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Summary. The class of non-degenerate joint limiting distributions for the 
maximum and minimum of stationary mixing sequences is determined. 
These limit distributions are of the form, H(x, oo)-H(x,-y), where H(x,y) 
is a bivariate extreme value distribution. Unlike the classical result for i.i.d. 
sequences, the maxinmm and minimum of stationary mixing sequences may 
be asymptotically dcpendent. Wc also give a sufficient condition for the 
asymptotic independence of the maximum and minimum. Finally, an exam- 
ple of a stationary sequence satisfying the mixing condition D in Leadbetter 
but which is not weakly mixing is constructed. 

1. Introduction 

The weak limit behavior of extreme values is well known for sequences of 
independent and identically distributed (iid) random variables. In an attempt 
to achieve similar results for stationary sequences, the processes are typically 
required to satisfy two types of dependence conditions. The first is a mixing 
condition requiring a certain class of events to become independent as their 
time separation increases. The second assumption is more of a local condition 
restricting the dependence between any two of the random variables when 
both are large. One of the weakest and most workable forms of these two 
conditions are the hypotheses D and D' introduced in Leadbetter (1974). 

Under D and D' it was shown in Leadbetter (1974) and in Davis (1979), 
that the convergence in distribution of the maximum, properly normalized, is 
completely determined by the common distribution function of the sequence. 
That is, the maximum behaves asymptotically as though the underlying se- 
quence is lid. This followed earlier work by Watson (1954), and Loynes (1965) 
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and O'Brien (1974a), who proved analogous results under the more restrictive 
assumption of m-dependence and strong mixing, respectively. 

In Davis (1979), there results were extended to the joint limiting distribu- 
tion of the maximum and minimum under dependence conditions similar in 
nature to D and D'. Also, in that same paper, a 1-dependent sequence was 
constructed where the maximum and minimum are asymptotically dependent. 
In Sect. 4, we determine the class of all joint non-degenerate limiting distri- 
butions for the maximum and minimum from a stationary mixing sequence. 
The class of such limiting distributions turn out to be of the form H(x, oo) 
- H ( x , - y )  where H(x,y) is a bivariate extreme value distribution (see Sect. 4 
for definition). 

A refinement of the asymptotic independence result in Davis (1979) is given 
in Sect. 3. In Sect. 2, further remarks are made concerning the limiting distribu- 
tion of the maximum when the local dependence condition D' is no longer 
assumed. 

Finally in Sect. 5, we construct a stationary sequence that satisfies D and 
D' but which is not weakly mixing. Also, for an arbitrary bivariate extreme 
value distribution, H(x, y), a 2-dependent sequence is given with the property 
that the maximum and minimum has H(x, oo) - H(x, - y) as its limiting distribu- 
tion. Further examples demonstrating various aspects of the results in earlier 
sections are also presented. 

2. Limit Laws of the Maximum 

Let {X,} be a stationary sequence of random variables with F and 
~ , . . i , ( ' ,  .--, ") denoting the common distribution function (dr) and joint df of 
Xil ,...,X~p, respectively. For a sequence of real numbers {u,} we shall say (cf. 
Leadbetter, 1974) that the condition D(u,) is satisfied by the sequence X, if for 
any n, and any choice of integers i 1 < ... <ip<jl < ... <jq, j l  - ip>l ,  we have 

I F~,...~,~I ,,.jo(u,,..., u~ - ~1 .., ~p(u,,,.., u,) V;, ,..~o(u,,..., u,)l<= ~,,~ 

where e,., is nonincreasing in l and lime,a =0  for some sequence l --,oo with 
n--~ oo 

1,/n-~O. If we let M(I)=max{X~} for a set of integers t, then D(u,) requires the 
ieI  

events {M(l)<u,} and {M(J)<=u,}, where I={i  1 .... ,iv} and J={Jl,...,Jq}, to 
become independent as the gap between the two sets goes to infinity. Notice 
that the gap, l,, is coordinated with n and goes to infinity at a slower rate than 
n. 

As in Loynes (1965), let {Jr,} be the associated independent sequence of 
{X,,} (i.e., {J;,} is an iid sequence with common df F). The main idea in the 
proof of the following theorem comes from Loynes. 

