Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1982

Coexistence of the Infinite (*) Clusters: – A Remark on the Square Lattice Site Percolation

Yasunari Higuchi

Department of Mathematics, Faculty of Science, Kobe University, Rokko, Kobe, 657 Japan

Summary. We show that the critical probability p_c is strictly greater than 1/2 for the square lattice site percolation.

§1. Introduction

The bond percolation problem on the square lattice was solved by Kesten [1], that the critical probability equals 1/2. On the other hand, for the site percolation on the square lattice, no one doubts that $p_c > 1/2$, though it has never been rigorously proved. The essential idea of finding p_c was given by Sykes and Essam [5], but unfortunately the argument was not sufficiently rigorous. The best rigorous result for this problem is that $p_c + p_c^* = 1$ which was proved by Russo [4]. In this note, we prove that $p_c > 1/2$ by using arguments of Kesten [1] and Russo [3, 4].

Hereafter we consider the square lattice \mathbb{Z}^2 and the configuration space $\Omega = \{+1, -1\}^{\mathbb{Z}^2}$. For $0 \le p \le 1$, we denote by $P^{(p)}$ the Bernoulli probability measure on Ω , taking probability p of finding+spin at $\underline{x} \in \mathbb{Z}^2$. We say that $\underline{x} = (x_1, x_2)$ and $\underline{y} = (y_1, y_2)$ are nearest neighbours (and denote it by $\langle \underline{x}, \underline{y} \rangle$) iff $|x_1 - y_1| + |x_2 - y_2| = 1$. \underline{x} and \underline{y} are (*) nearest neighbours (we denote it by $\langle \underline{x}, \underline{y} \rangle$) iff max $(|x_1 - y_1|, |x_2 - y_2|) = 1$. Let \mathbf{L} be the sublattice of \mathbb{Z}^2 such that $\mathbf{L} = \{\underline{x} \in \mathbb{Z}^2; x_1 + x_2 \text{ is even}\}$. \mathbf{L} is isomorphic to \mathbb{Z}^2 . We say that $\underline{x} \in \mathbf{L}$ and $\underline{y} \in \mathbf{L}$ are \mathbf{L} -nearest neighbours [(*) \mathbf{L} -nearest neighbours] iff $|x_i - y_i| = 1$, i = 1, 2 [$|x_1 - y_1| + |x_2 - y_2| = 2$] and denote it by $\langle \underline{x}, \underline{y} \rangle_{\mathbf{L}} [\langle \underline{x}, \underline{y} \rangle_{\mathbf{L}}]$.

A sequence $\{\underline{x}_1, ..., \underline{x}_n\}$ of mutually distinct points in \mathbb{Z}^2 is called a (self avoiding) chain [(*)chain] iff $\langle \underline{x}_i, \underline{x}_j \rangle \Leftrightarrow |i-j| = 1[\langle \underline{x}_i, \underline{x}_j \rangle^* \Leftrightarrow |i-j| = 1]$, and is called a circuit [(*)circuit] iff $\{\underline{x}_1, ..., \underline{x}_{n-1}\}$ and $\{\underline{x}_2, ..., \underline{x}_n\}$ are chains [(*)chains] and $\langle \underline{x}_n, \underline{x}_1 \rangle [\langle \underline{x}_n, \underline{x}_1 \rangle^*]$. A subset Λ of \mathbb{Z}^2 is said to be connected [(*)connected] iff for any $\underline{x}, y \in \Lambda$, there is a chain [(*)chain] $\{\underline{x}_1, ..., \underline{x}_n\}$ in Λ with $\underline{x} = \underline{x}_1, \underline{y} = \underline{x}_n$. L-chain, L-connectedness, (*)L-chain, and (*)L-connectedness are defined in the same way.

Note that $\hat{A} = A \cap \mathbf{L}$ is (*)**L**-connected if A is connected.

