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Summary. Let X, be a transient Hunt process having a potential density 
u(x,y) chosen in the usual way. No duality hypotheses are assumed. Let K 
be a closed set with M---sup {t: X,~K} < 0o almost surely. For  f a bounded 
Borel function, 

W(f(XM);  M > O) = ~ u(x, y) (1Kf(y) ~c(dy) + f(z)  vc(dy , dz)), 

where ~c is a measure on E, and v c is a measure on E x E so that Vc( (E-K  ) 
x E)=  0. If X r is simply a right process and K is closed, 

Px(1Kf(XM); M >0)=~  u(x, y) 1K f(y)  ~c(dy). 

If X, is a right process and K c E  is closed in the Ray topology of X, then 

nx(f(X,d); M > O) = S u(x, y) (1Kf(y) ~c(dy) + f (z )  vc(dy , dz)). 

If X t is a diffusion, we obtain the representation of equilibrium potentials 
(for closed sets) due to Chung, Getoor-Sharpe, and Meyer without duality 
hypotheses. 

O. Introduction 

Let X~ be a transient Hunt process having a potential density u(x,y). No 
duality hypotheses are assumed in this paper. Our main purpose is to show 
that if u(x, y) is chosen in the "usual" way, then the following result is true. 

Theorem. Let K be a closed set so that M = s u p  {t: X t c K  } < GO almost surely. 
For any positive bounded Borel function f on the state space E, 

(*) Px(f(XM); M > O) = ~ u(x, y) (1K/(y) ~c(dy) + f (z)  vc(dy , dz)), 
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18 J. Gtover 

where tc is a measure on E and v c is a measure on E x E .  Moreover, V c ( ( E - K  ) 
x E)=0. 

In order to put this result into historical perspective, recall the evolution of 
representations such as (.). The left hand side is a bounded potential of an 
additive functional, and Hunt was the first to give general conditions implying 
that all such bounded potentials (and more !) can be represented as potentials 
of measures. (See Chap. VI of [1] for an exposition slightly different f r o m  
Hunt's. In [1], it is assumed that X t is a standard process in strong duality 
with a Feller process.) Subsequently, many weakenings and generalizations of 
Hunt's hypotheses have been given by various authors. These have all taken 
two general forms. First, regularity hypotheses have been given on X to insure 
that the bounded potentials of additive functionals can be represented as 
potentials of measures. For example, Sharpe [16] assumes that X t is a stan- 
dard process in strong duality with another standard process X t (see also 
Sect. V of Revuz [15]). Chung [2] and Rao E14] assume the potential density 
u(x, y) satisfies certain regularity hypotheses. 

Meyer [12] assumes a condition which is a little bit weaker than duality. 
Second, various authors have obtained representations of bounded potentials 
of additive functionals and excessive functions by enlarging the original state 
space E and constructing a strong dual process for X on the enlarged state 
space E. It must be emphasized that the representing measures so obtained 
charge E - E  in general, so the potential kernel in (.) must be extended to 
E x E and the integral must be interpreted as being over E. This approach 
probably first arose in the study of the Martin boundary (Doob, Dynkin, 
Hunt, Kunita-Watanabe, Meyer...) and was originally intended to obtain 
representations of extremal harmonic functions. Work of Garcia-Alvarez and 
Meyer [4] and Glover [9] followed, using Ray-type compactifications. As 
mentioned above, all of these approaches are designed to insure that essentially 
all potentials of additive functionals can be represented as potentials of mea- 
sures, and, of course, a price is paid for this generality. Simple examples show 
that one needs some sort of duality hypotheses or an enlargement of the state 
space or some other auxiliary procedure. 

Our point of view here is the following. We are given the process X 
without duality hypotheses, we do not extend u(x, y) or the state space, and we 
single out an interesting class of potentials which can always be represented as 
potentials of measures on E. Notice that i f f  is identically 1, then the left hand 
side of (*) is the equilibrium potential of the closed set K. Moreover, if X is 
assumed to be a diffusion with infinite lifetime, then X~t= X M_ and v c =0, so 
that (*) is an extension of the equilibrium formula of Chung [2], Getoor- 
Sharpe [7], and Meyer [12]. These authors prove (under various duality and 
regularity hypotheses) that 

P X ( f ( X ~  _); M > 0) = S u(x, y ) f ( y )  t~(dy), 

where # is the equilibrium measure of K. They permit K to be any Borel set. 
Simple examples show that if X is a Hunt process with jumps, then 
P~(f(XM_); M > 0) cannot always be represented as the potential of a measure, 
even if K is chosen to be compact. 
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We can even say something if we assume X is simply a transient process 
satisfying the hypothOses droites (right hypotheses): if K is closed, then 

Px(1Kf(XM); M > O) = ~ u(x, y) 1Kf(y)~(dy). 

Also, if K is any totally thin set (which need not be closed), then 

Px(f (XM); M > O) = ~ u(x, y) f (y) tc(d y). 

If X is simply a right process, the representation theorem (,) given in the first 
paragraph is true if K is chosen to be a set in the state-space which is closed in 
a Ray-topology of X (see the end of Sect. 4 for a precise statement). 

