Coexistence of the Infinite (*) Clusters: - A Remark on the Square Lattice Site Percolation

Yasunari Higuchi
Department of Mathematics, Faculty of Science, Kobe University, Rokko, Kobe, 657 Japan

Summary. We show that the critical probability p_{c} is strictly greater than $1 / 2$ for the square lattice site percolation.

§ 1. Introduction

The bond percolation problem on the square lattice was solved by Kesten [1], that the critical probability equals $1 / 2$. On the other hand, for the site percolation on the square lattice, no one doubts that $p_{c}>1 / 2$, though it has never been rigorously proved. The essential idea of finding p_{c} was given by Sykes and Essam [5], but unfortunately the argument was not sufficiently rigorous. The best rigorous result for this problem is that $p_{c}+p_{c}^{*}=1$ which was proved by Russo [4]. In this note, we prove that $p_{c}>1 / 2$ by using arguments of Kesten [1] and Russo [3, 4].

Hereafter we consider the square lattice \mathbf{Z}^{2} and the configuration space Ω $=\{+1,-1\}^{\mathbf{Z}^{2}}$. For $0 \leqq p \leqq 1$, we denote by $P^{(p)}$ the Bernoulli probability measure on Ω, taking probability p of finding $+\operatorname{spin}$ at $\underline{x} \in \mathbf{Z}^{2}$. We say that \underline{x} $=\left(x_{1}, x_{2}\right)$ and $\underline{y}=\left(y_{1}, y_{2}\right)$ are nearest neighbours (and denote it by $\left.\langle\underline{x}, \underline{y}\rangle\right)$ iff $\mid x_{1}$ $-y_{1}\left|+\left|x_{2}-y_{2}\right|=1 . \underline{x}\right.$ and \underline{y} are $\left(^{*}\right)$ nearest neighbours (we denote it by $\langle\underline{x}, \underline{y}\rangle^{*}$) iff $\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)=1$. Let \mathbf{L} be the sublattice of \mathbf{Z}^{2} such that \mathbf{L} $=\left\{\underline{x} \in \mathbf{Z}^{2} ; x_{1}+x_{2}\right.$ is even $\} . \mathbf{L}$ is isomorphic to \mathbf{Z}^{2}. We say that $\underline{x} \in \mathbf{L}$ and $y \in \mathbf{L}$ are L-nearest neighbours [(*)L-nearest neighbours] iff $\left|x_{i}-y_{i}\right|=1, i=1,2\left[\mid x_{1}\right.$ $-y_{1}\left|+\left|x_{2}-y_{2}\right|=2\right]$ and denote it by $\langle\underline{x}, \underline{y}\rangle_{\mathbf{L}}\left[\langle\underline{x}, \underline{y}\rangle_{\mathbf{L}}^{*}\right]$.

A sequence $\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\}$ of mutually distinct points in \mathbf{Z}^{2} is called a (self avoiding) chain $\left[\left(^{*}\right)\right.$ chain $]$ iff $\left\langle\underline{x}_{i}, \underline{x}_{j}\right\rangle \Leftrightarrow|i-j|=1\left[\left\langle\underline{x}_{i}, \underline{x}_{j}\right\rangle^{*} \Leftrightarrow|i-j|=1\right]$, and is called a circuit $\left[\left(^{*}\right)\right.$ circuit $]$ iff $\left\{\underline{x}_{1}, \ldots, \underline{x}_{n-1}\right\}$ and $\left\{\underline{x}_{2}, \ldots, \underline{x}_{n}\right\}$ are chains $\left[{ }^{*}\right)$ chains $]$ and $\left\langle\underline{x}_{n}, \underline{x}_{1}\right\rangle\left[\left\langle\underline{x}_{n}, \underline{x}_{1}\right\rangle^{*}\right]$. A subset A of \mathbf{Z}^{2} is said to be connected $\left[\left(^{*}\right)\right.$ connected $]$ iff for any $\underline{x}, \underline{y} \in \Lambda$, there is a chain $\left[\left(^{*}\right)\right.$ chain $]\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\}$ in Λ with $\underline{x}=\underline{x}_{1}, \underline{y}=\underline{x}_{n}$. L-chain, $\overline{\mathbf{L}}$-connectedncss, (*)L-chain, and $\left(^{*}\right) \mathbf{L}$-connectedness are defined in the same way.

