
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
61, 59-73 (1982) 

Zcitschrift fflr 

Wahr scheinlichkeit  sthe orie 
und verwandte Gebiete 
�9 Springer-Verlag 1982 

On the Longest Run of Coincidences 

Tibor Nemetz ~ and Norbert  Kusolitsch2 

Mathematical Institute of the Hungarian Academy of Sciences, Realtanoda u. 13-15, Budapest, 
Hungary 
2 Institut fiir Statistik und Wahrscheinlichkeitstheorie, Technische Universit~it Wien, 
Argentinierstrasse 8/7, Wien, Osterreich 

Summary. Consider the rectangles of the first k(n) lines of length n in the 
right-upper integer-lattice, and suppose that its points are labelled random- 
ly" by tile numbers 1, 2 , . . . ,  m. The time i is called coincidence if the points 
(i, 1), (i, 2) . . . . .  (i, k(n)) are labelled identically. Asymptotic properties of the 
longest run of coincidences are discussed under different conditions on k(n). 

The results are related to a problem of P. R6v6sz: If the points of an n 
• n integer-lattice are coloured red and white randomly, what is the largest 

area of rectangles with red points only. 
A conjecture is formulated, indicating some peculiar number-theoretic 

characteristics of some limit-relations in this area. 

I. Introduction 

In this paper we are concerned with a problem of P. R6v6sz [3], Our for- 
mulation differs, however, slightly from his one. 

Let all lattice points (i,j), i, j s ~ U  be labelled randomly with one of the 
numbers 1, 2, . . . ,  m. Let ~,j denote the label of the point (i,j). We will suppose 
that the random variables ~,j are independent, identically distributed (i.i.d.) 
with the probability distribution 

P(~i,~=s) =-p~, s = 1 . . . .  , m. (1) 

Let us furthermore consider a deterministic, monotone non-decreasing se- 
quence of integers k(n) with the property k(n)<=n. For fixed n we can interpret 
the rectangle {(i,j): 1 < i N k ( n ) ,  1 < j < n }  as k(n) lines with n points on each. We 
can also ask if the labels in the j-th column coincide or not and if they do, 
what is the common label. To be more formal let 

otherwise. (2) 
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In this paper we are concerned with the asymptotic behaviour of the longest 
run of l's in th, t/2, ..., t/,. We recall that a run of l's is a sequence of 
consecutive l's preceeded and followed by a 0, except at the two end-times, 
where the definition is the natural one. The length of a run is the number of its 
elements. 

Properties of coincidences were first utilized by Shannon [4]. He used the 
total number of coincidences rather than runs of them as a statistic, which 
provides an effective way to check the identity of two cryptosystems. In this 
case the sequence of k(n) is a constant sequence k(n) = k with small values of k 
and r = m = 26 or 27. 

For the case of k(n)-= k one can easily deduce the asymptotic behaviour of 
the longest run from known results. Indead, the probabilities 

Pk(,) = P(t/l(r, k(n), n)= 1)= ~ pk (3) 
s = l  

do not depend on n in this case. Let us denote their joint value by p, i.e. p 

= ~, pk. Then we can apply the following theorem. 
s = l  

Theorem I. Let th, tl2, ... be i.i.d, random variables with 

P(t/, = l)--p, P(q,--O)-- 1 - p .  

Let v(n) be the length of the longest run of l's among ~1 . . . .  ,~n" Then 

/ / l imV(n) -  1 1 ) = 1 .  
P 1  " logn logp 

/ 

(For a proof of this theorem see, e.g. Petrov [2].) 
This means, that it suffices to consider the case of non-bounded k(n), which 

1 
k(n) l og -  

is most interesting when ~ P  has a positive limit value. If this limit value 
logn 

is not the reciprocal of an integer then the length of the longest run converges 
to a constant. Otherwise it is still concentrated on 2 values, but surprisingly it 
does not converge even in distribution. 

In part 2 we will prove limit theorems, in part 3 questions on expected 
values will be discussed. The last part utilizes these results for investigating the 
area of the largest rectangle of identical elements. It is shown that this area is 
essentially the same as that of the largest square of identical elements. 