In brief, the plan of action is the following. In Sects. 1, 2 and 3, we construct 
a strong Markov dual Jf for X on an enlarged state space E A. Then 
Px(f(XM); M > 0 )  can be represented as the potential of a measure /~ on the 
enlarged space. In Sect. 4, we show that there is a measure v on E so that # 
and v have the same potentials on E. The computations in Sect. 4 are actually 
rather delicate (the "most important"  being the fact that f'~(e-b~)=a/(b+a) 
almost surely - see (17) and (18)), and call for some careful preparation. As 
some partial justification for this statement, we remark that (,) is false if K is 
taken to be either open or finely closed (or both), in general, and we leave the 
construction of an example to the interested reader (try that well-known 
counterexample in duality and time-reversal arguments - the "crotch"). 

We rely heavily on the theories of right processes and Ray processes; a 
good general reference is Getoor's set of notes [5]. We also rely heavily on a 
compactification procedure we developed in E9], which was based on the work 
of many people: we refer the reader to the bibliography of [9]. 

1. Moderate Duality 

Let X=(f2,  F, Ft, Xt, 0, px) be a right process on a Lusin topological space 
E~ together with its Borel field E~ [5]. We let Pt be the semigroup of X, and 
we let (Ua)a~O be the resolvent of X. As usual, we assume that A acts as a trap 
for X, and we define the lifetime of X to be ~(c0)=inf{t: X~(m)=A}. When we 
refer to a "Borel function f on E~," f  is assumed to be zero at A, and the 
resolvent is not considered to charge A. 

We make two other assumptions which will be in force throughout the 
paper. First, X is transient: there exists a Borel function h bounded by 1 which 
is strictly positive on E=E~-{A}  so that Uh<l. Second, we assume # is a 
reference probability measure on E so that Ua(x, ")4# for all x in E and for all 
a >  0. We assume that Pt is Borel measurable. In Sect. 4, we shall occasionally 
assume that X is a Hunt process. This means that X is quasi-left continuous: if 
(Tn) is a sequence of (Ft)-optional times increasing to a limit T, then 
X(T,)~X(T) almost surely on { T <  oo}. We shall indicate explicitly when this 
hypothesis is being used. 

Throughout  this paper, we shall work with an extension of X which we 
now describe. Let (F~) be a countable sequence of points not in E A which we 
adjoin as isolated points to E~:EA=E~w~){F,}.  Let (S,) be a sequence of 

n 
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independent random variables which are independent of X and which are 
exponentially distributed with parameter 1. Set 

f(~= X t if t<~  
j-1 j 

=F~ if ~+ ~ S k < t < ~ +  ~ S  k ( j> l ) .  
k = l  k ~ l  

Then )~t (together with the appropriate completion of its natural filtration) is a 
right process which enjoys most of the properties of X. That is, there is a 
function /~=<l so that if 0 a is the resolvent of ,Y, then U/~_<I. There is a 
reference probability measure fi on E. It will be left to the reader later to check 
that if ~(x, y) is the "appropriately regularized" potential density of X, then the 
restriction of fi(x, y) to E • E is the "appropriately regularized" potential densi- 
ty for X. If X is a Hunt process, then X is a Hunt process. If K is any set in E 
with L--sup {t: XteK}, then L = s u p  {t: f~teK}. Thus we may use )(t instead of 
X t. The main advantage in using Xt is that it has infinite lifetime. Thus we 
replace X with )~, although we conserve the notation of X, so that ~ = ~ almost 
surely, and the F, are now points in E~. 

t 

Let At=~h(Xs)ds, and let Tt=inf{s:As>t }. If we set Yt=XT(t), G = F ,  G t 
0 

=Fr(o, and Ot=OT(t), then it is a standard fact that Y=(Q, G, G t, Yt, Or, px) is 
a Borel right process on (E~,E~). We let (V")~> o be its resolvent and note that 
Vl=Uh<=l on E. Thus, if we let z(~)=inf{t: Yt(co)=A}, z < ~  almost surely. 
Define the reverse of Yby setting 

~(co)= Y~(~)_t(co) if 0<t<z(co) 

=A if t > z(co). 

Then (~,P") is a left-continuous moderate Markov process with a Borel 
semigroup ((~t)t>o and resolvent (V~)~>=0 ([3], [13]). Set p=#V,, and let p(f)  
=~f(x)p(dx) for all positive Borel functions f on E. For each a>0 ,  V ~ and V ~ 
satisfy p(f'V"g)=p(fF'a'g) for all positive Borel functions f and g on E. 
Here, we shall use the convention that coresolvents and cosemigroups such as 
V" and (~t act on functions on the left (see, for example, Chap. VI of [1]). 

Thus Y is a right process in weak duality with a left continuous moderate 
Markov process Y with respect to a finite excessive reference measure p. The 
dual Y has two defects (which we "remedy" in the next section): f may not 
have a right continuous strong Markov version on Ea, and 17~( ., x) may not 
be absolutely continuous with respect to p for some x in E. 