Theorem 2.1. Let u ,=u,(x)=a,x  +b, where a ,>0 ,  b, are constants, and suppose 
D(u,) is satisfied by {X,} for all x. Further assume 

p(a21(~-b~)~x)--+a(x)  and P(ay l (M. -b . )<x)~IY(x )  (2.1) 
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for all x where G(x) and H(x) are non-degenerate dl's and M. 
=max{J(1, . . . ,Jf .}.  Then H(x)=G~(x) where 0 < f l < l .  Since G is an extreme 
value dr, this power relationship implies H(x)=G(Ax +B) for some constants 
A > 0  and B. 

Proof We have by (2.1) and the D(u.) condition (cf. Leadbetter, 1974), 

1 - F ( u .  ( x ) )  = - l o g  G (x)/n + o (1/n), ( 2 . 2 )  

and 
pk(M.<U.k(X))--P(M.<u,,(x))-~O as n ~  (2.3) 

for every positive integer k. Clearly, 1--n((1-F(u.k(x))<P(M.<u.k(x)) and 
upon letting n~oo and using (2.1)-(2.3), we have (l+logG(x)/k)g<H(x). Now 
let k+oo  to obtain the inequality, G(x)<H(x) for all x with G(x)>0, which 
readily extends to all x. 

Define Xo=inf{x:G(x)>O } and for X>Xo, let w=- logG(x )  and c.(w) 
= u. (x). Since 1 - F (c. (w)) = w/n + o (1/n), 

[ P (M. < c. (w/k)) - P(M. < ek. (W))[ 

= P(c.(w/k) < M,, < Ck.(W)) + P(Ck.(W ) < M.  < c.(w/k)) 

<nIF(ck.(w))-F(e.(w/k))]~O as n~c~.  

Putting this together with (2.3) and letting 6(w) denote the limit of 
P(M.<c.(w)), we see that fi must satisfy the functional equation 6k(w/k)=fi(w) 
for every positive integer k. As remarked in Loynes (1974), the only such limit 
function having this property is 6(w)=e -p~ where 0 < f l <  oo. By the preceding 
paragraph, G(x)<H(x)=fi(w)=GP(x) for all x > x  o which implies fiN1. The 
result is complete once we show fl > 0 or, equivalently, prove that there exists 
an x > x  o with H(x)< 1, 

Suppose, on the contrary, that H ( x ) = l  for all X>Xo. This necessarily 
implies x o > -  oo and G(x)= ~v(Ax+B) where A >0  and B are constants, x o = 
- B / A ,  and 

0 x<O 
r  = - ~ > 0. 

e -x-v x>0,  

Choose a ' ,=inf{y: F(y)> 1-1/n}.  Then, by Theorem 2.3.1 in deHaan  (1970), 

< , P(;I <__a'.x)~(x) a n d  P(M,,=anX)-,H((x-B)/A) 

by the convergence of types result Lemma 1, p. 253 in Feller (1971). In particu- 
lar, 

P(M, <O)~ H ( -  B/A) = H (xo) = 1 (2.4) 

since H is an extreme value distribution and hence continuous. 
We now show that (2.4) cannot be true. First note that F(0)< 1 for 0=  ~b~(0) 

= lim F"(0). Using an inequality of Chung and Erdos (1952), 
n ~ o o  

n2(1 - F(0)) a 
P(M.__< 0) < 1 (2.5) 

n(1 - F(0)) + 2S2," 
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where S2,n= 2 P(Xi>O, Xj>O) which is bounded by n2(1-F(0)).  The 
l <i<j<n 

right hand side of (2.5) is bounded by 

1 nZ(1-F(O))Z +1 ( I - F ( 0 ) ) <  1. 
n(1 - F(0)) + 2n2(1 - F(0)) 2 

This contradicts (2.4) and thus confirms that fl > 0. 
The last statement of the theorem can be proved by checking each of the 

three extreme value distributions. 

Remarks. 1) By adjusting the normalizing constants in the above theorem, set 
t ~ r t an=an/A and bn-=(b,-anB)/A, we have P(Mn=anx +b,) H ( ( x - B ) / A ) = G ( x ) .  

2) It is entirely possible for P(IiTl,<anx+bn)~G(x ) and P(Mn<cnx 
+ d , ) ~ H ( x )  for some other choice of normalizing constants and where H and 
G are not of the same type. An example of this is given by O'Brien (1974b). 

