated in e and f,
respectively. Clearly, for any ¢

Wxy=vy

and so by Furstenberg’s formula (1.19) one computes readily that 4,.=0.

On the other hand, obviously, 4 ,=Inspecrad A=|lna| that comples the
proof.

Now we shall prove that if the perturbation of a matrix 4 is “local” in
some sense then (0.4) still holds.

Let 6(4) be the probability measure concentrated in the one point
AeSL(m, R). By the spectral radius theorem (see [97]),

A(A)= A4, =Inspecrad 4 =In lrglaﬁxmuil, 2.1)

where 4,,...,4,, are the eigenvalues of 4. Set
V,(A)={geSL(m,R): ||g— A =r}.
The main result of this section is the following:

Theorem 2.1. For any matrix AeSL(m,R) there exists a number r(A)>0 such
that if
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weM and supp <V, 4(4) foral k=1,2,... (2.2)

and
w,—0(A) in the weak sense as  k— o0 (2.3)

then
A, —A(A) as k—oo. (2.4)

Remark 2.1. Let A,,...,4, be eigenvalues of A such that |1,]|=(A,]=... =4,
then A(A"#)=Inspecrad A*#= ) In|4,), where, recall, A*# is the p-th ex-

1<iZ4
terior power of 4. Let A x4 be defined by (0.10) with p, substituted for u then
one can easily generahze Theorem 2.1 to obtain that Ax—A(A"7#) as k—o0
for all 4=1,2,...,m, provided (2.2) and (2.3) are satlsfled Since by [10] the

number A,z is equal to the sum 1<Z< A of the biggest characteristic ex-
=15

ponents of the product of independent ﬁl/;trices with the common distribution
ty then AP —In|4] as k—oo for all i=1,...,m. This can be interpreted as the
stability of the absolute values of eigenvalues of a matrix with respect to
random perturbations that complements the classical result about the con-
tinuous dependence on the matrix of its eigenvalues (see [9]).

For the proof of Theorem 2.1 we shall need some auxiliary results from the
matrix theory.
Let I, and I, be the eigenspaces of the matrix 4 corresponding to the
eigenvalues having absolute values equal to the spectral radius of 4 and less
than it, respectively. Clearly, R*=I_ +I . and any vector {€R™ has the

unique representation
é/:HmaxC—l_HminC’ (25)

where IT (el . and Il (el . . We shall need

min*

Lemma 2.1. There is a natural N(A)>0 and a number r(4)>0 depending on the
matrix A such that if matrices B; have the property: BeV, ,(A) for all
> N(A) then
Byay---B U(A)= U(4A), (2.6)
where
U(A)={LeR™: M LNl Z T i Ol - 2.7)
Proof. If | A|| zr>0 and B,eV,(A) then, clearly, | B,|| 2|/ 4] and so
|By...B, —A¥| 2V -1 4N IN¥ (2.8)
for any natural N.

From the definition of I
C,. >0 so that for any éel]

it is easy to see that for each x>0 there is

max

|ANE = C D=8 E forall N=1,2,.... (2.9

On the other hand, by the definition of I
such that for any el ;

min?

|AVy| < Ce 4D =-9N |y forall N=1,2,.... (2.10)

one can find y>0 and >0

min
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By (2.8) and (2.9) we obtain for B,,..., ByeV,(4) and {eR™ that

Ty By By {| Z M ooy AV Ll = | 1 (Byy... B, — AN |
2 Ce =N L

M| QAN T NP L+ 1 il (22110)

max

since IT,, AV =AI . and ||| S| H Il + 1.0l where IT_, is the pro-

jection operator acting according to (2.5).
Similarly, by (2.8) and (2.10)

1T i BBy Ll S 1T i AN + 1 (B . By — AN )
\ S CeOINIIT |
I | T QIANY T N (M g L+ 1 ). (212)

Now let {eU(A) ie. |H,, 0l 2.l 1t is easy to see from (2.11) and
(2.12) that in order to obtain

M1 yax By- - By Il Z I i By By Ll

max min

it suffices to find r, k and N such that

C, U -PN > CeA=-nN 4T | =1(2[|4])¥ - Nr. (2.13)

To do this one can take sz, then choose N(4) so that N(A)
=2y~ In(2CC}) and, finally, set

v/2

A ~Dw

ry=min (141, s 40 gy -en).