The percolation probability $\Pi(p)$ is defined by

$$\Pi(p) = P^{(p)} \begin{cases} \text{there exists an infinite } (+) \text{ chain} \\ \text{including the origin} \end{cases}$$

The problem is to find the critical probability p_c ;

$$p_c = \inf\{p; \Pi(p) > 0\}.$$

Putting $p_c^* = \inf\{p; \Pi^*(p) > 0\}$, where

$$\Pi^{*}(p) = P^{(p)} \begin{cases} \text{there exists an infinite } (+^{*}) \text{ chain} \\ \text{including the origin} \end{cases}$$

we can easily see that $p_c^* \leq p_c$. Moreover, Russo proved the following;

Theorem (Russo [4]).

- (i) $\Pi(p)$, $\Pi^*(p)$ are continuous in $p \in [0, 1]$,
- (ii) $p_c + p_c^* = 1$.

The estimate $p_c \ge 1/2$ is the direct consequence of the above theorem. Here, we give a little sharper result;

Theorem 1. $p_c > 1/2$.

In 2, we prove an essential lemma whose statement looks rather trivial, and in 3 we prove Theorem 1.

§2. Sponge Percolation Problem

For any positive integers m and n, put

$$\Lambda^{+}(m,n) \equiv \{ \underline{x} \in \mathbb{Z}^{2}; 0 \leq x_{1} \leq m, 0 \leq x_{2} \leq n \},$$

$$\Lambda^{-}(m,n) \equiv \{ \underline{x} \in \mathbb{Z}^{2}; 0 \leq x_{1} \leq m, -n \leq x_{2} \leq 0 \},$$

$$\Lambda(m,n) \equiv \{ \underline{x} \in \mathbb{Z}^{2}; 0 \leq |x_{1}| \leq m, 0 \leq |x_{2}| \leq n \}.$$

A chain [(*)chain] in $\Lambda^{(\pm)}(m, n)$ is called a vertical cut [vertical (*)cut] in $\Lambda^{(\pm)}(m, n)$ if it connects the upper side of $\Lambda^{(\pm)}(m, n)$ with the lower side of $\Lambda^{(\pm)}(m, n)$, and if this chain [(*)chain] intersects with each horizontal side of $\Lambda^{(\pm)}(m, n)$ at only one point. A chain [(*)chain] in $\Lambda^{(\pm)}(m, n)$ is called a horizontal cut [horizontal (*)cut] if it connects the left side of $\Lambda^{(\pm)}(m, n)$ with the right side of $\Lambda^{(\pm)}(m, n)$, and if this chain [(*)chain] intersects with each vertical side of $\Lambda^{(\pm)}(m, n)$ at only one point. We can define a vertical [horizontal] L-cut [(*)L-cut] in $\widehat{\Lambda}^{(\pm)}(m, n) \equiv L \cap \Lambda^{(\pm)}(m, n)$ in the same way.

Finally, a (*)L-chain $\gamma \equiv \{\underline{x}_1, \dots, \underline{x}_k\}$ in $\widehat{\Lambda}^+(m, n)$ is called a weak vertical [horizontal] (*)L-cut if it connects $\{x_2=0 \text{ or } 1\}$ with $\{x_2=n-1 \text{ or } n\}$ [$\{x_1=0 \text{ or } 1\}$ with $\{x_1=m-1 \text{ or } m\}$], and both $\gamma \cap \{x_2=0 \text{ or } 1\}$ and $\gamma \cap \{x_2=n-1 \text{ or } n\}$ are single points. [$\gamma \cap \{x_1=0 \text{ or } 1\}$ and $\gamma \cap \{x_1=m-1 \text{ or } m\}$ are single points.]

76

Now let us define the sponge percolation probabilities as in the following;

$$a_p^{[*]}(m,n) \equiv P^{(p)} \{ \text{there exists a horizontal } (+[*]) \text{ cut in } \Lambda(m,n) \}, \\ a_p^{\pm [*]}(m,n) \equiv P^{(p)} \{ \text{there exists a horizontal } (+[*]) \text{ cut in } \Lambda^{\pm}(m,n) \}, \\ \hat{a}_p^{[*]}(m,n) \equiv P^{(p)} \{ \text{there exists a horizontal } (+[*]) \text{L-cut in } \hat{\Lambda}(m,n) \}, \\ \hat{a}_p^{\pm [*]}(m,n) \equiv P^{(p)} \{ \text{there exists a horizontal } (+[*]) \text{L-cut in } \hat{\Lambda}^{\pm}(m,n) \}.$$

For the weak (*)L-cut, we use the notation "w-" in front of $\hat{a}_p^{(\pm)*}(m,n)$, e.g. $w - \hat{a}_p^*(m,n)$.