3) Under the additional assumption D'(un) , fl= 1. 

4) For m-dependent sequences, 1 > f l > ( m +  1)-1, and a direct proof of the 
theorem can be given. For m-dependent sequences, fi can easily be determined. 
The following proposition for 1-dependent sequences which follows from a 
theorem of Newell (1964) can be extended to m-dependence with some obvious 
modifications. 

5) The above result appears to be a special case of a theorem in Chernick 
(1981). However, the proof supplied is inadequate even with the inclusion of 
the qualifier 'non-degenerate' in the statement of the theorem. 

Proposition2.2. Let {X,} be a 1-dependent sequence and suppose P(ayl(Mn 
- b n ) < x ) ~ G ( x ) ,  G non-degenerate. Then P ( a f 1 ( m n - b n ) < x ) ~ H ( x ) ,  H non- 
degenerate if and only if 

nP(X t  > a , x  +bn, X 2 > a n x  +bn)~ - ( 1 - f l ) l o g G ( x )  (2.6) 

as n ~  for some x with G(x)>0. This last condition is equivalent to 

P(X  ~ > yl Xz  > y ) ~  l - f l  (2.7) 

as Y~Yo where y o = s u p { x : F ( x ) < l } .  Moreover, if this is the ease, then (2.6) 
holds for all x with G(x)>0 and H(x)=Gr 

Proof We first show that (2.7) implies (2.6) for all x with G(x)>0. Write Un(X ) 
=a,x+bn,  and note that un(x)~y o and n P ( X l > u , ( x ) ) ~ - l o g G ( x  ) for all x 
with G(x) > 0. It follows, using (2.7), that 

n P(X  1 > u,(x), X 2 > u,(x)) 

= nP(X  1 > u,(x) lX 2 > u, (x)) P (X  1 > u,(x))--* - (1 - fl)log G(x). 

Now assume (2.6) holds for a fixed x and let yj be an arbitrary sequence of 
numbers converging to Yo from below. Define the sequence of integers nj 
=sup{k:uk(x)<yj}  (this is well defined since uk(x)~yo) and observe that 
u,j(x) < yj < u,j+ 1 (x). From this, the inequalities 
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P ( X  1 > Unj + 1 (x), X 2 > Unj + 1 (X)) (P (X2  > Unj (X))) - 1 ~ p ( X  1 > Yjl X 2 > Y j) 

<= P(x~ > %(x), x~  > %(x))(P(x~ > % .  ~ (x)))- ~ 

are immediate. The two outside terms approach 1- /3  as j--* oo by (2.6). Since yj 
was an arbitrary sequence, the equivalence of (2.6) and (2.7) is now complete. 

The theorem in Newell (1964) gives P(M.<u.)e "v(x~>"")-"v(x~>""'x~>"")~l 
as n~oo.  Since nP(X 1 > u . ( x ) ) ~ - l o g G ( x ) ,  P(M.<u.)~GP(x) if and only if 

nP(X 1 > u.(x), X 2 > u.(x))~ - ( 1  -/3) log G(x). 

Invoking the preceding theorem completes the proof of the proposition. 

3. Asymptotic Independence of the Maximum and Minimum 

Using the same notation as in the preceding section, define IV. 
=min{X1,. . . ,X.} and W.:min{)~l , . , . , )~ .} .  Again let u.(x)=a.x+b, and 
v,(y)=c.y+d, for constants a.>O, b., c.>O, and d.. We shall say that the 
sequence {X.} satisfies C 1 if for all x and y 

__<u., > P(M.__< u~ w. > (C 1) 

as n ~  ov for every integer k([s] =largest integer not greater than s). 
Condition C 1 is a type of mixing condition requiring that for every k, the k 

events 

are asymptotically independent where Ms,~= max {X~}, W~,~= min {X j}. C1 is 
s<j<=t s<j<t 

easily seen to be implied by D(v,,u,) in Davis (1979) and hence by strong 
mixing. In practice C1 may be harder to verify directly than D(v,,u,) and is 
less appealing in that it already requires some knowledge of the maximum and 
minimum. However in what follows, C 1 is the only mixing assumption neces- 
sary. 