2. The Double-Ray Compactification 

We developed in [9] a procedure to produce a "strong dual" process for Y 
starting from Y by enlarging the space E~. We shall need those results and 
some complements to those results, which we describe below. 
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We can construct a compact metric space E A with Borel field EA and two 

Ray resolvents (ITa)a>0 and (l~)a>o on E~ so that: 

(1) Ea c E  a, Ease  A, and EA is dense in E A. 

(2) For each x in E, Va(x,.)=Va(x, ") and I~a(-,x)= V"(.,x). 

(Note: (2) is not stated explicitly in [9], but follows quickly from the con- 
truction of V" and pa. Using the notation in [9], V" is defined by setting V" f  
= Vaf  where f = f l E  and f is an element of 9l, the double Ray cone. For x in 
E, this says that V"f(x)=V"(f l~)(x) .  Since 91-9 l  is uniformly dense in the 
continuous functions on E A a n d  V"(x,') is carried by E, we have V"(x,.) 
=V"(x, .). The argument for V" is the same.) 

Let (O_.,)t>_o and (Qt)d_>o be the right-continuous Ray semigroups with re- 
solvents. (Va)\ > 0 a n d  (Va)~ > o, _respectively._Let ~)~' = vague-limits, v 0.~, and let 
Q~" = vague-limit,r T~ Q~ : then (Q~)t > o and (Qt)t > o are left-continuous (moderate 
Markov) Ray semigroups with resolvents - a  and -% (V)o>o (V)~>o [19]. 

Let O={ca: R + ~ E a  so that ca(t) is right continuous and has left limits in 
the topology of EA, and so that A is a trap}. Let ~(cS)=Y,(ca)=ca(t), It ~ 
= a ( ~ :  s<=t), and let Ot be the shift on ~. Given a probability measure /c on 
EA, let P~ (resp. fi~) be the measure on (@ i0) so that ~ (resp. ~) is a strong 
Markov process with semigroup Qt (resp. Q~) and initial distribution/cQo (resp. 

(3) There is a set N ~ E  which is polar for the process Yso that if/c is any 
probability measure on E - N ,  then W(Y t is right continuous with left limits in 
the topology of E~) = 1. Let/5~ (resp. ~ )  be the measure constructed on (O, ~o) 
so that ~ is Markov with semigroup Qt (resp. Qt) and initial distribution/c (see 
Theorem 11.8 in [4]). Then/5~ = ~ .  

(4) W(f-(t) is left continuous with right limits in the topology of EA)=P(E ). 
Let ~+ be the right limit of ~, taken in the topology of EA, and let ~c be the 
W-distribution of fo+- Let v t be the W-distribution of ~: (v,) is an entrance 
law for (2~. Let /5 ( r e sp . ) )  be the measure constructed on (~, ~o) so that ~_ is 
moderate Markov with semigroup (~ (resp. --m Q~ ) and entrance law v~ (resp. 
initial distribution ~c). Then/5 = ~.  

In view of (3) and (4), we shall be content to work with ~z and ~ instead of 
Y and Y. The exceptional polar set N in (3) will cause no problems. By (2), we 
have p( f . l /ag)=p( fV" .g)  for all positive Borel functions f and g on E A. To 
achieve duality, we s implyneed ~'O(x,-)~p and V~(., x)~p. But first, we recall 
an important property of ~, which every Ray process has [5]. 

(5) Fix an initial measure ~: on Ea, and let (T,) be an increasing sequence of 
(Itk)-optional times. Let T =  lim T,, and let A = { T <  oe; Tn<T for all n}. I f f i s  a 

n ~ c o  

bounded Borel function on Ea, then 

P (f(Yr) I{T< ~o}1 ~/ITs) =f (Yr)  I{T< ~} 1A*+fQo(YT_) 1A. 
n 

(6) Let ~/={xe/~a: ~ ( . ,  x)~p}.  Then p ( / T a - J ) = 0  a n d / ~ ( ~ e / T a - j  for some 
t>__0)=0 for every x in J. What is also true (although not mentioned in [9]) is 
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that /3~(~ ~ff~4-J^for some t > 0 ) = 0  for every x in J. To see this, let A 
= { t > 0 :  ~_~Ea-J}: A is a predictable set. Fix x in ]. If A is not fix_ 
evanescent, let T bc a predictable time with IT]cA and iOX(T<oe)>0. Then 
YT_~E4--J and YTEJ on {T< oe}. By (5), 

PX(T< oQ) =i3~(Yre]; T <  oo) =P~(1j(~o(~r_); T <  oo). 

Therefore, ~r_~{y: ly{~o(y)=l } on { r < o o }  almost surely (fi~). We claim that 
J = { y :  1j(~o(y)= 1 }. For if yaJ ,  /%(~aE~- ,Y for some t=>0)=0 as mentioned 
above, so 1)(~o(y ) = 1. If li{~o(y ) = 1, then 

~'~(" , Y)= V~ Qo(', Y)=I ~"(', x) 1j(:,) Q.o(dx, y)~p. 

Thus we conclude that in fact YT e ]  on {T<  o9} almost surely (/%). 