Note that $\hat{\Lambda}=\boldsymbol{A} \cap \mathbf{L}$ is $\left(^{*}\right) \mathbf{L}$-connected if Λ is connected.

The percolation probability $\Pi(p)$ is defined by

$$
\Pi(p)=P^{(p)}\left\{\begin{array}{l}
\text { there exists an infinite }(+) \text { chain } \\
\text { including the origin }
\end{array}\right\}
$$

The problem is to find the critical probability p_{c};

$$
p_{c}=\inf \{p ; \Pi(p)>0\}
$$

Putting $p_{c}^{*}=\inf \left\{p ; \Pi^{*}(p)>0\right\}$, where

$$
\Pi^{*}(p)=P^{(p)}\left\{\begin{array}{l}
\text { there exists an infinite }\left(+^{*}\right) \text { chain } \\
\text { including the origin }
\end{array}\right\}
$$

we can easily see that $p_{c}^{*} \leqq p_{c}$. Moreover, Russo proved the following;
Theorem (Russo [4]).
(i) $\Pi(p), \Pi^{*}(p)$ are continuous in $p \in[0,1]$,
(ii) $p_{c}+p_{c}^{*}=1$.

The estimate $p_{c} \geqq 1 / 2$ is the direct consequence of the above theorem. Here, we give a little sharper result;
Theorem 1. $p_{c}>1 / 2$.
In $\S 2$, we prove an essential lemma whose statement looks rather trivial, and in $\S 3$ we prove Theorem 1.

§ 2. Sponge Percolation Problem

For any positive integers m and n, put

$$
\begin{aligned}
\Lambda^{+}(m, n) & \equiv\left\{\underline{x} \in \mathbf{Z}^{2} ; 0 \leqq x_{1} \leqq m, 0 \leqq x_{2} \leqq n\right\}, \\
\Lambda^{-}(m, n) & \equiv\left\{\underline{x} \in \mathbf{Z}^{2} ; 0 \leqq x_{1} \leqq m,-n \leqq x_{2} \leqq 0\right\} \\
\Lambda(m, n) & \equiv\left\{\underline{x} \in \mathbf{Z}^{2} ; 0 \leqq\left|x_{1}\right| \leqq m, 0 \leqq\left|x_{2}\right| \leqq n\right\} .
\end{aligned}
$$

A chain [(*)chain] in $\Lambda^{(\pm)}(m, n)$ is called a vertical cut [vertical (*)cut] in $\Lambda^{(\pm)}(m, n)$ if it connects the upper side of $\Lambda^{(\pm)}(m, n)$ with the lower side of $\Lambda^{(\pm)}(m, n)$, and if this chain $\left[\left(^{*}\right)\right.$ chain $]$ intersects with each horizontal side of $\Lambda^{(\pm)}(m, n)$ at only one point. A chain $\left[{ }^{*}\right)$ chain] in $\Lambda^{(\pm)}(m, n)$ is called a horizontal cut [horizontal (${ }^{*}$)cut] if it connects the left side of $\Lambda^{(\pm)}(m, n)$ with the right side of $\Lambda^{(\pm)}(m, n)$, and if this chain $\left[\left(^{*}\right)\right.$ chain $]$ intersects with each vertical side of $\Lambda^{(\pm)}(m, n)$ at only one point. We can define a vertical [horizontal] L-cut $\left[\left(^{*}\right) \mathbf{L}\right.$-cut $]$ in $\hat{A}^{(\pm)}(m, n) \equiv \mathbf{L} \cap A^{(\pm)}(m, n)$ in the same way.

Finally, a $\left(^{*}\right) \mathbf{L}$-chain $\gamma \equiv\left\{\underline{x}_{1}, \ldots, \underline{x}_{k}\right\}$ in $\hat{\Lambda}^{+}(m, n)$ is called a weak vertical [horizontal] (*)L-cut if it connects $\left\{x_{2}=0\right.$ or 1$\}$ with $\left\{x_{2}=n-1\right.$ or $\left.n\right\} \quad\left[\left\{x_{1}=0\right.\right.$ or 1$\}$ with $\left\{x_{1}=m-1\right.$ or $\left.\left.m\right\}\right]$, and both $\gamma \cap\left\{x_{2}=0\right.$ or 1$\}$ and $\gamma \cap\left\{x_{2}=n-1\right.$ or $n\}$ are single points. [$\gamma \cap\left\{x_{1}=0\right.$ or 1$\}$ and $\gamma \cap\left\{x_{1}=m-1\right.$ or $\left.m\right\}$ are single points.]