Lemma 1. Let $\alpha(m,n)$ be $a_p^{[*]}(m,n)$, $\hat{a}_p^{[*]}(m,n)$ or $w - \hat{a}_p^*(m,n)$. If $\alpha(3N,N) > 1 - 5^{-4}$ for some integer $N \ge 1$, then $\Pi^{[*]}(p) > 0$.

Proof. This was already proved in [4] except for $\alpha(m,n) = w - \hat{a}_p^*(m,n)$. In this case, by applying the argument as in [4], we have

(1) $P_{\mathbf{L}}^{(p)}$ {there exists an infinite $(+*)\mathbf{L}$ -chain in \mathbf{L} } = 1, where $P_{\mathbf{Z}}^{(p)}$ is the restriction of $P^{(p)}$ to $\Omega_{\mathbf{L}} = \{+1, -1\}^{\mathbf{L}}$. Since $(\Omega_{\mathbf{L}}, P_{\mathbf{L}}^{(p)})$ is isomorphic to $(\Omega, P^{(p)})$, (1) implies that $\Pi^{*}(p) > 0$. (Q.E.D.)

Lemma 2. Let $\alpha(m, n)$ be the same as in Lemma 1. Then there exists an increasing function $f: [0,1] \rightarrow [0,1]$ with f(0)=0, f(1)=1 such that

$$\alpha(2N,N) \ge f(\alpha(N,N)),$$

$$\alpha(3N,N) \ge \alpha(N,N) \cdot f^2(\alpha(N,N)) = g(\alpha(N,N)).$$

Proof. This is also in [4] except for $\alpha(m, n) = w - \hat{a}_p^*(m, n)$. If N is even, the same proof as in [4] works. If N is odd, the same argument makes the estimate little worse;

$$\alpha(2N-1,N) \geq \alpha(N,N) [1-\sqrt{1-\alpha(N,N)}]^6.$$

Therefore for $f(x) = x^3(1 - \sqrt{1-x})^{12}$, we have the statement of Lemma 2. (Q.E.D.)

Lemma 3. If $\limsup_{N \to \infty} a_p^+(N, N) < 1$, then for any positive integer k > 0,

$$\lim_{N\to\infty} \left[a_p^+(N,N) - a_p^+(N,N-k)\right] = 0.$$

Proof. It is enough to prove that

$$\lim_{N \to \infty} \left[a_p^+(N, N - k + 1) - a_p^+(N, N - k) \right] = 0$$

for any positive integer k. Since $a_p^+(m, n) = a_p^-(m, n)$,

(2)
$$a_p^+(N, N-k+1) - a_p^+(N, N-k)$$

$$= P^{(p)} \begin{cases} \text{there exists a vertical } (-^*)\text{cut in } \Lambda^-(N, N-k), \\ \text{but there are no vertical } (-^*)\text{cuts in } \Lambda^-(N, N-k+1) \end{cases}$$
Put
 $C_{N,k} \equiv \{\omega \in \Omega; \text{ there exists a vertical } (-^*)\text{cut in } \Lambda^-(N, N-k)\},$

Y. Higuchi

$$C_{N,k}(r) \equiv \{ \omega \in \Omega; \text{ there exists a vertical } (-*) \text{ cut in } \Lambda^{-}(N, N-k) \\ \text{ which connects } \{ x_1 \ge N/2, x_2 = -N+k \} \text{ with } \{ x_2 = 0 \} \}.$$

$$C_{N,k}(l) = \{ \omega \in \Omega; \text{ there exists a vertical } (-*) \text{ cut in } \Lambda^{-}(N, N-k) \text{ which connects } \{x_1 \leq N/2, x_2 = -N+k\} \text{ with } \{x_2 = 0\} \}.$$

For $\omega \in C_{N,k}(r)$, we denote by $R(\omega)$ the right-most vertical (-*)cut in $\Lambda^{-}(N, N-k)$. Let $\Delta_{R}(\omega)$ be the intersection point of $R(\omega)$ with $\{x_{2} = -N+k\}$. Then $\Delta_{R}(\omega) \subset \{x_{1} \ge N/2\}$. For any $j \ge 1$, let