For each a > O, we define 

lY"f(x) = V"f(x) if xeE 
= 0  if xeE~-E. 

fW"(x)=f~"(x) if x ~ J  

= 0  if Xeff.A--]. 
A 

(By the observations made in (6), (W-"),=>o and_ (W-"),__o are resolvents on EA. ) 
This corr~ponds to replacing the measure px with e~ if x is in E ~ - E  and 
replacing PX with % if x is in E~ - J .  With this modification made, note that (5) 
remains true if we restrict our attention to measures ~: which are concentrated 
on J. 

We now have (l~ ") and (W") the resolvents of two strong Markov processes 
on E~ (which may have branch points - even degener~e branch points!) and 
which are in duality with respect to p: p(f. lYr 7Ca(x, .).~p, and 
I~"(., x)~p. By the procedure given in Chap. VI of [1], we may construct for 
each a > 0  an a-potential density ~ ( x ,  y) so that: 

(i) x~ff~a(x, y) is a-excessive for (l~b)b>__0 . 

(ii) y~a(X, y) is a-excessive for (l~b)b>__0 . 

(iii) l~af(x)= ~ ~(X, y)f(y)p(dy),fsE~. 
E 

(iv) fl~v'a(y)= ~ ff~a(X, y) f (x) p(dx), f sE-~. 
E 

Since p is concentrated on E, these integrals may be interpreted as being on E. 
If we let w"(x, y) be the restriction of ff~a(x, y) to E x E, then w"(x, y) is the 
potential density for Y on E with respect to the resolvents Vb(x, ") and 
~-b(., y) 1ShE(y). 

(7) One of the main objectives of [9] was to obtain the representation theory 
of Revuz [15] as extended by Sharpe [16] by considering the process Y on the 
enlarged space E~. Let A t be an additive functional of the process Y" so that 
P (A~) o~ almost surely (p). For f a bounded continuous function on E~ 
• EA, we define vA(f)= lira aPP~e-~tf(~_, ~)dA t. The limit exists, and v A is a 

a ~ o o  
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measure. Moreover, 

fi~ ~ e - a t f ( ~ _ ,  ~) dA, = ~ W~(x, y)f(y,  z) v A (dy, dz). 

Notice that v A will charge B x E, in general, where B = {XeEA: Q o(x, ")4= e~(')}, 
the set of branch points of Y.. 

3. Undoing the Time Change 

t 
Set A~=~(h-l+lE~_e~)(~)ds .  Since Y has the same law as Y if we start the 

o 
two processes from any point in E - N ,  we have that At is continuous and 
strictly increasing on [0, inf{t: ~=A}),  almost surely (P~) for any measure ~c 
on E ~ - N .  Let S t = i n f { s : A ~ > t } : S  t is strictly increasing and continuous on 
[0, inf{t" ~=A})  almost surely (P~) for ~c on E ~ - N .  As a process on E A - N ,  

we may time-change ~ by setting Z t = Ys(t), Ht =Is(t), Ot = Os(t), px =/5~. If tc is 
any probability measure on E - N ,  (Z t,P~) has the same law as our original 
process (Xt, P~). We shall find it convenient to work with (Z,  P~) most of the 
time. In particular, if we let (= in f{ t :  Zt=A},  then ~= oo almost surely (P~) for 
all x in E - N .  It is worth emphasizing that we always consider Z t as a process 
on the enlarged space E~. Of course, Z~ is in E~, but Z t_ may be in EA--E A. 
From (2), it is immediate that the resolvent of Z t is an extension to E~ of the 
resolvent of X,, so we use the same notation (Ua)azO to denote the extension. 
Notice that Uf(x) = Vvfh - 1 (x). Let 2 (dx) = h-  1 (X) p (dx). 

We would like to time-change ~ by the inverse of i h - i ( ~ ) d s .  We verify 
0 

directly that this process does not jump to infinity before the death time of Y. 
We may assume that h is of the form U ~ U ~ k, where k is a strictly positive 
bounded Borel function on E (see p. 401 of [-6]), and we may assume that 
U 1 U ~k and U~k were put into the double Ray cone 9t, so that h and U lk  
may be extended to continuous functions on E A (which extensions we denote 
by h and Uak again). Let G={x:  h(x)=0}; this set is closed in E A. Since Gc~E 
=0, we have by time-reversal that PP(~_EG for some t>0 )=0 .  Since g(x) 
=PX(~_EG for some t > 0 ) i s  excessive, g(x) is  zero everywhere. Again, by 
time-reversal, the set i f =  {t: 0 < t < (, Y~eG} is PP-evanescent if and only if the 
set F = { t : O < t < ~ ,  ~ G }  is PP-evanescent. Suppose T is a predictable time 
with IT] = F  and PP(T< oo)>0. By (5), 

0=/5~ T< oo)=PO((Qo U i U i k) (YT_); T <  oo) 

= PP(U 1 U1 k(]zT); T ( oo)= PP ( i  Ul k(rs) dS; T < oo ). 

