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Coexistence of the Infinite (*) Clusters:
— A Remark on the Square Lattice Site Percolation

Yasunari Higuchi

Department of Mathematics, Faculty of Science, Kobe University, Rokko, Kobe, 657 Japan

Summary. We show that the critical probability p, is strictly greater than
1/2 for the square lattice site percolation.

§ 1. Introduction

The bond percolation problem on the square lattice was solved by Kesten [1],
that the critical probability equals 1/2. On the other hand, for the site percola-
tion on the square lattice, no one doubts that p,.>1/2, though it has never been
rigorously proved. The essential idea of finding p, was given by Sykes and
Essam [5], but unfortunately the argument was not sufficiently rigorous. The
best rigorous result for this problem is that p,+p*=1 which was proved by
Russo [4]. In this note, we prove that p,>1/2 by using arguments of Kesten
[1] and Russo [3, 4].

Hereafter we consider the square lattice Z? and the configuration space Q
={+1,—1}%". For 0<p=<1, we denote by P"® the Bernoulli probability mea-
sure on £, taking probability p of finding+spin at xeZ? We say that x
=(xy,x,) and y=(y,,y,) are nearest neighbours (and denote it by <{x, y)) iff |x;
—y.|+ix,—y,]=1. x and y are (*) nearest neighbours (we denote it by {(x, y>*)
iff max(jx,—y,},|x,—y,)=1. Let L be the sublattice of Z? such that L
={xeZ?; x,+x, is even}. L is isomorphic to Z”. We say that xeL and yeL
are L-nearest neighbours [(*)L-nearest neighbours] iff |x;—y;[=1, i=1,2 lel
=¥i|+1x,—~y,|=2] and denote it by {x, y>, [{X, y>{].

A sequence {x,,...,x,} of mutually distinct points in Z? is called a (self
avoiding) chain [(*)chain] iff (x;, x;><|i—jl=1[{x;,x;*<=|i—jl=1], and is
called a circuit [(*)circuit] iff {x,,...,x, ;} and {x,,...,x,} are chains
[(*)chains] and {x,,x,>[{x,,x;>*]. A subset A of Z* is said to be connected
[(*)connected] iff for any x, yeA, there is a chain [(*)chain] {x,,...,x,} in 4
with x=x,, y=x,. L-chain, L-connectedncss, (*)L-chain, and (*)L-connected-
ness are defined in the same way.

Note that A=ANL is (*)L-connected if A is connected.
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The percolation probability II(p) is defined by

11(p) =P {

there exists an infinite (+)chain
including the origin '

The problem is to find the critical probability p,;

p.=inf{p; (p)>0}.

Putting p* =inf{p; II*(p) >0}, where

H*LD) — P {

there exists an infinite (+*)chain
including the origin ’

we can easily see that p¥* <p,. Moreover, Russo proved the following;

Theorem (Russo [4]).
(i) II(p), IT*(p) are continuous in pe[0,1],
(i) p,+pF=1. ’

The estimate p,=1/2 is the direct consequence of the above theorem. Here,
we give a little sharper result;

Theorem 1. p,>1/2.

In §2, we prove an essential lemma whose statement looks rather trivial,
and in § 3 we prove Theorem 1.

§2. Sponge Percolation Problem

For any positive integers m and n, put

At (mn)={xeZ?; 0<x,<m,0=x,<n},
A_(m,n)E{XGZZ; O_S_xl gms _néxzéo}’
A(m,n)={x€Z?; 0=|x,| Sm, 0| x,| Sn}.

A chain [(*)chain] in A®)(m, n) is called a vertical cut [vertical (*)cut] in
A (m,n) if it connects the upper side of A*)(m,n) with the lower side of
A®)(m,n), and if this chain [(*)chain] intersects with each horizontal side of
A m,n) at only one point. A chain [(*)chain] in A™®(m,n) is called a
horizontal cut [horizontal (*)cut] if it connects the left side of 4*)(m,n) with
the right side of A‘*)(m,n), and if this chain [(*)chain] intersects with each
vertical side of A'*)(m,n) at only one point. We can define a vertical [horizon-
tal] L-cut [(*)L-cut] in A (m,n)=L ~A*)(m,n) in the same way.