 $G_{2j}(\omega) \equiv$ square centered at $\Delta_R(\omega)$ with the length of its side equal to $2(3^{2j}-1)$,

$$G_{2j+1}(\omega) \equiv$$
 square centered at $\Delta_R(\omega)$ with the length of its side equal to $2 \cdot 3^{2j+1}$.

and $\Gamma_{j}(\omega) \equiv G_{2j+1}(\omega) \setminus G_{2j}(\omega)$. Putting

 $J_{N,k}(\omega) \equiv \max\{j; \text{ the left upper corner of } \Gamma_{i}(\omega) \text{ is in } \Lambda^{-}(N, N-k)\},\$

we have

$$J_{N,k}(\omega) \ge (2\log 3)^{-1} [\log(\min\{N/2, N-k\}) - \log 3].$$

We denote the right hand side of the above inequality by $\delta_{N,k}$.

Since $\limsup_{N\to\infty} a_p^+(N,N) < 1$, there exists $n_0 > 0$ such that

 $P^{(p)}$ {there exists a vertical (-*)cut in $\Lambda^{-}(n,n)$ } > $[1 - \limsup_{N \to \infty} a_p^+(N,N)]/2$

for $n > n_0$. Choosing J_0 sufficiently large such that $3^{2J_0} > n_0$, we obtain for $j > J_0$,

 $P^{(p)} \{ \text{there exists a } (-^*) \text{ circuit surrounding the origin in } \Gamma_j^0 \} \\ \ge g^4 ([1 - \limsup_{N \to \infty} a_p^+(N, N)]/2) \equiv \beta > 0,$

where Γ_i^0 is the same square as $\Gamma_i(\omega)$ but centered at the origin.

By applying Kesten's argument in Proposition 1 of [1], we obtain that

 $P^{(p)} \left\{ \omega \in C_{N,k}(r); \text{ there are at most } v (-^*) \text{ chains in } \Lambda^-(N, N-k) \right.$ which connect $R(\omega)$ with the lower side of $\Lambda^-(N, N-k) \right\} \leq A_{N,k}(v, \beta),$ $A_{N,k}(v, \beta) \equiv \sum_{j=0}^{\nu} \left(\begin{bmatrix} \delta_{N,k} \end{bmatrix}^1 - J_0 \right) \beta^j (1-\beta)^{\delta_{N,k}-J_0-j},$

which goes to 0 as $N \to \infty$ for fixed k, v and β . The same estimate holds for $C_{N,k}(l)$. Hence we obtain that

¹ This denotes the integer part of $\delta_{N,k}$

Coexistence of the Infinite (*) Clusters

(3)
$$P^{(p)} \{ \omega \in C_{N,k} ; \text{ there are at most } v \text{ vertical } (-*) \text{ cuts in } \Lambda^{-}(N, N-k) \text{ with distinct end points on the lower side of } \Lambda^{-}(N, N-k) \} \leq 2A_{N,k}(v, \beta).$$

Let

$$D_{N,k}(\omega) \equiv \left\{ \begin{array}{l} \underline{x} \in \Lambda^{-}(N, N-k) \cap \{x_{2} = -N+k\}; \\ \underline{x} \text{ is } (-*) \text{ connected with } \{x_{2} = 0\} \text{ in } \Lambda^{-}(N, N-k) \right\}.$$

Then for any subset D of the lower side of $\Lambda^-(N, N-k)$, (i.e. $D \subset \Lambda^-(N, N-k) \cap \{x_2 = -N+k\}$) we have

$$P^{(p)} \begin{cases} D \text{ is not } (-*) \text{ connected with} \\ \{x_2 = -N+k-1\} \text{ in } \Lambda^-(N,N-k+1) \end{cases} | D_{N,k}(\omega) = D \end{cases} \leq p^{-|D|}.$$

From this and (1), (2), we have for any v > 0,

(4)
$$a_p^+(N, N-k+1) - a_p^+(N, N-k)$$

 $\leq 2A_{N,k}(\nu, \beta) + \sum_{i=\nu+1}^{\infty} p^{-i} \sum_{|D|=i} P^{(p)} \{ D_{N,k}(\omega) = D \}.$

(4) proves the assertion of the lemma. (Q.E.D.)