Proposition 3.1. Assume that P(M,<_u(x))~G(x) and P(W,~v~(y))~H(y) where 
G and H are non-degenerate distribution functions. Also, in addition to C1, 
suppose {Xn} satisfies the condition 

limsupn ~ {P(XI>u,,,XI.I<-_v.)+P(XI<V.,Xj.I>u.)}=o(1 ) (C2) 
n ~  j = l  

as k ~  oo for all x and y. Then 

P (M~ < u., W~ < v~) ~ G (x) H 0'). 
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Proof First, we show that 

: ..) ( )  and P(W[~] P(M[~] < u_ ~G 1/k x > v.)~ [1 - H(y)] 1/k. 

Given e>O, choose y sufficiently small such that H(y)<e. Then, 

+ i P~IM[~] _=u.), w[~] > ~.)- P(M. ~ . . ,  w. > ~.)i 

+ IP(M,<u,, W,> v,)-P(M,<u,)L. (3.1) 

Applying the Mean Value Theorem, the first term on the right hand side of 
(3.1) is bounded by 

<_kP(W[, r <=v.)<_kP(VV,<=v.)--,k(y)<ka 
- LkJ 

Similarly, the limsup of the third term is bounded by ~. The second term goes to 
t l ~ o o  

zero by condition C1 and since e is arbitrary, P(M[~ ] <=u,)~G1/k(x) as claimed. 

The analogous result for the minimum can be proved in the same manner. 
Now, 

1-P(M[~] <G'W[~]>G) 

so that 

P(M~] ~=un, w~]>v~ 

: P(M M ~. . ) -  P(w[~] =< ~.)+ ~(M[~] >.~ w[~] _< ~.) 
LkJ 

Setting z = - l o g G ( x )  and f l = - l o g ( 1 - H ( y ) ) ,  the liminf of the right hand side 
is greater than or equal to ,4 ~o 

e- ~/k _ (1 -- e 7 #/k). (3.2) 

On the other hand, the limsup of the same side is bounded above by 
n ~ a o  

e-~/k--(1--e-#/k)+limsupP(M[~l>U,, W[~]<v,). (3 .3 )  
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But 

n 
< [~] ~ [P(X 1 >u,, Xj+ 1 <v,)+P(X 1 <v,, Xj+ 1 >u,)]. 

j = l  

The limsup of this last term is o(1/k). Applying (3.2), (3.3), and C1, we have 
n ~ c c  

(e- .c/k - -  (1 - e- fl/k))k ~ liminf P (M, =< u,, W. > v,) < limsup P (M, < u,, W, > v,) 
n ~ o : 3  , ~ o o  

. 

Upon letting k--,oo, the two sides of the inequality approach e-~e-'=G(x)(1 
-H(y)), concluding the proof. 

Even under the strongest of mixing conditions C2 may note be satisfied as 
the 1-dependent example in Davis (1979) demonstrates. Under a slightly 
stronger condition that C2 (D'(v,, u,) in Davis), the maximum and minimum are 
not only asymptotically independent but marginally have the same limiting 
distribution as the maximum and minimum of the associated independent 
sequence. 

4. Class of Limiting Distributions of the Maximum and Minimum 

Let (I11, y2) be an iid sequence of random vectors and define M~=max{Y~, 
�9 .., ynl}, M2=max{Y~, ..-, I72} to be the respective component maximum. 
Suppose there exist constants a ,>0,  b,, c ,>0,  d n such that P(M~<a,x+b~, 
M2, <c ,y+d, )~H(x ,  y) where H is a nondegenerate distribution function. Such 
distribution functions H are called bivariate extreme value distributions 
(BEVD). A characterizing property for BEVD's is that there exist constants 
Ak>0, B k, Ck>0, D k such that Hk(Akx+Bk, Cky+Dk)=H(x , y) for all positive 
integers k. This is in complete analogy with one dimensional extreme value 
distributions. 

For a discussion of bivariate extreme value distributions see Chap. 5 in 
Galambos (1978). 

One direction of the following theorem is immediate from the characteriz- 
ing property of BEVD's. 

Theorem 4.1. Suppose the stationary sequence {X,} satisfies condition C1. Then 
the class of nondegenerate limiting distributions of (a21(M,-b,) ,  c 2 l(W~-d,)) is 
precisely H(x, oe)-H(x,  - y )  where H is a bivariate extreme value distribution. 