This latter was found by R6v6sz in [3]. 

2. Convergence of the Length of the Longest Coincidence-Run: 
Weak and Strong Type Results 

First we prove two inequalities on the longest run. 

Lemma 1. Let (i, (2, ..., ~ . . . . .  be i.i.d, random variables with 

P ( ( l = l ) = p  and P ( ( l = 0 ) = l - p  
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and let us denote the length of the longest run of l's among the first n variables 
by v(n), then we have 

and 
P(v(n) < N) < (1 - pN)-~ exp( -- np~'/N) (4) 

P(v(n)__> N)__< np ~ (5) 
for all integers N. 

Proof Let A~ denote the event, that at least one of the random variables 
(~,...,(~+N-t is zero i.e. that no run of the length N or more start with the 
index i. Then 

P(v(n)<N)< P(Ax AI + u ... A I  +hN) 

with h = [ - ~ ] .  [x] is the largest integer <x .  

Ai and Aj are independent for l i - j l > N ,  we get 

P (v (n) < N) < P (A 1)h +1 ___ (1 - pN) [~] < (1 -- pN)-I exp ( -- npN/N). 

On the other hand, v(n)>=N means that at least one of the complementary 
events A~, i = 1, ..., n -  N + 1 occurs. Therefore 

n - N + l  

P(v(n)~N)< ~ P(Ai)=(n-N+l)pN<_npN. [] 
i=1 

Let us turn back to our original problem. Let the random variables r and 
a deterministic monotone nondecreasing sequence of integers k(n) be defined 
as in the introduction and suppose that k(n) goes to infinity. Then the distribu- 
tion of the random variables ~/j given by (2) depends on n. The probability 

Pk(.) = P(r/l( r, k(n), n) = l) = ~ p~(") 
s = l .  

is essentially determined by Po = max p~: Indeed, 
l<=s~r 

pko(") < Pk(,) < rpko ("). (6) 

Applying this inequality, Lemma 1 implies the following lemma. 

Lemma 2. Let ~(k,n)---o~(k(n), n) be the length of the longest run of coincidences 
in the first r labels that is the length of the longest run of l's in rll (r, k(n), n) . . . .  , 
q,(r, k(n), n). Then for arbitrary e>0,  we have 

( c~(k'n) k(n)l~176 ) <-n-'/2" 
P \  ~ >1+~ _ 
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Proof Applying (5) and the second inequality of (6) we get 

/~(k, nlk(n) logL 
P l -  lo-~ Po> l+e)=pfc~(k,n)>[(l+e)l~ 

\ 7o J ') 
[(1 + e)!og h i +  1 

J 
(1 + e) log n 
- - +  1 

1 <=n-~rk(n)log~o <=n-et2 

if k(n) is large enough. [] 
This lemma leads us to the following result: 

Theorem 1. We have 

a(k, n) k(n) log I ) 
P~ =1. P lim sup logn = 

Proof The above lemma implies 

[~(k, 2") k(2")log Z 
I- _ _  P0 > ) "~ 

P \ log2" l + e  <2 - T  

for every e > 0 and m large enough. 

Since ~ 2 -""/z < co, this inequality and the Borel-Cantelli-lemma yield 
m= 1 

1 
a(k, 2") k(2 m) log -- 

lim sup Po < 1 
log 2" 

a.s .  

On the other hand, for every integer n with 2~__n_<2 m+ 2_ 1 we get 

(7) 

Therefore 

c~(k, n) k(n)_ <" e(k(n), 2" + 1) k(n) 
log n = log 2" 

tim sup ot(k(n),n) k(n) __<lira sup a(k(n), 2 "+ 2) k(n) 
n tog n log 2 '~ 

a(k(n), 2 "+ 1)k(n) 
= lim" sup log~" + 1 
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The same reasoning that leads to (7) implies 

a(k(n), 2 "+ ~)k(n)log 1 
Po _<1 

lim sup log 2" + 1 - a.s. 