§ 3. Coexistence of Infinite (*)Chains

Let σ be a weak horizontal (*)L-cut in $\Lambda^+(m, n)$. There corresponds a horizontal (*)cut $\bar{\sigma}$ in $\Lambda^+(m, n)$ to σ in the following way. Let $\sigma = \{\underline{x}_1, \dots, \underline{x}_k\}$ with $\langle \underline{x}_i, \underline{x}_{i+1} \rangle_{\mathbf{L}}^*$, $i=1,2,\dots,k-1$, $\underline{x}_1 \in \{x_1=0 \text{ or } 1\}$ and $\underline{x}_k \in \{x_1=m-1 \text{ or } m\}$. The corresponding $\bar{\sigma} = \{\underline{y}_1, \underline{y}_2, \dots, \underline{y}_l\}$ $(l \leq k)$ is defined as follows;

1°) If $\underline{x}_1 \in \{x_1 = \overline{0}\}$, then $\underline{y}_1 = \underline{x}_1$. Otherwise $\underline{y}_1 = \underline{x}_1 - e_1$ and $\underline{y}_2 = \underline{x}_1$, where $e_1 = (0, 1) \in \mathbb{Z}^2$.

2°) If $\underline{y}_i = \underline{x}_j$, and $\langle \underline{x}_j, \underline{x}_{j+1} \rangle^*$, then $\underline{y}_{i+1} = \underline{x}_{j+1}$.

3°) If $\underline{y}_i = \underline{x}_j$, but \underline{x}_j and \underline{x}_{j+1} are not (*) nearest neighbours, then there is a point \underline{x}^* such that $\langle \underline{x}_j, \underline{x}^* \rangle$ and $\langle \underline{x}^*, \underline{x}_{j+1} \rangle$. (This point \underline{x}^* is unique!) In this case, we put $\underline{y}_{i+1} = \underline{x}^*$ and $\underline{y}_{i+2} = \underline{x}_{j+1}$.

4°) If $\underline{x}_k \in \{x_1 = m\}$, then $\underline{y}_i = \underline{x}_k$. Otherwise we put $\underline{y}_i = \underline{x}_k + e_1$.

It is easy to check that $\overline{\sigma} = \{\underline{y}_1, \dots, \underline{y}_l\}$ is a horizontal (*)cut in $\Lambda^+(m, n)$.

Theorem 1'. If $\limsup_{N \to \infty} a_p^+(N, N) < 1$, then either

$$\lim_{N \to \infty} a_p^+(N, N) = 0 \quad or \quad \lim_{N \to \infty} a_{1-p}^+(N, N) = 0.$$

Proof. For any v > 0, we take k, N sufficiently large so that $k > 3^{2(J_0+v)+1}$, and N > 2k, where J_0 is defined in the proof of Lemma 3. First, note that if there exists a horizontal (+)cut in $\Lambda^+(N, N-k)$, then there exists a weak horizontal (+*)L-cut in $\hat{\Lambda}^+(N, N-k)$. Therefore we have

$$a_{p}^{+}(N, N-k) = \{w - \hat{a}_{p}^{+} * (N, N-k)\} \cdot b_{p}^{+}(N, N-k),$$

where $b_p^+(N, N-k)$ is defined by

(5)
$$b_p^+(N, N-k)$$

= $P^{(p)} \begin{cases} \text{there exists a horizontal} \\ (+) \text{cut in } \Lambda^+(N, N-k) \end{cases}$ there exists a weak horizontal $(+^*)$ L-cut in $\Lambda^+(N, N-k) \end{cases}$.

Let $\sigma(\omega)$ be the lowest weak horizontal (*)L-cut in $\hat{A}^+(N, N-k)$, and $\bar{\sigma}(\omega)$ be the corresponding horizontal (*)cut in $A^+(N, N-k)$.