Finally, a (*)L-chain y={x,,...,x,} in A*(m,n) is called a weak vertical
[horizontal] (*)L-cut if it connects {x,=0 or 1} with {x,=n—1 or n} [{x,=0
or 1} with {x,=m—1 or m}], and both yn{x,=0 or 1} and yn{x,=n—1 or
n} are single points. [yn{x;=0 or 1} and yn{x,=m—1 or m} are single
points. ]
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Now let us define the sponge percolation probabilities as in the following;

al)(m, n)=P®{there exists a horizontal (+[*])cut in A(m,n)},
aF"(m,n)= PP {there exists a horizontal (4[*])cut in A*(m, n)},
abY(m, n)=P® {there exists a horizontal (+[*])L-cut in A(m,n)},
ax"(m, n)= PP {there exists a horizontal (+[*])L-cut in A*(m,n)}.
For the weak (*)L-cut, we use the notation “w—" in front of a/**(m, n), c.g.
W —a%(m, n).
Lemma 1. Let a(m,n) be all(m,n), &53(m,n) or w—ak(m,n). If «3N,N)>1-5"*
for some integer N =1, then IT"(p)>0.

Proof. This was already proved in [4] except for a(m, n)=w—&;}‘(m, n). In this
case, by applying the argument as in [4], we have

(1) R®({there exists an infinite (+*)L-chain in L} =1, where B is the restric-
tion of P® to @, ={+1, —1}" Since (., B¥) is isomorphic to (Q, P?), (1)
implies that IT*(p)>0. (Q.E.D.)

Lemma 2. Let a(m, n) be the same as in Lemma 1. Then there exists an increasing
function f: [0,1]—[0, 1] with f(0)=0, f(1)=1 such that

2N, N)z f (N, N)),
%3N, N)Z N, N)-f XN, N))=g(«(N, N)).

Proof. This is also in [4] except for a(m, n)=w—a%(m,n). If N is even, the same
proof as in [4] works. If N is odd, the same argument makes the estimate little

worse; :
22N —1,N)2a(N, N)[1—1/T—a(N, N)1°.

Therefore for f(x)=x*1-3/1—x)'% we have the statement of Lem-
ma 2. (QED)

Lemma 3. If ligl supa, (N,N)<1, then for any positive integer k>0,
%Lrgo[a;(N,N)—a;(N,N—k)]=0.

Proof. 1t is enough to prove that

lim [a; (N, N—k+1)—aj (N,N—k)] =0

for any positive integer k. Since a; (m, n)=a, (m,n),
(2) af(N,N—k+1)—a;(N,N—k)
_p® {there exists a vertical (—*)cut in A~ (N, N —k), }

but there are no vertical (—*)cuts in A=(N,N—k+1)
Put
Cy,={weQ; there exists a vertical (—*)cut in A~ (N, N —k)},
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Cy«(N={weQ; there exists a vertical (—*)cut in A~ (N, N —k)
which connects {x; 2 N/2, x, =~ N +k} with {x,=0}}.

CN,k(l)E{COGQ; there exists a vertical (—*)cut in A~ (N, N —k)
which connects {x; SN/2,x,=—N+k} with {x,=0}}.

For weCy (1), we denote by R(w) the right-most vertical (—*)cut in
A™(N,N—k). Let dx(w) be the intersection point of R(w) with {x,=—N+k}.
Then Ag(w)={x, 2 N/2}. For any j>1, let

G, (w)=square centered at Ax(w) with the length of its
side equal to 2(3%/ —1),

G,;, (w)=square centered at Ap(w) with the length of its
side-equal to 2-3%+1

and I(w)=G,;_ ;(w)\G,(»). Putting
Jy (o) =max{j; the left upper corner of I(w) is in A~ (N, N —k)},

we have
Jy )= (21log3) [log(min{N/2, N —k})—log3].

We denote the right hand side of the above inequality by dy ,.
Since liifn sup ay (N, N)<1, there exists n,>0 such that

PP {there exists a vertical (—*)cut in A~ (n,n)} >[1 —ligl sup a; (N, N)1/2
-
for n>n,. Choosing J, sufficiently large such that 3*%>n,, we obtain for
j>JOs

P®{there exists a (—*)circuit surrounding the origin in I;°}
zg*([1 —limsup a; (N, N)]/2)= >0,

where I}° is the same square as I)(w) but centered at the origin.
By applying Kesten’s argument in Proposition 1 of [1], we obtain that

P® {weCy ,(r); there are at most v (—*)chains in A~ (N, N —k)
which connect R(w) with the lower side of
A (N’ N —k)} éAN,k(VJ ﬁ)a
v [5 ] 1 —J
Auep= 3 (77
J

j=0

'81(1 _B)aN,k—JO“j,

which goes to 0 as N—>oo for fixed k, v and p. The same estimate holds for
Cy.«(D). Hence we obtain that

! This denotes the integer part of &y,
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(3) P® {weCy,; there are at most v vertical (—*)cuts in
A (N, N —k) with distinct end points on the
lower side of A~(N,N—k)} <24y (v, B).
Let
xeA (N, N=k)n{x,=—N+k};
DN,k(w)E{ ( )Oix, : }

x is (—*)connected with {x,=0} in A~ (N,N—k)

Then for any subset D of the lower side of A~ (N,N—k), (ie. DA~ (N,N
—k)yn{x,=—N+k}) we have

pw D is not (—*)connected with
{x,=—N+k—=1}in A~ (N,N—k+1)

Dy (w) :D}él’_ 121,

From this and (1), (2), we have for any v>0,
4) ay(N,N—k+1)—a(N,N—k)

<24y, B+ 3 pt Y POD, (@)=D}.

i=v+1 |D|=i

(4) proves the assertion of the lemma. (Q.E.D.)

