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A well-known lemma by K. Essgex ([1], §39, Bd. 1) and its sharpenings
obtained by A. C. Berry [2] and V.M. ZoroTarEV (cf. (25)) allow to estimate the
distance sup |.F (x) — G(x)| of two distribution functions ¥ and @ in terms of the
closeness of their characteristic functions. Similarly, using the Laplace transform

efemd( G(z)), |z| =4

— o0

one might try to estimate the ratios ITF—’_(—;% and g((—:% in the interval 0=z <54

and in this way simplify the derivation of limit theorems including the calculation
oflarge deviations. We consider here the case where G'is the normal law @ = N (0, 1).
Lemma. Let & be a random variable with distribution function F, mean m = M &,

dispersion o2 = D& and finite momenis of any order M|E|* < oo,k =1,2,
Let &y, be the k-th cumulont of & and

. ETHo2\_ 1
A = ¢ginf (W)FE (1)
where H > 0. Then in the tnterval
1Sz =64,0<0m
the following relations hold:
1—F(m-t+zo o (z
IR — o5 (5) (1 + G ) @)
F(m — zo 2 (= ’
W:e 4 ( 4)<1+f26H)A) 29
Here,
< BH{1+7.2(1 420 +min (}(1 — SPHLLH-4)4
[£i(0, H)| < IR p— (3)
t =1, 2, the number 6 and g with 0 < 6 << Op are determined by the equations
= 81+ 6HS = Su(l-t o)
0=——9— e=T_gp» =" 3 )
Ox is a real root of the equation ¢ =1 and A(t) = > Axt¥ is the power series of
- E=0
Crameér which converges for ]t[ < Og, where
x
Il]gl W,k 0,1,.... (6)]
We remark that
5 > - (6)

1 + 14,55 max {H, H¥}
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A more precise estimate for % (8, I) is given in (38) and (39). The coefficients 1

are determined by the first & + 3 cumulants (cf. (42), (43)). We always set %: o,

% = 0. Moreover, 0 always denotes some quantity not exceeding 1 in absolute

value.
Instead of the formular (1) in terms of semiinvariants, which is equivalent to
k! Hok ,
|&k| < T k=34, ... )

it is sometimes more convenient to use immediately the Laplace transform

+ oo
p(2) = [e*dF (x + m)

in order to define H and 4.
Remark. If there exist H < oo and A < oo satisfying
< 2 "

then the assumptions of the lemma are satisfied and (2) and (2') hold with these H
and A.
Here we take the principle value of logarithm. Before entering the proof of the
lemma we obtain with its help some theorems on probabilities of large deviations.
Let {£(t), 0 =t < oo} be a measurable stochastic process. We say that &(t)
belongs to the class T'® if

ME@W|F < Cp < oo.

Consider the random variable
T

Cr= [E()dt

0
and let
mp=M{r, o%=Dir

and s (t1, ..., fx) be the correlation function of k-th order of the process &(t),
which is simply the semiinvariant of the random wvector (§(t1), ..., £(fx)).

Theorem 1. If £(f) € T and

Bl L Gk BLH,
0‘}IJ""fs(e)(tl,...,t]g)dtl"'dtklé—Alé_’—:ﬁ— (N
0 0
for all k = 8 then for F (x) = P{{r << x} the relations (2) and (2') hold with m =mp,
o= 0r, H=H1,A =AT and
T 7
= [ [ (tr, ..., t5)dix ... dtg. (8)
0 0
In fact, & as defined by the equality (8) is the cumulant of order % of the
random variable ¢ (cf. [9], (1. 14)), and by comparing (7) with (1') we obtain the
proof of the theorem.
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Let
51,“':57% ngl (9)
be independent random variables with M & =0,7=1,2,.
Sn——ij, a, D¢, Bi= za,
j=1 j=1

and I, the cumulant of S, of order %.
Theorem 2. If the condition of S. N. BERNSTEIN:

| MEF| < kIH: K¥2DE,  j=1,...,n (10)
18 satisfied for all k = 3, where Hy and K are some positive nuwmbers, then for
z) = P{Sy <z}
the relations (2) and (2') hold with m = 0, ¢ = By, H = §,
A= Ba
T max {K(1 + 2 Hs),/2max o5}
1=/=n
and @]g = F]gn.
We set