Since U i k > O  on E, T_>~ almost surely (/sp). Therefore, f iP(~sG for some 
0 < t < ~ ) = 0 a a n d  this implies that / ~ ( ~ e G  for some 0 < t < ( ) - - 0  for all x. Let 
(b={coe(2: Y~_~G for all t > 0  and  ~6G for 0__<t<(}. Then P~(q')=I for all x 
in (EA--{X: 1GQo(x)>0}). For coe~, consider h-i(ft(co)) as a function from a 
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compact subinterval [0, t] of [0,~(co)): this function is bounded and right 
continuous. For the only way it can be unbounded is if either Ys(co)eG for 
some s<t  or ~ ~G for some s<t, and this cannot happen. Therefore, if we set 

t 

At=~ h-l(~)  ds,At is strictly increasing and continuous on [0, inf{t: ~ = A } )  
0 

almost surely (~x) for all x in (EA--{x: 1G(~o(X)>0}). (We can henceforth 
ignore the set {x: 1GQo(x)>0}: if you like you can adjust Y by replacing px 
with2~^for every x in {x : l#  (~o(X)>0}.) Set ~ = inf {s:A s > t} and set Z t = Y(St), 
tTtt=I(St), 6~=O(S~), P~=P~. Let (U")a=>0 denote the resolvent of 2. Then Z 
and 2 are in duality with respect to the measure 2: this follows as in Revuz 
[15]. 

Now ~=oe almost surely (PX) for all x in E - N .  Therefore, if we set 
o = i n f { t : ~ = A } ,  ~ =oo almost surely. By time reversal, we have that 
PP(A~_ < oe)zO. I f f (x)=x(1 +x) -1 and f ( o o ) =  1, then g(x)=E~(f(2~))  is ex- 
cessive for ~, and p~x:g(x):~l}=O. Therefore, g(x) is 1 everywhere on the 
non-branch points of Y, and it follows that C= inf {t: 2 t = A } = oe almost surely 
(P') for all x in the non-branch points of 2 t. Thus, a U ~ l = l  and a l 0 ~ = l  
almost surely (2) for a>0 .  By duality, )~(agU~)=2(g) and ,~(aUag)=)~(g), so 2 is 
an invariant measure for the resolvents (U ") and ([7~). This is extremely impor- 
tant for this section and the next. 

For each a>0 ,  we may construct an a-potential density as in [1] having 
the following properties: 

(i) x~u~(x, y) is a-excessive for (Ub)b~O 
(ii) y~U~(X, y) is a-excessive for ([T b)b>_ 0 

(iii) U~f(x) = ~ u~(x, y)f(y) 2(@), f~  E~ 

(iv) fO"(y) = ~ f (x) u"(x, y) ).(dx),f m EJ. 

The integrals in (iii) and (iv) may be taken o v e r / ~  or E~ since 2(EA--EA)=0. 
It follows from (2) that the restriction of u"(x,y) to E x E is exactly the 
regularized potential density of the resolvents (U a) and 0 a) restricted to be 
resolvents on E: this is the "good" version of the potential density of X, and 
the representation theory holds here. That is, if A~ is any additive functional of 
Z so that P~(A~o) < oo almost surely (2.), then 

v A(f) = lira aP ~ ~ e-~t f (Zt _, Z t) dAt (8) 
a ~  oo 

defines a measure on EA x/~a, and 

P~ ~e-~' f (Zt_,  Z,)dA,=~u"(x, y)f(y, z)VA(dY, dz). (9) 

Call the semigroups of Z t and 2 t, Pt and/~, respectively. Note that/~0( ' ,  x) 
=Qo( ' ,  x) for all x in J. It is simple to check that the analogue of (5) holds for 
2 t. That is, let (T,) be an increasing sequence of (glt)-optional times, let 
T =  lira T,, and let A = {T<  Go, T, < T for all n}. If ~: is a measure on J a n d f i s  a 

n ~ o o  

bounded Borel function on EA, then 

P~(f(2r) l~r< oo}1V I7t~,)=f(Zr) l~r< ~} 1Ao +ffio(Zr -) 1A" (10) 
n 
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We shall use another time-reversal argument as a key step in Sect. 4, and 
we now prepare for this. If Z and 2 were standard processes, then the result 
we now prove would be a special case of Nagasawa's theorem [18]. However, 
Z and 2 are not standard, and it is not difficult to prove what we need d i rec t )  
since 2 is invariant. If we set P/~=vague-limitsTttP ~ and /~"=vague-limits~TtP ~, 
then Pt m and/~" are left con t inuousmoder~e  Markovsemigro_ups (they are the 
"time-changes" of the semigroups Q~ and Q~'). Since Yt- and Yt- are moderate 

Markov with semigroups Q~' and ( ~  [19], Z t_ and 2~_ are moderate Markov 
with semigroups P~' and /~m. Let R be a random time which is exponentially 
distributed with parameter a > 0  and which is independent of Z. Define G by 
setting 

~ = Z(R_t)_ if 0 < t < R ,  
=A if t>R.  