Now let us define the sponge percolation probabilities as in the following;

$$
\begin{aligned}
& a_{p}^{[*]}(m, n) \equiv P^{(p)}\left\{\text { there exists a horizontal }\left(+\left[^{*}\right]\right) \text { cut in } \Lambda(m, n)\right\}, \\
& \left.a_{p}^{ \pm\left[{ }^{+\dagger}\right.}(m, n) \equiv P^{(p)} \text { \{there exists a horizontal }\left(+\left[^{*}\right]\right) \text { cut in } A^{ \pm}(m, n)\right\}, \\
& \left.\hat{a}_{p}^{\left[{ }^{*}\right]}(m, n) \equiv P^{(p)} \text { \{there exists a horizontal }\left(+\left[^{*}\right]\right) \mathbf{L} \text {-cut in } \hat{\Lambda}(m, n)\right\}, \\
& \left.\hat{a}_{p}^{ \pm{ }^{[*]}}(m, n) \equiv P^{(p)} \text { \{there exists a horizontal }\left(+\left[^{*}\right]\right) \text { L-cut in } \hat{\Lambda}^{ \pm}(m, n)\right\} \text {. }
\end{aligned}
$$

For the weak (*)L-cut, we use the notation " $w-$ " in front of $\hat{a}_{p}^{(\pm) *(m, n) \text {, e.g. }}$ $w-\hat{a}_{p}^{*}(m, n)$.
Lemma 1. Let $\alpha(m, n)$ be $a_{p}^{[*]}(m, n), \hat{a}_{p}^{[+]}(m, n)$ or $w-\hat{a}_{p}^{*}(m, n)$. If $\alpha(3 N, N)>1-5^{-4}$ for some integer $N \geqq 1$, then $\Pi^{\left[{ }^{*}\right]}(p)>0$.

Proof. This was already proved in [4] except for $\alpha(m, n)=w-\hat{a}_{p}^{*}(m, n)$. In this case, by applying the argument as in [4], we have
(1) $P_{\mathbf{L}}^{(p)}\left\{\right.$ there exists an infinite $\left(+^{*}\right) \mathbf{L}$-chain in $\left.\mathbf{L}\right\}=1$, where $P_{\mathbf{Z}}^{(p)}$ is the restriction of $P^{(p)}$ to $\Omega_{\mathbf{L}}=\{+1,-1\}^{\mathbf{L}}$. Since $\left(\Omega_{\mathbf{L}}, P_{\mathbf{L}}^{(p)}\right)$ is isomorphic to $\left(\Omega, P^{(p)}\right)$, (1) implies that $\Pi^{*}(p)>0$. (Q.E.D.)

Lemma 2. Let $\alpha(m, n)$ be the same as in Lemma 1. Then there exists an increasing function $f:[0,1] \rightarrow[0,1]$ with $f(0)=0, f(1)=1$ such that

$$
\begin{aligned}
& \alpha(2 N, N) \geqq f(\alpha(N, N)), \\
& \alpha(3 N, N) \geqq \alpha(N, N) \cdot f^{2}(\alpha(N, N)) \equiv g(\alpha(N, N)) .
\end{aligned}
$$

Proof. This is also in [4] except for $\alpha(m, n)=w-\hat{a}_{p}^{*}(m, n)$. If N is even, the same proof as in [4] works. If N is odd, the same argument makes the estimate little worse;

$$
\alpha(2 N-1, N) \geqq \alpha(N, N)[1-\sqrt{1-\alpha(N, N)}]^{6} .
$$

Therefore for $f(x)=x^{3}(1-\sqrt{1-x})^{12}$, we have the statement of Lemma 2. (Q.E.D.)