2o = (max{K(1 4 2 H3), ]/Zmaxa,}) -t

1Z7<n

Then, taking into aceount (10), we obtain in the circle ]z] <z
e (1) = Mesz~1+z M&’”_1+6] z[207.
Moreover, In(1 - w) = w + 6|w|2 for [w]| < §, and since |22¢7| < §, we have

In @g,(2) = 2,In g, (2) = 0|2 By +
T=1

+ 0]z|* Bimaxo} =§0|z|2 B2
1=sjzn
or
|In s, (2)]|2) =20 = $ 28 By

The inequality thus obtained shows that (1"") holds for ¢ = By, H = §, A = 2 By,
This proves the theorem.

Limit theorems of Cramér’s type with calculation of large deviations for sums
of independent random variables (9) had been proved by various authors (cf.
H. Cramir [4], V. V. Prrrov [4], [6], W. RicETER [7]) under the condition of
COramir and PETROV: there exist positive numbers 4, L and ! such that

IS|MeS| <L for |24, j=1,...,n
In addition these authors assumed that BZ = ¢2n with some ¢ > 0. We remark
that in this case we can choose

H=-21, A=4B,>4cn,

A2c2 ?
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where & = 27 4 max{|Inl|, |InL|} since
n
|ln‘pSn(z)|Iz[=A = z {iln[(pfj(z)l [[z]=A + 2”} =néd.
=1

Consider random variables Xji,..., Xy, forming a Markov chain with n
moments of time, transition probabilities P;(w, A) from the state w at time § into
the measurable set of states 4 at time § 4 1, initial probability distribution
Py(4) and coefficients of ergodicity

an=1—max sup(Pj(w, 4)— Pj(w,4)].
0=j<n o, Z)’ A
Set
[
j=1
Theorem 3. If with probability 1
| Xj| £Cn<oo, j=12,...,0, ay>0,

then there extists an absolute constant Hz > 0, Hy > 0 such that for F (x) = P{S, <z}
the relations (2) and (2') hold with

m=MS,, o=By, H=IHs, A:Q‘;“Z’;.

The proof of this theorem follows from the fact that the k-th cumulant € of
the sum S, can be estimated in the following way:

Il k—2 P2 [k—2
| @ | < PICIBITE 54, (11)

Let £ (s, t) be a random function which is an additive function of the interval
(s, t), that is,

E(s,u) 4 C(u, t) = (s, £)
with probability 1 forall 0 Ss<u <t =T
m(s,f) = ML(s,t), o2(s,t)=D{(s,1),
e. g.
¢
C(s,ty= [E@)du or C(s,t)= &(k)
s skt

where £ (£) is some stochastic process. Let #* denote the ¢-algebra generated by
the events {{(u,v) <z}, s Su <v <t
Theovem 4. Assume that { (s, t) satisfies the following strong mixing condition of
M. ROSENBLATT
sup sup |P(4B)— P(A)P(B)|<e 7
0SI=ST~7 AT
BeTf,

where ap > 0. In addition, assume that there are

1P = || +1 and Cpp<oo

1
or
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such that
[Z(s, 5+ To)|
7, =Crr

with probability 1 for all 0 < s < T To. Then there exists an absolute constant

Hs >0, Hg > 0 such that for F(z) = P{{(0, T) < &} the relations (2) and (2')
hold with m = m (0, T), ¢ = ¢(0, T), H = Hj and
A _abo(0.7)
T Cro,7He Ty *

The theorem results from the following inequality for cumulants of the
random variables £ (0, 7):

B\H5C%2p02(0, T) HE2
|&| =222 Taif,i_(z, VT p—3.4,.... (12)

The proof of the inequalities (11) and (12) is involved and will not be given here.