We claim that ( ~ ,  Pa) is strong Markov with semigroup e -a~.  
To see this, let f~ , . . . , f ,  be positive continuous functions on E~, let 

t 1 < t 2 < ... < t., and compute 

II  

=p,l f ae-~. I~ f/(Z,~_ q_) l{, . . . .  }du 
i = 1  

=Sae-""2(e~-t,,f,P,~-t,,-if,,-t...P,'~-t,L) l{,,~<,,}du. (11) 

If g is a continuous function on Ea, 2P,.mg=2 ((vague-limit~t~P~)g)=lim 2P~g 
sltr 

=2(g), so 2p~m=2. Also, 2(f. bUbg)=2(bfSb.g) for all continuous functions f 
and g implies that 2(fPt'g)=2(fPtmg) for almost all t. Since both sides are left 
continuous functions of t, they are equal for all t. Using these two facts, (11) 
becomes 

[ae-a~ %" �9 ,~_.fl)l{,o<~,~du , ( L S ~  e "  t n  "~ 1 - - t n  - 2 " " 

r l - - i  

=P~ ~ae-""(f ,  ^" 8o.o_~L_ll(z._,._ _1 IF[ f,(z._._)~{,.<.~du. 
i = 1  

If we let u = v + t - t ~ _  1 and if we let c=exp(-a( t~- t~ 1)), we obtain 

n - - 1  

P ~ae (cf,,P~._t,,_)(Z,,_t. ~_) ]-[ f~(Z,,_,_)l{t,~_~<,}du 
i = 1  

n - 1  

=P~(c f~ /~- , . -~ (G~- )  ~ f ( G , )  l{t. ~<m)" (12) 
i = 1  ~ )) 

Now let t. decrease to s>t~ 1. Then (11) converges to PX(f~(~s) [ I  f i ( ~  
-- i ' 

n - ~ l  i = 1  

while (12) converges to P~(cf~_t~ ~(~_~) 1-~f~(~t,)) since P~=vague- 
i = l  

l imit . ,~P.  "~. This proves that (~,PX) is simple Markov with with semigroup 
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e -~t/~. Then (~t, P~)is strong Markov since ~ft is right continuous and e-"t/~ 
is a strong Markov semigroup. Notice that the initial distribution of ~ is 2: 

P~( f  (~-~o)) = PZ( f  (ZR_))= P~ ~ ae-"t f (Zt_) d t= 2(f).  

4. Equilibrium Formulae 

Let K be a Borel set contained in E, and let M = s u p  {t: XtEK }. We assume 
always that K is transient: P~(M= o e)= 0 .  Since P~(M=oo)  is an invariant 
function for X, P~(M--oe )=0  for all x in E if K is transient. Let L 
=sup {t: Z t e K  }. If K is transient, then P~(L= oo)=0, and so P~(L= 0o)=0 for 
all x in E 3. 

For the purposes of time-reversal, we shall need the a-subprocesses of Z, so 
we fix (R(a))a> o a decreasing collection of random variables independent of X 
and Z, and so that R(a) is exponentially distributed with parameter a. We set 
R(0) = oe. Let H~ = a {H c~ {t < R(a)} : H eHt}, and define Z a by setting 

Z t = Z  t if t <R(a) 

=A if t>R(a). 

Then Z~' is Markov with respect to the filtration (H~). 
Let L(a)=sup{ t<R(a) :  Z t sK} ,  M(a )=sup{ t<R(a ) :  X ~ K } .  We let A a 

denote the (H~')-dual optional projection of B~'=l~0<L~a)__<t~l~t<g(a)). Since 
B~ is a raw additive functional of Z~, At is an (adapted) additive functional of 
Z t ([10], [17]). 

We shall need two auxiliary results, which we discuss now. 

(13) Lemma. There is a Borel function j on ff~d so that 0 < j < l  and jU(x)  is 
bounded on E A. 

Proof The process 2 restricted to its set of non-branch points /5 is a right 
process, and )~(Uh)=2(1 U . h ) <  oe implies that l f f(x)< oo except perhaps on 
some polar set f Therefore, 2 restricted to / 5 - f f  has 1 [? < ~ .  By Proposition 
(2.2) of [6], there is a positive bounded Borel function j o n / 5 - f  so that j [.? is 
bounded. Therefore, j~? is bounded on/5. Extend j to be 1 on E a - ( / 5 - / * )  (j(A) 
=0). ThenjU(x)  is bounded for all x in E~. Q.E.D. 

(14) Proposition. Let F be a bounded positive Hoo-measurable random variable. 
There is a positive Borel-measurable function ~b F on ff~A SO that for every positive 
(H~)-optional process Wt, 

px(wL(a) F o OL(a) le(Z~(,)); L(a) < co) = px(WL<a) cI)F (za, L(,), ~', L(a) < oe) 

for all x in E A. 

Remarks on the Proof This was proved in an only slightly-more restrictive 
setting by Getoor and Sharpe [8]. Note that L(a) is a coterminal time for the 
process Z ~. Their proof applies here without change. 
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(15) Theorem. Let K be closed in E. Then for all positive bounded Borel 
functions f on Ea, P~(lt~f(Xu); M>O)=~u(x,y) 1Kf(y)~c(dy ), where ~ is a 
measure on E. 