This completes our proof. [] 

If k(n) tends to infinity fast enough, then c~(k, n) becomes bounded: 

1 
k(n) l o g - -  

Corollary 1. I f  lira inf Po > x (x > 0), then 
. logn 

~(,~m~up~,~.,~l) 1 

1 
k(n) l o g - -  

Proof The assumption lim inf Po > x and Theorem 1 imply 
n logn 

1 
lim sup a(k, n) < -  a.s. [] 

x 

1 
k(n) l o g - -  

Remark. Corollary 1 shows that, if lim inf  Po > 1, then ~(k, n) becomes 0 
logn 

a.s. Accordingly we may restrict ourselves to the case, where x < 1 in the above 
corollary. 

1 
k(n) l o g - -  

Theorem 2. I f  lira sup Po <x  (x >0), and k(n)~ + 0% then 
n logn 

, (lim~.~(~..,~ [~])-~ 

Proof From our assumption follows the existence of some e > 0 such that for 
all large enough integers n 

k(n) < x (1 - e) log n log p~ (8) 

holds true. 

�9 h~ p~obaU~lity, ( ~ . o ~  [~])can b~ est~mate~ ~rom abo~e by u~i.g ~4~ 
with N = [  1 ]  andp=Pk(,): 
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, ( 
L X J  l = t ~  *k(n) ~ exp --'~ 

')) 
if k(n) is large enough. 

Applying (8) we get 

P (c~(k, n)< [1])=<2 exp (n(lnxp~ <2  exp(-xne)  . -  

Since the sum ~ exp(-xn")  is finite, an application of the Borel-Cantelli- 
n = l  

lemma proves the theorem. [] 
Summing up the results of Corollary 1 and Theorem 2, we get 

1 
k(n) log P0 i 

Corollary 2. I f  lira =x and - is not an integer, then a(k,n) converges 
. l o g n  x 

i l l  
to ILl  almost surely. 

[xJ 

Remark. If 1 in Corollary (2.7) is an integer, then co(k, n) does not necessarily 
x 

converge, as is shown in the next example. 

Example1. Let r = l  and suppose p1<2 -x. Assume, furthermore, that the 
sequence k(n) satisfies 

k(n) Xlog 1Ogl-I < C 

Then neither l imP(a (k ,n )=  1 )  nor 

1 1 
limP(c~(k,n)=y)=O for y ~ - - 1 , - .  

n X X 

for some constant C. (9) 

l imP(o~(k,n)=l-1)  exist. Note that 

Proof We need a result of ErdSs-R6v6sz (see [1] Theorem 5), so first we recall 
their result in our terms: 

For all integers n and M the following inequalities hold true 

I -n-2Mqq 1 
1 - (1 - -  p~t'OM(1 + M ) )  [1 L--g-JJ + 

r n - 2 M 1  1 

P(~(k, n) >= M) -< 1 - (1 - p~(")M (1 + M)) [ ~ ]  + (10) 

For the sequence k(n) is an intcger sequence and the differences k ( n ) - ~  
1 

log p-i- 

are bounded, there must exist two subsequences (k(n~)) and (k(n{)) of (k(n)) and 
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a real constant T such that 

lira (k(n:) 
and 

x log n/1 ~ < T 
log 1 ) 

l im/k(n 2) xlogr?~ > T+ 1. 

' t logpL) 
of (10), considered as functions of k(n), are monotone Because both bounds 

decreasing, it follows that 

[t [nt-Z/xll +1 
lim (1-- (1-- Pr#' (l + l )  ) L2 [ 1/~-11 )<_liminfP(e(k,nr 1 )  (11) 

n l  - -  . 

and 

lim supP (e(k, niz)>l)_<lim ( 1 - ( 1  el e ~ ( I + M )  ~ ] + I  (12) 
i - -  " n 2  

The limit expressions in the inequalities (11) and (12) are equal to 

[ 1 r/x( 1 l _ e x p /  ,,1/~,,,~r/x(1 . 1-expt-2xPl +1)) resp. ~ -e l  ~ul + 1 ) )  

( ( 1 ) )  
By the monotony of the function f(y)=exp -yxp~f/~ 1+ x and our as- 
sumption pl <2 -~ it follows immediately that 

l i m s u p P ( ~ ( k ' n ~ ) > l - ] < l i m i n f P ( ~ ( k ' n ~ ) > l )  \ - x !  i (13) 