Pro@ First assume P(M,<=u,(x), W,>v,(-y))-~H(x, y) where u,(x)=a,x +b,, 
v,(y) = c,y + dn, and H(x, y) is a nondegenerate distribution. By the C 1 assump- 
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tion, P(Mn<unk(x), W,>Vnk(--y))~H1/k(x,y) for k=1 ,2 ,  . . . .  Employing the 
multivariate analogue of the convergence of types result, there exist constants 
Ak>0 , Bk, Ck>0, D k such that H(AkX+Bk, Cky+Dk)=H1/k(x, y). Therefore, H 
is a bivariate extreme value distribution and 

P(a 2 l(m n-bn) <x, c; I(W n-d.)<y) 
= P (M, < u n (x)) - P (M, < u, (x), W, > v n (y)) 

converges to H(x, oo)-H(x, -y).  
The proof is complete once we exhibit a stationary sequence satisfying C 1 

with P(Mn<un(x), W n>v.(-y)) converging to an arbitrary bivariate extreme 
value distribution H. A basic property of BEVD's is that H2(x, y)= G(x, y) is 
also a BEVD and has the representation G(x,y)=DG(GI(x ), Gz(y)) where 
De(. , .) is the dependence function defined on p. 250 in Galambos (1978), and 
G1 and Gz are extreme value distributions. Let Fl(x ) and Fz(x ) be two dfs such 
that ~(0)=0 and F~ belongs to the domain of attraction of Gi, i=  1, 2. This 
implies the existence of constants an>0 , bn, c ,>0,  d n such that F[(a,x 
+b,)~Gl(x ) and F~(c,y+dn)~G2(y ). 

Now define the distribution function F(x, y) to be equal to D~(FI(x), Fz(y)) 
and then 

" F  F"(a,x +b,,c.y+d.)=Da( l(a,x +b,), Fz(c,y+d,)) 
= D~(F'~(a,x + b,), F~(c,y + d,))~G(x, y) 

follows from Theorems 5.21 and 5.22 in Galambos (1978). The stationary 
sequence {X,} can now be defined as follows. First let {(I1,, Z,)} be an lid 
sequence with common dfF(x,y) defined above and let J be a Bernoulli 
random variable independent of (Y,, Z,) with P(J=I)=P(J=O)=I/2.  Define 
the sequence (X 1, X 2, ...,) to be (Y1, - Z 3 ,  Y3, - Z s ,  I15, -ZT ,  ...) if J =  1 and 
( - Z 2 ,  Y2, - Z 4 ,  Y4, - Z 6 ,  Y6, ,..)if J = 0 .  

It is clear that X, is stationary (since P(J = 1)= P(J =0)) and, moreover, for 
n sufficiently large, P(Mn<U ., W,>-v,,) is equal to 

/ (Yl<u, ,Zl<v,)(P(gl<un)+P(Zl<v,))  if n is odd (4.1) 

[1/2P"~-2(~,= n, 1 = . ) ( ( 1 = . )  ( l = n )  ( 1 = . ,  1=.))) <u  Z <v P I~ <u  P Z  <v + P  Y,<u Z <v 

if n is even, 

where u,=un(x)=a,x+b . and vn=v,(y)=cny+d .. Upon letting n~oe,  we 
obtain P(M <=u,(x), Wn> --Vn(y))-*G1/Z(x, y)=H(x, y). Finally property C1 is 
easily checked using (4.1). [3 

Examples similar to the one used in the above proof will be presented and 
discussed in the next section. We will also construct, for an arbitrary bivariate 
extreme value distributions H(x,y), a 2-dependent stationary sequence with 
P(M n < u,(x), W, > vn( -y))---,H(x, y). Thus, we have the following corollary. 

Corollary4.2. The results of Theorem 4.1 remain true for strongly mixing se- 
quences and processes satisfying the mixing condition D(v,, un) in Davis (1979). 
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5. Examples 

Let {I1,} be an iid sequence and let {J,} be a sequence of alternating zeros and 
ones, independent of the Y's, with P(J1 = 1, J2=0 ,  J 3 = l ,  - . . )=P(J1 =0, J2 = 1, 
J3 = 0 , . . . ) =  1/2. Define the X,  sequence as follows: 

X -~Y" if J , = l  
n - (  Yn+ 1 if J , = 0 .  