Lemma 3. If $\limsup _{N \rightarrow \infty} a_{p}^{+}(N, N)<1$, then for any positive integer $k>0$,

$$
\lim _{N \rightarrow \infty}\left[a_{p}^{+}(N, N)-a_{p}^{+}(N, N-k)\right]=0 .
$$

Proof. It is enough to prove that

$$
\lim _{N \rightarrow \infty}\left[a_{p}^{+}(N, N-k+1)-a_{p}^{+}(N, N-k)\right]=0
$$

for any positive integer k. Since $a_{p}^{+}(m, n)=a_{p}^{-}(m, n)$,
(2) $a_{p}^{+}(N, N-k+1)-a_{p}^{+}(N, N-k)$

$$
=P^{(p)}\left\{\begin{array}{l}
\text { there exists a vertical }\left(-^{*}\right) \text { cut in } \Lambda^{-}(N, N-k), \\
\text { but there are no vertical }\left(-^{*}\right) \text { cuts in } \Lambda^{-}(N, N-k+1)
\end{array}\right\} .
$$

Put

$$
C_{N, k} \equiv\left\{\omega \in \Omega \text {; there exists a vertical }\left(-^{*}\right) \text { cut in } \Lambda^{-}(N, N-k)\right\},
$$

$$
\begin{array}{ll}
C_{N, k}(r) \equiv\{\omega \in \Omega ; & \text { there exists a vertical }(-*) \text { cut in } \Lambda^{-}(N, N-k) \\
& \text { which connects } \left.\left\{x_{1} \geqq N / 2, x_{2}=-N+k\right\} \text { with }\left\{x_{2}=0\right\}\right\} . \\
C_{N, k}(l) \equiv\{\omega \in \Omega ; & \text { there exists a vertical }\left(-^{*}\right) \text { cut in } \Lambda^{-}(N, N-k) \\
& \text { which connects } \left.\left\{x_{1} \leqq N / 2, x_{2}=-N+k\right\} \text { with }\left\{x_{2}=0\right\}\right\} .
\end{array}
$$

For $\omega \in C_{N, k}(r)$, we denote by $R(\omega)$ the right-most vertical $\left(-^{*}\right)$ cut in $\Lambda^{-}(N, N-k)$. Let $\Delta_{R}(\omega)$ be the intersection point of $R(\omega)$ with $\left\{x_{2}=-N+k\right\}$. Then $A_{R}(\omega) \subset\left\{x_{1} \geqq N / 2\right\}$. For any $j \geqq 1$, let

$$
\begin{aligned}
G_{2 j}(\omega) \equiv & \text { square centered at } A_{R}(\omega) \text { with the length of its } \\
& \text { side equal to } 2\left(3^{2 j}-1\right),
\end{aligned}
$$

$$
\begin{gathered}
G_{2 j+1}(\omega) \equiv \text { square centered at } \Delta_{R}(\omega) \text { with the length of its } \\
\text { side equal to } 2 \cdot 3^{2 j+1},
\end{gathered}
$$

and $\Gamma_{j}(\omega) \equiv G_{2 j+1}(\omega) \backslash G_{2 j}(\omega)$. Putting

$$
J_{N, k}(\omega) \equiv \max \left\{j ; \text { the left upper corner of } \Gamma_{j}(\omega) \text { is in } \Lambda^{-}(N, N-k)\right\},
$$

we have

$$
J_{N, k}(\omega) \geqq(2 \log 3)^{-1}[\log (\min \{N / 2, N-k\})-\log 3] .
$$

We denote the right hand side of the above inequality by $\delta_{N, k}$.
Since $\limsup _{N \rightarrow \infty} a_{p}^{+}(N, N)<1$, there exists $n_{0}>0$ such that

$$
P^{(p)}\left\{\text { there exists a vertical }(-*) \text { cut in } \Lambda^{-}(n, n)\right\}>\left[1-\limsup _{N \rightarrow \infty} a_{p}^{+}(N, N)\right] / 2
$$

for $n>n_{0}$. Choosing J_{0} sufficiently large such that $3^{2 J_{0}}>n_{0}$, we obtain for $j>J_{0}$,
$P^{(p)}\left\{\right.$ there exists a $\left(-^{*}\right)$ circuit surrounding the origin in $\left.\Gamma_{j}^{0}\right\}$

$$
\geqq \mathrm{g}^{4}\left(\left[1-\limsup _{N \rightarrow \infty} a_{p}^{+}(N, N)\right] / 2\right) \equiv \beta>0,
$$