Proof Fix a>0 ,  and let R=R(a). Let g=~,j, where ~ is chosen to be any 
positive bounded Borel function on EA SO that ~g(x)P~(L>O)2(dx)< oo. Let f 
be any positive bounded Borel function on E~, and let v~ be the Revuz 
measure of Aa; thus 

~ g(x) ua(x, y) f(z) va(dy , dz) )~(dx) 

= lim bP ~ ~ e-btg ~a(Z ' _)f(Z,) dA~ 

= lira bP "t (e - bL(,) g ~,~ (Z~(a) _) f (Z~(a)); 0 < L (a) < R). (16) 

Now we obtain the right continuous process ~ as in Sect. 3 by reversing at R. 
Let T = i n f { t > 0 :  ~z~ft eK}. We rewrite (16) as 

lira bP~(e -b(R- T) g Oa(~T)f(~T_); 0 < T< o0). (17) 
b ~ m  

Let ~ be a{~es: s<t} augmented with the P~-null sets in H ~. Let P2 be the 
measure on (~ ,P)  constructed from the semigroup e -a*/~. Let 

~(05) = inf{t: oS(t) = A}. 

We leave it to the reader to check (using the fact that (~e,pa) is strong Markov 
with semigroup e-atilt) that PZ(e-b(R--T)I~T)=Pa~(T)(eLbr ) almost surely (PZ). 
But 2{x: 1/~(x)=t=l}=0 for all t, so fJ2(e-br almost surely (2). Since 
P2(e -b~) is b-excessive, t ~ ( ' ( e  -b~) is right continuous almost surely (PZ), so 
Pf(T)(e-b~) =a/(b § a) almost surely (PZ). Thus (17) becomes 

a PX(g Ua(~T)f(~T_); 0 < T< oO). (18) 

Let T ,= in f{ t>0 :  d(~t_,K)<l/n}, where d is the original metric on E (recall 
that ~ _ s E ) .  Since K is closed, IF, increases to T. On {~T_eK}c~{o<r<oo}, 
T, < T, and on {~e T_ CK} c~ {0 < T< oo }, T, = T for n sufficiently large. Applying 
(10), (18) becomes 

aP~(gO"(~T)f(~fT_); ~r_(~K, 0 <  T< oo) 

+aPa(g(2~lPo(~r_)f(fT_); ~ r _ ~ K , 0 <  T< oo). (19) 

Replacing f with f l ~  and observing that gO~Po=gO ~, we obtain from the 
representation theorem (9), (16) and (19) that 

g(x) P~(1 ~ f  (ZL(~)) ; 0 < L(a) < R(a)) 2(dx) 

= a PZ(g ff"(ZL(,) ) 1Kf(ZL(a)); 0 < L(a) < R(a)). (20) 

In Proposition (14), let F =  I~L= o}, and replace f in (20) with ~bFf If we apply 
the result of (14), then (20) becomes 
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g(x) px(lr f (ZL);  0 < L < R(a), L = L(a)) 2(dx) 

= aP~(g 0a(ZL) 1Kf(ZL); 0 < L < R(a), L = L(a)). (21) 

Now the right hand side of (21) is 

aPZ (g 0" (ZL) 1K f(ZL); 0 < L < R (a)) = aP z (g 0 a (Z/) 1K f (ZL) e - aL; L > 0) 

= aP ~ ~e-~tg Oa(zt) 1Kf(Zt ) dA o 

= a ~ 2(dx) ~ u~(x, y) g 0~(z) 1Kf(z ) vo(dY , dz) 

= ~ g UO(z) l•f(z) vo(dy , dz). 

Define ~ by setting ~d~(z)~(dz)=~(o(Z)Vo(dy, dz): tc is a measure concentrated 
on E, and we now have 

5 g(x) Px(1Kf(ZL); 0 < L < R(a)) 2(dx) = 5 g(x) u"(x, z) 1Kf(z ) tc(dz) 2(dx). 

The monotone convergence theorem applies, and we let a decrease to 0 to 
obtain 

5 g(x) PX(1 ~f(ZL); 0 < L) 2(dx) = 5 g(x) u(x, z) 1Kf(z ) ~c(dz) ,~(dx). 

for all functions g as described at the beginning of the proof. Therefore, 

P~(1Kf(ZL); 0 < L) = 5 u(x, z) 1Kf(z ) ~c(dz) 

almost everywhere (2) and hence everywhere since both functions are excessive. 
Since P~( I~ f (ZL) ;O<L)=P~(1Kf (XM);O<M)  for all x in E - N ,  we have 
P~(1Kf(XM); o < , m ) = S u ( x , z  ) l,r ~c(dz) for all x in E. Q.E.D. 

(22) Theorem. Let  K be a totally thin set for X r Then for ,all positive bounded 
Borel functions f on Eel, P~(f(XM); M>O)=~u(x,y) f (y)~c(dy) ,  where tc is a mea- 
sure on E. 

Proof Following the proof of the preceding theorem through (18), we then let 
F = { t > 0 :  ~, ,  eK}; F is an (acf,)-predictable set. Since K is totally thin, F is 
discrete, so the d6but of F, T, is in F on {T< oo}, and is therefore a predictable 
time. Therefore, (19) becomes PX(g U"ffo(2~r_)f(~r_); T> 0), and the rest of the 
proof follows as before. Q.E.D. 