/ 1 \  
So 

assertion. [] 

Conjecture. We are fairly sure that the situation described in Example 1 holds 
generally true under condition (9), i.e. there is no need for the additional assump- 

tions r = 1 and p < 2 -x. However we can prove the general assertion just for -=1 1 
X 

and - 2. 
X 

The following theorem presents two cases where c~(k, n) converges in weak 
1.  

sense even when - is an integer. 
X 

Theorem 3. Let -1 (0<x<l)= be an integer, say 1- =M, and 
X X 

1 
k(n) l o g -  

lim Po = x. 
. l o g  n 
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a) If  for some positive function f (n), which tends to infinity, 

holds true, then 

lim inf (k(n) x l~ n )) 
log 1~ f (n >0 

Po 

lim P(a(k, n) = M -  1) = 1. 
n 

b, limsup( , , 
Po 

lim P(~(k, n) = M) = 1. 
I1 

Proof. a) (5) and (6) induce 

P(~(k, n) = M) < P(c~(k, n) > M) < nrM pMo k(n) <= rM pMo f(n). 

Therefore a) follows immediately. 

b) (4) and (6) imply 

P(c~(k, n))<(1 M - - 1  ( - P~(,)) exp 

This proves b). 

Theorem 4. I f  lira k(n)=0, then 
log n 

P lim, logn - = 1. 

Proof. For every e > 0 we get by (4) and (6) 

P [~(k, n) < (1 -~) log~ \ 

n)< ( 1 - ~ l o g n  + 

. [~l-~)logn]\_ 1 ( (--l-e) l~ ~1 ) 
1 k(n) log ! [ k(~)log~l~ nPo Vo 

_< _p~., ~oj] exp 

,: k (n) log- -  
Po 

( < 2 e x p  . ~ / .  
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The proof is completed by an application of the Borel-Cantelli-lemma, as in 
the proof of Theorem 2. [] 

3. Convergence of  the Expected Value of  ~(k ,  n) 

In this chapter we will show that the asymptotic behaviour of Ee(k, n) is 
exactly the same as that of c~(k, n). First we will prove a lemma. In this chapter 
E( ' )  denotes the expectation. 

L e m m a  3. For every integer M (M < n) and k(n) large enough, we get 

i P(c~(k, n)= i) < 2nr i  p~o k("). 
i = M  

Proof. By applying the inequalities (5) and (6) one gets 

iP(o~(k, n)= i )=  ~ P(a(k, n)>=i)< ~ nP~(.) 
i = M  i = M  i = M  

< M < 2 n r M p M k ( . )  = n Ps -Pk(, )) - 1 = 

The next theorem is an analogon to Theorem 1. 

Theorem 5. We have 
1 c~(k, n) k(n) l o g - -  

lira sup E P0 < 1. 
. log n 

Proof. For every e > 0  the following holds true: 

[] 

1 
c~(k, n) k(n) l o g - -  

E P0 
log n 

( l+e)  l o g n \  

< ( l + e ) P  ct(k, n)_-< k(n) l~ ) 1 
- - - ~  + ~ iP(c~(k, n)=i). 

i=[(1 +~) log hi+ 
[k(.)log~] 

Therefore (3.1) induces 

1 [(1 + ~)log~] + 1 

I E - -  l + e +  
log n 

if k(n) is large enough. [] 

The following corollary is an immediate consequence of Theorem 5. 
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1 
k(n) l o g - -  

Corollary 3. I f  lim inf Po > x (x > 0), then 
. l o g  n 

1 
lim sup E ~(k, n) < - .  

n X 

For x- -1  we get a slightly stronger result, namely: 

1 
k(n) l o g - -  

Theorem 6. I f  lira inf Po > 1, 
. l o g  n 

then we have 

lim E ~(k, n) k(n) = O. 

Proof. By means of Lemma  3, inequalities (5) and (6), we get for every large 
enough integer n: 

E k(n) a(k, n) = k(n) P(a(k, n) = 1) + ~ i k(n) P(e(k,  n) = i) 
i = 2  

< r n k(n) pko(") + 2 n r 2 pZk(n). 