where Γ_{j}^{0} is the same square as $\Gamma_{j}(\omega)$ but centered at the origin.
By applying Kesten's argument in Proposition 1 of [1], we obtain that
$P^{(p)}\left\{\omega \in C_{N, k}(r)\right.$; there are at most $v\left(-^{*}\right)$ chains in $\Lambda^{-}(N, N-k)$
which connect $R(\omega)$ with the lower side of

$$
\begin{aligned}
& \left.A^{-}(N, N-k)\right\} \leqq A_{N, k}(v, \beta) \\
& A_{N, k}(v, \beta) \equiv \sum_{j=0}^{v}\binom{\left[\delta_{N, k}\right]^{1}-J_{0}}{v} \beta^{j}(1-\beta)^{\delta_{N, k}-J_{0}-j}
\end{aligned}
$$

which goes to 0 as $N \rightarrow \infty$ for fixed k, v and β. The same estimate holds for $C_{N, k}(l)$. Hence we obtain that

[^0](3) $P^{(p)}\left\{\omega \in C_{N, k}\right.$; there are at most v vertical $\left(-^{*}\right)$ cuts in $\Lambda^{-}(N, N-k)$ with distinct end points on the lower side of $\left.A^{-}(N, N-k)\right\} \leqq 2 A_{N, k}(v, \beta)$.
Let
\[

D_{N, k}(\omega) \equiv\left\{$$
\begin{array}{l}
\underline{x} \in \Lambda^{-}(N, N-k) \cap\left\{x_{2}=-N+k\right\} ; \\
\underline{x} \text { is }\left(-^{*}\right) \text { connected with }\left\{x_{2}=0\right\} \text { in } \Lambda^{-}(N, N-k)
\end{array}
$$\right\} .
\]

Then for any subset D of the lower side of $\Lambda^{-}(N, N-k)$, (i.e. $D \subset \Lambda^{-}(N, N$ $-k) \cap\left\{x_{2}=-N+k\right\}$) we have

$$
P^{(p)}\left\{\left.\begin{array}{l}
D \text { is not }\left(-^{*}\right) \text { connected with } \\
\left\{x_{2}=-N+k-1\right\} \text { in } \Lambda^{-}(N, N-k+1) \mid
\end{array} \right\rvert\, D_{N, k}(\omega)=D\right\} \leqq p^{-|D|} .
$$

From this and (1), (2), we have for any $v>0$,

$$
\begin{align*}
& a_{p}^{+}(N, N-k+1)-a_{p}^{+}(N, N-k) \tag{4}\\
& \quad \leqq 2 A_{N, k}(v, \beta)+\sum_{i=v+1}^{\infty} p^{-i} \sum_{|D|=i} P^{(p)}\left\{D_{N, k}(\omega)=D\right\} .
\end{align*}
$$

(4) proves the assertion of the lemma. (Q.E.D.)

§ 3. Coexistence of Infinite (*)Chains

Let σ be a weak horizontal (*)L-cut in $\Lambda^{+}(m, n)$. There corresponds a horizontal (*)cut $\bar{\sigma}$ in $\Lambda^{+}(m, n)$ to σ in the following way. Let $\sigma=\left\{\underline{x}_{1}, \ldots, \underline{x}_{k}\right\}$ with $\left\langle\underline{x}_{i}, \underline{x}_{i+1}\right\rangle_{\mathbf{L}}^{*}, i=1,2, \ldots, k-1, \underline{x}_{1} \in\left\{x_{1}=0\right.$ or 1$\}$ and $\underline{x}_{k} \in\left\{x_{1}=m-1\right.$ or $\left.m\right\}$. The corresponding $\bar{\sigma}=\left\{\underline{y}_{1}, \underline{y}_{2}, \ldots, \underline{y}_{l}\right\}(l \leqq k)$ is defined as follows;
1°) If $\underline{x}_{1} \in\left\{x_{1}=\overline{0}\right\}$, then $\underline{y}_{1}=\underline{x}_{1}$. Otherwise $\underline{y}_{1}=\underline{x}_{1}-e_{1}$ and $\underline{y}_{2}=\underline{x}_{1}$, where $e_{1}=(0,1) \in \mathbf{Z}^{2}$.
2°) If $\underline{y}_{i}=\underline{x}_{j}$, and $\left\langle\underline{x}_{j}, \underline{x}_{j+1}\right\rangle^{*}$, then $\underline{y}_{i+1}=\underline{x}_{j+1}$.
3°) If $\underline{y}_{i}=\underline{x}_{j}$, but \underline{x}_{j} and \underline{x}_{j+1} are not $\left(^{*}\right)$ nearest neighbours, then there is a point \underline{x}^{*} such that $\left\langle\underline{x}_{j}, \underline{x}^{*}\right\rangle$ and $\left\langle\underline{x}^{*}, \underline{x}_{j+1}\right\rangle$. (This point \underline{x}^{*} is unique!) In this case, we put $\underline{y}_{i+1}=\underline{x}^{*}$ and $\underline{y}_{i+2}=\underline{x}_{j+1}$.
4°) If $\underline{x}_{k} \in\left\{x_{1}=m\right\}$, then $\underline{y}_{l}=\underline{x}_{k}$. Otherwise we put $\underline{y}_{l}=\underline{x}_{k}+e_{1}$.
It is easy to check that $\bar{\sigma}=\left\{\underline{y}_{1}, \ldots, \underline{y}_{l}\right\}$ is a horizontal $\left({ }^{*}\right)$ cut in $\Lambda^{+}(m, n)$.
Theorem 1'. If $\limsup _{N \rightarrow \infty} a_{p}^{+}(N, N)<1$, then either