At first glance, one is tempted to conclude that X,  is a 1-dependent sequence 
for (X1, X 2, ...)=(Y1, Y3, I13, Ys, I15, ...) and (Y2, Y2, Y4, I14, ...), each with prob- 
ability 1/2. However, this is not the case. 

Properties of the {X,} sequence. 

1. X,  is stationary. 

2. X,  is ergodic since the sequence {(I1,, J,)} is ergodic. 

3. X,  is not weakly mixing. If T is the shift operator, then a sequence of 
random variables is said to be weakly mixing if for any two events A and B, 
P(Ac~T-JB) -P(A)P(B)~O as j ~ .  In the above example, take A 
={XI~XI}(){X2~_~.X2} and B=A.  Then, for j > 4  and j even, 

P(A ~ T-JB) = 1/2 [F2(xl)FZ(x2)+ FZ(xl /x x2) ] 

where s/x t = rain (s, t) and F is the df of Y1. Yet, 

p2 (A) = �88 IF(x1) F(x2) + F(x 1/x x2) ] 2 
and so 

P(A ~ T -  J B) - P(A) P(B)= �88 (xl) F (x2) - F (xl A x2)) 2 , 0 

unless F(x 0 or F(x2) equals zero which establishes that X,  is not weakly 
mixing. 

4. Xj is independent of {Xj+2, Xj+3, . . .  }. This can be seen by 
considering 

P(X 1 <~x 1, X 3 ~ x  3, ..., Xm~Xm) 

=P(Y1 ~ x l ,  X3 <=x3, "", Xm~Xm, J i  = 1) 

+P(Y2 <xl ,  X3 <x3, " ' ,  Xm<Xm, J1 =0) 

=P(Y1 <xa)P(X3 Nx3, " ' ,  Xm<x,.) 

since I(1 and Y; are independent of (X3, ..., Xm) and J. Note that (X1, X2) is 
not independent of (X4, Xs, ...) as demonstrated in 3. This can be interpreted 
as follows. From any two consecutive observations, we know the J,, sequence 
completely and, consequently, knowledge about any two consecutive obser- 
vations in the future is also gained. For example, if X I = X  2 then X , = X , +  1 if 
n is odd and X,,I=X,+ 1 i fn  is even. 

5. If the distribution F belongs to the domain of attraction of an extreme 
value distribution, G(x), then 
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[ 1 / 2 F ~ ( a , x  + b,) + 1/2F"/Z(anx + b,) if is P(a f l (m"-b" )<x)= �9 ,+i . n even 

I F  2 (a ,x  +b,)  if n is odd, 

---,G1/Z(x) as n~oo .  A quick calculation, n P ( X l > a , x + b , , X z > a , x + b , )  
- 1 / 2  log G(x), gives the value of 1/2 to the fl in Proposition 2.2. Thus, in 

terms of the maximum this sequence behaves exactly the same as a 1-de- 
pendent sequence. 

There are some interesting modifications of this example. Let (Y,, Z,) be an 
lid sequence of random vectors with each component having the same mar- 
ginal df. Define X. as before only replacing Y,+ 1 by Z,+ 1. Then 

X ={Yn if J , = l  
Zn+ 1 if J , = 0  

and properties (1)-(4) above still hold for this sequence, provided I11 and Z1 
are not independent. 

One special choice for the joint distribution of (I11, Z1) is the following. If 
F(x, y) denotes the df of (I71, Z1) suppose F(x, X)~---FZ(x) for all x and F(x, y) 
=t=F(x)F(y) for some x#y .  Then P(M,<__x)=F"(x) for all x so that condition D 
in Leadbetter (1974) is satisfied yet {X,} is not even weakly mixing. 

Finally, let H(x, y) be a bivariate extreme value df and, as in the proof of 
Theorem4.1, set G(x,y)=H2(x,y). Then G(x,y)=DG(GI(x), G2(y)) where 
Da(.,  .) is the dependence function for G and Gz and G 2 a r e  extreme value 
distributions. Let Fl(X ) and Fz(y ) be two dfs which are symmetric about the 
origin and assume F/ belongs to the domain of attraction of G~, i=  1, 2. Let 
(Y,, Z,) be an iid sequence with common dfOG(Fl(x), Fz(y)). 