§ 3. Coexistence of Infinite (*)Chains

Let ¢ be a weak horizontal (*)L-cut in A™*(m,n). There corresponds a horizon-
tal (*)cut ¢ in A*(m,n) to ¢ in the following way. Let o={x,,...,x,} with
xp Xt i=1,2,.., k=1, x,e{x;=0 or 1} and x,e{x,=m—1 or m}. The
corresponding 6={y,,),,...,y;} (I=k) is defined as follows;

1°) If x,€{x,; =0}, then y,=x,. Otherwise y,=x, —e, and y,=x,, where
e, =(0,1)eZ?

2°9) If y;=x;, and {x;,x;, >* then y, ,=x; ;.

3°) If y;=x;, but x; and x;_, are not (¥)nearest neighbours, then there is a
point x* such that (x;, x*> and (x* x; ,>. (This point x* is unique!) In this
case, we put y; ;=x*and y; ,=x; 4.
4°) If x,e{x, =mj}, then y,=x,. Otherwise we put y,=x, +e,.
It is easy to check that &= {y,,...,y,} is a horizontal (*)cut in A™ (m,n).

Theorem 1. If ligvn sup a; (N, N)<1, then either
131—{%0 af(N,N)=0 or 1313)10 ay_,(N,N)=0.

Proof. For any v>0, we take k, N sufficiently large so that k>32Uo+v+1 and
N >2k, where J, is defined in the proof of LLemma 3. First, note that if there
exists a horizontal (+)cut in AT (N, N —k), then there exists a weak horizontal
(+*)L-cut in A* (N, N —k). Therefore we have

af(N,N—ky={w—a;*(N,N—k)}-bS(N,N~k),
where b (N, N —k) is defined by
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() by(N,N—k
_pw there exists a horizontal |there exists a weak horizontal
(+)cut in A*(N,N—k) |(+*)L-cut in A*(N,N—k)

Let o(w) be the lowest weak horizontal (*)L-cut in A*(N,N —k), and &(c)
be the corresponding horizontal (*)cut in A* (N, N —k).
For any weak horizontal (*)L-cut ¢ in AT(N,N —k), let

H(o)={xeA*(N,N —k); x is above &}.

Then we have :

1 — PP {there exists a horizontal (+)cut in A*(N,N —k)|o(w)=0}
there exist at least v vertical (—*)cuts in H(o) with
distinct endpoints on the lower side of H(o), and for
one of these endpoints x, w(y)= —1 for any y from
0(0*(x)no)\o

Zaf *, (N, N) (1 = Ay o, (1 —(1 = (1 =p)*')),

since # [0(0*(x))] =21, where I A)={yeZ?; {x,y>™ for some xeA}. Hence
we have

= P®

o(w)=a

bi (N, N —k) <1 —af *,(N, N)(1 =4, o(v, A1 = (1 —(1—p*})).
Now we assume that
ligvn_bsolgp w—d; *(N,N—k)=1.
Then from Lemmas 1 and 2, we obtain
P®{there exists an infinite (+ *)chain} =1,
which implies that Al’im af_,(N,N)=0. (See Lemma 2 of [3].)
Next, assume that lillgl supw—ai*(N,N)=n<1. We take a subsequence

{N,} such that lim a} (N,, N) exists. From Lemma 3, we obtain
J jooo P

lim a7 (N;, N) S+ [1 = lim a7 %, (N, N)(1 =4, o0, AL —(1 =1 —=p*'M1.

Jj=o0
Letting first k— co, and then v— oo, we obtain

lim a; (8], N)=0,

which implies that I}im ay(N,N)=0. (QED)
Proof of Theorem 1. Since aj,,(N,N)<1/2, from Theorem 1’ we obtain that
I\ym af(N,N)=1 —;im ai,(2N,2N)=1.

Therefore from Lemmas 1 and 2, we have IT*(1/2)>0. This, combined with
Russo’s theorem (i), and (ii), implies that p,>1/2. (Q.E.D.)
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Corollary. For p¥<p<p,,
PP {there exist both infinite (+ *) and (—*)chains} =1.

In particular, this holds for p=1/2.

Acknowledgement. 1 would like to thank H.Kesten for kindly informing me that he proved
Theorem 1, too, by a different method.
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