Lemma 2.2 For any >0 there is a natural K(g)>0 and a number r(g, A) >0 such
that if B;eV,, 4(A) for all i=1,...,N(e, A), with

N(e,A)=K(g) N(4), (2.14)
then

| s Byt By | Zed@-9Ne g 2.15)

provided (eU(A), where N(A) and U(A) are defined in Lemma 2.1.
Proof. By (2.11) it follows for {eU(A4) that
T g By By L[| Z(C o =N 2 T NN HAINY T NPT,
maxgn (CKe(a_K)N
=2 o [ LAY~ N 7= ADR), (2.16)

max

— A4y 8N HH

Now take x:%, then choose K(g) such that
K(e)=2(eN(4)) "' In(2C,;
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and, finally, set r(e, A)=min(r(4),r,), where

1= 3T | =2 AN KOVA(K () N(A)) ! et - KNG

max I

and r(A4) is defined in Lemma 2.1.
Then, clearly, (2.15) is satisfied.

Proof of Theorem 2.1. Let the number 7(4) of Theorem 2.1 be the same as in
Lemma 2.1. Take an arbitrary ¢>0 and by Lemma 22 find K(¢) and
r(e, A) <r(A) satisfying (2.14) and (2.15).
From (2.2) and (2.4) it follows that for each «>0 there is a natural k(o &)
such that
Vo (A\Vso () S forany k2 k(e e). (2.17)

It is easy to see that there is g(N,r)>0 so that
IBy...B (Il 2 (N, 0L (2.18)

for any N=1,2,... and {eR™, provided By, ..., ByeV.(A).
Define N(g, A) by (2.14) then it follows from (2.6) that

By, ay-- B UA) = U(4) (2.19)
provided By, ...By, 4,€V,4(4). Hence by (2.18) for any {eU(A).
2 “HmaxBN(a,A)' g ’Bl C” ; ”HmaxBN(e,A)' . 'Bl C“ + ”HminBN(a,A)' . 'Bl CH

2 1By s, 4)---B1 L
24, 10112 G, 1T |l 1T (2.20)

where we put g, =q(N(s, A4), r(A)).
Now let X%, ..., X%, ... be independent random matrices with the common
distribution p,. By (2.17),

Bk =P{X{Pe Ve ay(A), .o, Xye Ve aA)} 21— )", (2.21)

for any k=k(a,e) and N=1,2,..., where P{.} denotes the probability of the
event in brackets.
Introduce the events

Q.(k)= {Xyz(v)(a,A)HEVr(a,A) for all j=1,...,N(e, A)}

and define the random values M(L, k) as follows

M(L, k)=

i

D=

Yoy (2.22)

where y, denotes the indicator of the event Q. Then by (2.15) and (2.20) we
conclude that
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1
LN Ay P e X v XL 2 L7 ML B(A(A) —e)

+H(LN(e, A) 7 (L= M(L, ) InGq, 1T gy | IHT 0 {1 (2.23)

for any {eU(A).
By the strong law of large numbers (see [2]) with the probability one,

M(L, k)
'“'—*I:*—‘)BVJ( as L- 0, (224)
where B, , is defined in (2.21).
Since ) )
“X(L')N(S,A)"'X(l )” g “Hmax” -t HHmaxch-)N(e,A)"‘X(lk)“
and
A =1 ! In|X® x®
uk_LLn;lo LN—(S,A) 0| X7 e, X1

then by (2.21), (2.23) and (2.24),

lim inf 4,,, 2 (1 —a)"®(A(4) = &)+ (1~ (1 =)D NG, 1 M x| ~7)-

Here letting «—0 one obtains

liminf 4, 2 A(4)—e

and since ¢ is arbitrarily small then

liminf A, 2 A(4)= 4,0, (2.25)

By the general assertion (0.5)

limsup A, <4504,

that together with (2.25) gives (2.4).

Remark 2.2. One can see from the proof that the assumption on X%, ..., X%, .
to be independent is too strong. Some stationarity and ergodicity conditions
on this matrix valued process would be enough.
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