For any weak horizontal (*)L-cut σ in $\hat{A}^+(N, N-k)$, let

$$H(\sigma) \equiv \{ \underline{x} \in A^+(N, N-k); \underline{x} \text{ is above } \overline{\sigma} \}.$$

Then we have

 $1 - P^{(p)}$ {there exists a horizontal (+)cut in $\Lambda^+(N, N-k) | \sigma(\omega) = \sigma$ }

$$\geq P^{(p)} \left[\begin{cases} \text{there exist at least } v \text{ vertical } (-^*) \text{cuts in } H(\sigma) \text{ with} \\ \text{distinct endpoints on the lower side of } H(\sigma), \text{ and for} \\ \text{one of these endpoints } \underline{x}, \ \omega(\underline{y}) = -1 \text{ for any } \underline{y} \text{ from} \\ \partial(\partial^*(\underline{x}) \cap \sigma) \setminus \sigma \\ \geq a_{1-p}^{+*}(N, N)(1 - A_{2k,0}(v, \beta))(1 - (1 - (1 - p)^{21})^v), \end{cases} \right]$$

since $\#[\partial(\partial^*(\underline{x}))] = 21$, where $\partial^{[*]}(\Lambda) = \{\underline{y} \in \mathbb{Z}^2; \langle \underline{x}, \underline{y} \rangle^{[*]} \text{ for some } \underline{x} \in \Lambda\}$. Hence we have

$$b_p^+(N, N-k) \leq 1 - a_{1-p}^{+*}(N, N)(1 - A_{2k,0}(\nu, \beta))(1 - (1 - (1 - p^{21})^{\nu}))$$

Now we assume that

$$\limsup_{N\to\infty} w - \hat{a}_p^+ * (N, N-k) = 1.$$

Then from Lemmas 1 and 2, we obtain

 $P^{(p)}$ {there exists an infinite (+*)chain}=1,

which implies that $\lim_{N\to\infty} a_{1-p}^+(N,N) = 0$. (See Lemma 2 of [3].)

Next, assume that $\limsup_{N\to\infty} w - a_p^{+*}(N, N) = \eta < 1$. We take a subsequence $\{N_j\}$ such that $\lim_{j\to\infty} a_p^{+}(N_j, N_j)$ exists. From Lemma 3, we obtain

$$\lim_{j \to \infty} a_p^+(N_j, N_j) \leq \eta \cdot [1 - \lim_{j \to \infty} a_{1-p}^{+*}(N_j, N_j)(1 - A_{2k,0}(\nu, \beta))(1 - (1 - (1 - p)^{21})^{\nu})].$$

Letting first $k \rightarrow \infty$, and then $v \rightarrow \infty$, we obtain

$$\lim_{j\to\infty}a_p^+(N_j,N_j)=0,$$

which implies that $\lim_{N\to\infty} a_p^+(N,N) = 0.$ (Q.E.D.)

Proof of Theorem 1. Since $a_{1/2}^+(N,N) \leq 1/2$, from Theorem 1' we obtain that $\lim_{N \to \infty} a_{1/2}^*(N,N) = 1 - \lim_{N \to \infty} a_{1/2}^+(2N,2N) = 1$.

Therefore from Lemmas 1 and 2, we have $\Pi^*(1/2) > 0$. This, combined with Russo's theorem (i), and (ii), implies that $p_c > 1/2$. (Q.E.D.)

80

Coexistence of the Infinite (*) Clusters

Corollary. For $p_c^* ,$

 $P^{(p)}$ {there exist both infinite (+*) and (-*)chains} = 1.

In particular, this holds for p = 1/2.

Acknowledgement. I would like to thank H.Kesten for kindly informing me that he proved Theorem 1, too, by a different method.

References

- Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys. 74, 41-59 (1980)
- 2. Kesten, H.: Exact results in percolation (preprint)
- 3. Russo, L.: A note on percolation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, 39-48 (1978)
- 4. Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeitstheorie verw. Gebiete 56, 229-238 (1981)
- 5. Sykes, M.F., Essam, J.W.: Exact critical percolation probabilities for site and bond problems in two dimensions. J. Math. Phys. 5, 1117-1127 (1964)
- Wierman, J.C.: Bond percolation on honeycomb and triangular lattices. Adv. Appl. Probab. 13, 298-313 (1981)

Received June 13, 1981; in final form April 14, 1982