(23) Theorem. Let X be a Hunt process, and let K be closed. There is a 
measure v c on E a x Eel so that for all positive bounded Borel functions f on E, 

P~( f  (X M) ; M > O) = ~ u(x, y) (1Kf(y) K(dy) + f (z) vc(d y , dz)). 

Moreover ,  Vc((E A - K )  • Eel ) = O, and ~c is a measure concentrated on E. 

Proof From (15), we have that P~(I~f(XM); M >0)=Su(x,  y)1Kf(y ) tc(dy). Thus 
we need only consider Px( f (XM);XM(~K,M>O).  Since K is closed, XM(~K 
only if X M_ 4=X~t on {M>0}.  Therefore, the dual predictable projection of 
I{xcM)~K} I{o<M<,} is a continuous additive functional of X. So if we let C t be 
the dual predictable projection of I{z~L)r then C, is a continuous 
additive functional of Z,. If e(y) is any positive bounded Borel function on Fel, 



Representing Last Exit Potentials as Potentials of Measures 29 

then 
pX(e(ZL_)f(ZL);  Z L ~ K  , L > O) = ~ u(x, y) e(y)f(z)  vc(dY, dz), (24) 

where v c is the Revuz measure of C t. Let ~b be a continuous function on E (in 
the original topology of E), and extend 4) to be 1 on EA-E.  Then {t: q~(Zt_ ) 
+qS(Zz) } is countable, so 

Vc( 0 x 1) = lim bP ~ ~ e -b~ r dC t 

since C t is continuous. Also, {t: r  does not exist or is not equal to ~b(Zt) } 
is countable. Therefore, 

Vc( r x 1)= lim bPX~ e -bt qS(Zt)_ dC t = lira bPX(e -bL r  ; L > 0). 
b ~  oo b ~  oo 

Now if the support of q~ is contained in K c, we see that Vc( 0 x 1)=0. Therefore, 
Vc((E ~ - K ) x  E~)--0. Combining (15) and (24), we have 

Px( f (XM);  M > O) = ~ u(x, y) (1Kf(y) tc(dy) + f ( z )  vc(dy, dz)). Q.E.D. 

It is worth observing the following corollary, which extends the results of 
Chung, Getoor-Sharpe and Meyer. 

(25) Corollary. Let  X be a diffusion with infinite lifetime. I f  K is closed in the 
original topology of  E, then W ( f ( X ~ t _ ) ;  M > O) = j" u(x, y ) f (y )  tc(dy). 

Proof  Since X M = X M _ ,  vc=O. Q.E.D. 

Thus in the case of a diffusion, ~c is the equilibrium measure of the set K. 
(The reader is referred to Theorem (2.1) of [11]. Corollary (25) allows us to 
drop the duality hypothesis there if X and Y are diffusions.) 

(26) Definition. Let X, be a right process. We say that X is locally Hunt  if we 
can find a sequence (E,) of open sets with compact closures increasing to E so 
that the following is true: whenever (Tk) is an increasing sequence of (F~)- 
optional times with limit T so that for some m, X(Tk)~E~w{A } for all k, then 
X(T~) converges to X ( T )  on {T< oo}. 

We leave it to the reader to check that Theorem (23) remains true if X is 
assumed to be a locally Hunt process and K is assumed to be compact. 

Now, is there an analogue of Theorem (23) if X t is simply a transient right 
process? The usual Ray-Knight procedure [5] produces a compact metric 
space F with metric • so that E czF. Thus we may consider E as a metric space 
with new metric 0, and X is a right process on (E, c?). We say that a set K ~ E is 
Ray-closed if K is closed in F. 

(27) Theorem. Let  X be a right process, and let K cz E be Ray-closed. There is a 
measure v c on E~ x E~ so that for all positive bounded functions f on E~, 

P~(f(XM); M > O) = ~ u(x, y) (1Kf(y) ~c(dy) + f ( z )  vc(dy , dz)). 

Moreover, Vc((E ~ - K) x E~) = O, and tr is a measure concentrated on E. 
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Proof.  T h e o r e m  (15) c lear ly  appl ies  here, W e  m a y  recopy  the p r o o f  of  T h e o r e m  
(23) word  for w o r d  once  we verify tha t  the  dua l  p r ed i c t ab l e  p r o j e c t i o n  of  
l~x(M)r ~ l~o<M~t ~ is a c o n t i n u o u s  add i t ive  func t iona l .  S ince  K is Ray-c losed ,  
this a m o u n t s  to check ing  tha t  Px(O<M=T,  X r _ 4 = X r ) = O  for all  p red ic t ab le  
t imes  T. Bu t  X r _  + X  r (the left l imi t  t a k e n  in  F,  of  course)  at  a p red ic t ab le  
t ime  T if a n d  o n l y  if X r _  is i n  the  b r a n c h  po in t s  of  X r Since  K c E is Ray-  
closed, this c a n n o t  h a p p en .  Q.E.D.  
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