Because of our  assumption there exists an 5>0 ,  such that  ( 1 + 0  
for all large enough n. Now we can distinguish two cases: 

log n log n 
i) (1 + e ) - - - ~ - <  k(n) < 3 1 

log - -  log - -  
Po Po 

3 log n 
ii) 1 <k(n)<n.  

log - -  
Po 

In case i) (14) implies 

3 rn lo gn  2r2n 
Ek(n)~(k,n)<= 1 § n 2 

nl + ~ l o g - -  
Po 

In case ii) we get again from (14) 

rn 2 2rZn 
Ek(n)~z(k, n ) = < - ~ q  n6 

(14) 

log n 
<k(n) 

1 
log - -  

Po 

Thus in both  cases EK(n)e(k ,  n) converges to zero. 

Now we turn to a lower bound  for the limit value of E e(k, n) 

1 
k(n) l o g - -  

Theorem 7. I f  lim sup Po < x (x > 0), then 
. l o g  n 

l im in fEa (k ,  n)> x " 
n 
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Pr~176 Because [1]P ( ~(k'n)> [1]t<-Ecffk'n) f~ every n' The~ - 

[1]<liminfEcffk, n). [] 

In a similar manner the following theorem can be proved by an application 
of Theorem 4: 

Theorem 8.  If  k(n)/logn converges to zero, then E 
one. 

1 
~(k, n) k(n) l o g - -  

Po 
log n 

Proof. Because of Theorem 5 it suffices to show that 

1 < l i m E  
- . l o g  n 

1 
cffk, n) k(n) l o g - -  

Po 

But this follows immediately from Theorem 4 and the fact, that 

1 
e(k, n) k(n) l o g - -  

Po [] 
log n 

converges to 

Remark. The following statements are immediate consequences of Corollary 3 
and Theorem 7. 

1 
k(n) l o g - -  

Po converges to some positive x, whose reciprocal -1 is not an a) If log n x 

integer, then E~(k,n) converges to [1]. 

1 
k(n) l o g - -  

b) If lim, log n Po _ x, where x is the reciprocal of an integer, then 

1 1 
- 1 < lira infE cffk, n) < lira sup E c~(k, n) __<-. 

X n n X 

The following theorem Presents two cases, where E e(k, n) converges even 
1 .  

when - is an integer (see Theorem 3). 
x 

Theorem 9. Let 1 (0<x=< 1) be an integer, say 1 =M, and 
x x 

1 
k(n) l o g - -  

lim Po x. 
n l o g  n 
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i) I f  for some positive function f (n), which tends to infinity, 

lim inf (k(n) x l~ n ) ) _  log 1 f ( n  >-_0 holds true, then 

Po 

lim E e(k, n) = M -  1. 
n 

( ) ii) Similarly, i f  l imsup k(n) log 1 t-f(n) <_0, then 

lim E 7(k, n) = M. 

Proof. i) From Theorem 7 it follows 

M - 1 __< E c~(k, n) __< (M - 1) P(a(k, n) < M - 1) + i i P(a(k, n) = i). 
i=M 

With this and Lemma 3 we get for large enough n 

E e(k, n) < M - 1 + 2 n r M p~k(,) < M -- 1 + 2 r M p~I(n). 

This proves the first part. 

ii) The assertion of part ii) follows from Theorem 3/b, Corollary 3 and from 
the fact that 

M P(e(k, n ) = M ) <  E e(k, n) for every integer n. [] 

Remark. Under the assumptions of Example 1, E e(k, n) is not converging. 

1 
Proof. Let us define M = - ,  as above. Then we have 

x 

( M -  1)P(e(k, n) = M - 1) + M P  (c~(k, n) = M) 

2nr  M + I 
< E a(k, n) < ( M -  1)P(c~(k, n) < M -  1) + M P(c~(k, n) =M)-~ nl + X p(1M + , ) . 