$$
\lim _{N \rightarrow \infty} a_{p}^{+}(N, N)=0 \quad \text { or } \quad \lim _{N \rightarrow \infty} a_{1-p}^{+}(N, N)=0 .
$$

Proof. For any $v>0$, we take k, N sufficiently large so that $k>3^{2\left(J_{0}+v\right)+1}$, and $N>2 k$, where J_{0} is defined in the proof of Lemma 3. First, note that if there exists a horizontal $(+)$ cut in $\Lambda^{+}(N, N-k)$, then there exists a weak horizontal $\left(+^{*}\right)$ L-cut in $\hat{\Lambda}^{+}(N, N-k)$. Therefore we have

$$
a_{p}^{+}(N, N-k)=\left\{w-\hat{a}_{p}^{+*}(N, N-k)\right\} \cdot b_{p}^{+}(N, N-k),
$$

where $b_{p}^{+}(N, N-k)$ is defined by

$$
\begin{align*}
& b_{p}^{+}(N, N-k) \tag{5}\\
& \quad=P^{(p)}\left\{\begin{array}{l}
\text { there exists a horizontal } \\
(+) \text { cut in } \Lambda^{+}(N, N-k)
\end{array} \left\lvert\, \begin{array}{l}
\text { there exists a weak horizontal } \\
\left(+^{*}\right) \mathbf{L} \text {-cut in } \Lambda^{+}(N, N-k)
\end{array}\right.\right\} .
\end{align*}
$$

Let $\sigma(\omega)$ be the lowest weak horizontal $\left({ }^{*}\right) \mathbf{L}$-cut in $\hat{\Lambda}^{+}(N, N-k)$, and $\bar{\sigma}(\omega)$ be the corresponding horizontal $\left({ }^{*}\right)$ cut in $\Lambda^{+}(N, N-k)$.

For any weak horizontal $\left({ }^{*}\right) \mathbf{L}$-cut σ in $\hat{\Lambda}^{+}(N, N-k)$, let

$$
H(\sigma) \equiv\left\{\underline{x} \in \Lambda^{+}(N, N-k) ; \underline{x} \text { is above } \bar{\sigma}\right\} .
$$

Then we have
$1-P^{(p)}\left\{\right.$ there exists a horizontal $(+)$ cut in $\left.\Lambda^{+}(N, N-k) \mid \sigma(\omega)=\sigma\right\}$

$$
\left.\begin{array}{l}
\geqq P^{(p)}\left[\left.\left\{\begin{array}{l}
\text { there exist at least } v \text { vertical }\left(-^{*}\right) \text { cuts in } H(\sigma) \text { with } \\
\text { distinct endpoints on the lower side of } H(\sigma) \text {, and for } \\
\text { one of these endpoints } \underline{x}, \omega(\underline{y})=-1 \text { for any } \underline{y} \text { from } \\
\partial\left(\partial^{*}(\underline{x}) \cap \sigma\right) \backslash \sigma
\end{array}\right\} \right\rvert\, \sigma(\omega)=\sigma\right]
\end{array}\right\} \begin{aligned}
& \geqq a_{1-p}^{+*}(N, N)\left(1-A_{2 k, 0}(v, \beta)\right)\left(1-\left(1-(1-p)^{21}\right)^{v}\right),
\end{aligned}
$$