Now define the function g, 

i if u>0 ,  v > 0  
g(u, v, w)= if v<0,  w > 0  

otherwise 

and then define the sequence X , = g ( Y , , - Z , + ~ , - Z , + 2 ) .  It is clear that X n is 
stationary and 2-dependent. We will show that P(M,<u.,  IV ,>-v , )~H(x ,y )  
where u,=a,x+b, ,  v ,=c ,y+d,  are the normalizing constants associated with 
F 1 and F 2 respectively. 

The following properties hold for the {X,} sequence: 

(i) P ( X  1 > u. )  = P(Y1 > u . ,  Z 2 < 0)  = - (1 o g G 1 ( x ) ) / ( 2  n) + o ( 1 / n ) .  

(ii) P (X ~ < - v,) = P (Z 2 > v,, Z 3 < 0) = - (lo g G 2 (y))/(2 n) + o (l/n). 

(iii) P(XI <=-Vn, Xz>Un)-=P(Z22>vn, Z3 <O, Y2>Un, Z3<0) 
=(log h(x, y))/(2 n) + o(1/n). 

where h(x, y) = G(x, y)/( G 1 (x) G 2 (y)) (see Theorem 5.33 in Galambos (1978)). 
Set A~ AJ={Xj<=-v.}. After tedious, but elementary calcu- 

lations, we have: 
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(iv) lim ~ p(AIA~ and 
" ~  1__<i, <i2__<[f,] 

lim ~ P(A~;A~)=o(1/k) for all other choices of 
,~oo 1 __<,::, <i2_< [~-] 

e l = 0  o r  1 and e2=0 or 1. 

(v) For any choice of e~ = 0 or 1, i = 1, 2, 3, 

limsup 2 P (A~ A~ A~) = o (l/k). 
n~ce 1<=i1<i2<i3 <=[~] 

Using a Bonferroni type inequality, 

P(M[~] < G ,  W[~] > - G ) = I - P  (g=IA~ 
j = l  

is bounded above and below by 

1 1 
1-  (P(A~ Z ~ P(AhA~,) 

~=o ~:=o 1=<i1<i~=<[~] 

and 
[ ~ ]  1 1 el a2 1-  (P(A~ ~ ~ P(AiIAi2 ) 

~=o ~2=o l<h<i2<[~] 

1 1 1 

- E  2 Y E 
i < K el=0 e2=0 83=0 1=<i1<i2< 3=rk ] 

respectively. Using (i), (ii), (iv), and (v), 

P (A~ A~; A~.~), 

(1 + (log G 1 (x) + log G2 (Y) + log h (x, y))/(2 k) + o (l/k)) k 
<liminfPk(M[~] < G ,  W[~] > - G )  

<limsup P k ( M [ ~ ]  <u. ,  W[~] > -v~> 
n I_kJ 

< (1 + (log G 1 (x) + log G 2 (Y) + log h (x, y))/(2 k) + o (l/k)) k. 

A 2-dependent sequence certainly satisfies C1 so that W(M[2 ] <u., W[~_] > 
[k/ 

- G) can be replaced by P(M. < u,,, IV. > - G) in the above inequality. Now letting 
k ~  co, the outside terms converge to (Gl(x)G2(y) h(x, y))l/2 = G1/2(x, y)=H(x, y) 
so that P(M.<anx+ b., W.<Gy-d.)~ H(x , co)- H(x, - y) as desired. 

Note that P(M~<a,x+b~)--*H(x, co), and P(W,<c,y-d~)--*l-H(oo,-y) 
where ~ r  and W, are the maximum and minimum, respectively, of the as- 
sociated independent sequence. The effect of the cross terms ((iii) above) on the 
asymptotic dependence structure of the maximum and minimum is clear in the 
above examples. This should be compared with the result of Proposition 3.1. 
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It is worth remarking that even under the most stringent of mixing con- 
ditions, m-dependence, the limiting behavior of the extremes may be markedly 
different than those for the associated independent sequence. In fact, most of 
the differences can be detected in one and two-dependent sequences. The 
above example and examples in O'Brien (1974b) and Mori (1976) illustrate this 
point. 

Acknowledgement. I would like to thank the referees for their comments and suggestions which 
helped clarify some of the proofs. 
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