Therefrom follows 

M -  1 +l im infP(e(k, n)=M)___lira infE e(k, n) 
n n 

and 

lim supEa(k, n ) < M -  1 +l im supP(c~(k, n)=M).  []  
n tl 

Now we know that inequality (13) is fullfilled by the two subsequences (k(nr 
and (k(n2)) of Example 1. This, together with the above inequalities, proves the 
remark. 
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4. The Area of the Largest Rectangle of Identical Labels 

We will assume throughout this chapter, that the random variables r can 
take on just two labels 0 and 1 with probabilities 1 - p  and p, i.e. 

P (~ , j=0)=  1 -p, P(~,j=l)=p. 

Let us denote 
i+k-1 j+N-1 t 

~(k,n,/)=max N: max ~ ~ ~,,=Nk , 
l<j<n-N+l u=i v=j 

7(n)= max max kc~(k, n, i) 
l<k<n l<=i<n-k+l 

and 
f u+N--1 v+N--1 t tc(n)=max N2: max max ~,, ~ ~i,j=NZ. 

l<~u<n-N+l l<v<~n-N+l i=u j=v 

Thus ~(n) can be interpreted as the "area" of the largest square, consisting just 
~= 1 ...... whereas 7(n) is the "area" of the largest of l's, in the n x n matrix ( ~,j)j= 1 ....... 

rectangle of l's. 
R6v6sz proved the following theorem (see e.g. [3]): 

Theorem R. We have 

to(n) log -1 ) 

P lim 21ognP-1 =1. 

Our aim is to show that the same holds true for 7(n). 

Theorem 10. We have 

-P-1 =1. P lim 2 log n 

Proof. Because of Theorem R it suffices to prove 

P ( l im  sup 7(n) l~  ) <  ] 
2 log n 1/ =1. 

Let us introduce the following notations, where e>0 is some arbitrary con- 
stant: 

Bn=/7(n) > 2(1 +E) logn 1 
log l  

P 
2(1 +e) k logn 

B,,k,i= ~(k, n, i)> 
�9 log -1 

P 

. 
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We have 

B.=  U4on U B. k ,w U U B..k,," (15t 
l<<k<_4_l~g l<--i~ n - k + l  " , 4 1 o g n < k <  n l < - i < - n - k + l  

- - log~ log~ 

Following the proof of Lemma 2, step by step, it can be seen that for all 
integers k 

P(Bn,~,~)<n -1-~ 
and 

P(Bn, k,i)<=n -3, 

This together with (15) yields 

if k>  41~ 
1 

log-  
P 

From this inequality we can deduce by means of the Borel-Cantelli-lemrna, 
that ( ) im P < I  =1. P 1 sup 2log2" = 

If n is an integer with 2"- 1 < n < 2 m, then 

7(n) log~<, (2") log~ 7(2") log 1 P 

2 log n = 2 log 2"-  1 = 2 log 2" - 2 log 2" (17) 

From (16) and (17) follows the assertion of our theorem immediately. [] 

Not only the largest square of l's and the largest rectangle are of the same 
order of magnitude, but also the longest run of l's in one of n lines, each with 
n places. 

Theorem 11. Let fl(n)= max c~(1, n, i), then 
l < i < n  

Proof. Because of Theorem 10 we have just to prove, that 

P ( l i m  fl(n) l o g ) > . ~  
inf 2i-ogn = 1 / = 1 .  

(16) 

p(B,)_<_4 l~ n_ +_1_ 
- 1 n 

n ~ log-  
P 
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Let  us in t roduce the following notat ions  ( e > 0  some arbitrary, but  fixed con- 
stant): 

D . =  [fl(n) < 2(1 -~ )  logn  

l o g -  1 
P 

and 

F r o m  (4) it follows: 

P(D,,)=P( (~ 

D,, i =/c~( 1, n, i) < 2(1 - 8) log n t 
l~ 1 J 

L P 

< exp 

D,,~)< [ 1 - ~ ] - "  exp ~ - - e ~ g g n ] + ; l ~  l<i<=n = \ n - ~ ] 2(1 

1 n 2 e log-lp t 
n 1-2e 2 ( l + e ) l o g n / '  

Therefore  

~ P(Dn)< oe. 

An applicat ion of  the Borel-Cantel l i - lemma completes the proof. [ ]  
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