since $\#\left[\partial\left(\partial^{*}(\underline{x})\right)\right]=21$, where $\partial^{[*}(\Lambda)=\left\{\underline{y} \in \mathbf{Z}^{2} ;\langle\underline{x}, \underline{y}\rangle^{\left.*^{*}\right]}\right.$ for some $\left.\underline{x} \in \Lambda\right\}$. Hence we have

$$
b_{p}^{+}(N, N-k) \leqq 1-a_{1-p}^{+*}(N, N)\left(1-A_{2 k, 0}(v, \beta)\right)\left(1-\left(1-\left(1-p^{21}\right)^{v}\right) .\right.
$$

Now we assume that

$$
\limsup _{N \rightarrow \infty} w-\hat{a}_{p}^{+*}(N, N-k)=1
$$

Then from Lemmas 1 and 2, we obtain

$$
P^{(p)}\left\{\text { there exists an infinite }\left(+^{*}\right) \text { chain }\right\}=1,
$$

which implies that $\lim _{N \rightarrow \infty} a_{1-p}^{+}(N, N)=0$. (See Lemma 2 of [3].)
Next, assume that $\limsup _{N \rightarrow \infty} w-a_{p}^{+*}(N, N)=\eta<1$. We take a subsequence $\left\{N_{j}\right\}$ such that $\lim _{j \rightarrow \infty} a_{p}^{+}\left(N_{j}, N_{j}\right)$ exists. From Lemma 3, we obtain
$\lim _{j \rightarrow \infty} a_{p}^{+}\left(N_{j}, N_{j}\right) \leqq \eta \cdot\left[1-\lim _{j \rightarrow \infty} a_{1-p}^{+*}\left(N_{j}, N_{j}\right)\left(1-A_{2 k, 0}(v, \beta)\right)\left(1-\left(1-(1-p)^{21}\right)^{v}\right)\right]$.
Letting first $k \rightarrow \infty$, and then $v \rightarrow \infty$, we obtain

$$
\lim _{j \rightarrow \infty} a_{p}^{+}\left(N_{j}, N_{j}\right)=0
$$

which implies that $\lim _{N \rightarrow \infty} a_{p}^{+}(N, N)=0$. (Q.E.D.)
Proof of Theorem 1. Since $a_{1 / 2}^{+}(N, N) \leqq 1 / 2$, from Theorem 1^{\prime} we obtain that $\lim _{N \rightarrow \infty} a_{1 / 2}^{*}(N, N)=1-\lim _{N \rightarrow \infty} a_{1 / 2}^{+}(2 N, 2 N)=1$.

Therefore from Lemmas 1 and 2, we have $\Pi^{*}(1 / 2)>0$. This, combined with Russo's theorem (i), and (ii), implies that $p_{c}>1 / 2$. (Q.E.D.)

Corollary. For $p_{c}^{*}<p<p_{c}$,

$$
P^{(p)}\left\{\text { there exist both infinite }\left(+^{*}\right) \text { and }\left(-^{*}\right) \text { chains }\right\}=1 .
$$

In particular, this holds for $p=1 / 2$.

Acknowledgement. I would like to thank H. Kesten for kindly informing me that he proved Theorem 1, too, by a different method.

References

1. Kesten, H.: The critical probability of bond percolation on the square lattice equals $1 / 2$. Comm. Math. Phys. 74, 41-59 (1980)
2. Kesten, H.: Exact results in percolation (preprint)
3. Russo, L.: A note on percolation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, 39-48 (1978)
4. Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeitstheorie verw. Gebiete 56, 229-238 (1981)
5. Sykes, M.F., Essam, J.W.: Exact critical percolation probabilities for site and bond problems in two dimensions. J. Math. Phys. 5, 1117-1127 (1964)
6. Wierman, J.C.: Bond percolation on honeycomb and triangular lattices. Adv. Appl. Probab. 13, 298-313 (1981)

Received June 13, 1981; in final form April 14, 1982

[^0]: ${ }^{1}$ This denotes the integer part of $\delta_{N, k}$