Proof of the lemma. Without restricting the generality we set m =0, o0 = 1,
A > 0. On account of (1') the series

°°@_ _ 20]z|H
)=2 2<1 api- [,)> (13)

converges for 2] < 4, and K (2) and ¢ (2) = exp{K (2)} are analytic in the circle
|2| < A. Since the moments ps = M & exist and can be expressed by the

50 |
Pl and, by (13) and Cauchy’s

cumulants in closed form, we have y, = T | 2mo
o=

inequality, we find that for

0iA2 2Hd
|/'¢SI—-63ASeXp{ (1+(1_6l))}, 8:1,2,....

Therefore the Laplace transform ¢ (z) = Me#¢ exists and is analytic in the circle
|2] < 4 and there Ingp(z) = K (2).

Let us start from the transformation of EsscuER [10] and Cramer [4]. For
arbitrary 0 =< % << 4 we have

1 — F(2) = [dF (@) = p(h) [ e dFa(y), (14)

@
where the distribution function Fy of the random variable & (%) is determined by
the relation
e dF (y)
@ (k)
The main mass of the approximating distribution 1 — @ (z) is concentrated in the
neighborhood of the point z. Therefore we should choose % in such a way that

aFn(y) = (15)

—(p:h) exp {hy} takes its maximum at the point 4 = x, that is, % should be defined
by the equation

x:d%lw(h):m(h). (16)
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From (15) we easily find that m (k) = ME(R) and o2(h) = % = D E(R).

If Fy, is the distribution function of the normalised random variable

= h) — m(h
Eh) = &( )G(h;n( ) ’

we derive from (14) and (16):

1 — F(z) = g(h)e=tm® fe—mh)y dF(y). 17)
0

In the following let 0 < & = 64 where 0 << 6 < 6m, and dp is determined by
the condition
6 Hog

s =1- (18)

For the characteristic function f5(t) = M exp {it&(k)} of the distribution function
Fy, we have

—stm(h) 117
w7 o) .
@ (k)
Expanding In g (2) in its Taylor series in the neighborhood of the point % given by

ltl .<(§gA 6 < 82 < 1 that is, by

) = e

It] < o) (52— 914, (19)
we find
. m(h)
i (0=~ 15 —Ing(h) +Ing (b +555) =
t rrs
= Sty @), g4 L (20)
[¢2H
= _7 + 0 mma—sra
so that

8

* —3

k(l_ZL)" 3=_66H , i Jz] < 4.

In the same way

G at-2

() = (ng() =1+ f =

0H |z} [2]\k—8 __ 66H|z|
=14 =L -1k =14 -
720 ve(f) I

and

o2(h)=140g. (21)
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We set
To= 4 o3 (1 — 044, T=eT, 22)

where 0 << ¢ < } will be chosen later. Let d3(d << 82 << 1) satisfy the relation
Ja—0  &0%(h)
Q-2 H -
Then, on account of (19), (22), (23) and the inequality |e* — 1| < |a|el*l, for
|t] < T we obtain

(23)

—i2 — 2 t3 — —e)2
lfh ) —e z/zl < e PR(lF12 + A1 1) él'ﬁ(l,‘e (1j2—e)t? (24)

Next we exploit an inequality which follows from a lemma of V. M. ZoLOTAREV
([13], lemma 3): let F be some distribution function, @ a function of bounded
variation with the properties

g=sup| G ()] <eco, G(—o0)=1— G(c0)=0
and f and g the Fourier-Stieltjes transforms of these functions. Then for all
T > 0 and all A > A4 the inequality

As(4) 1 (1))

sup| F(#) — 6(*) = 20 sy — )

(25)

holds, where

s(7) =14 j Lok da.
A4 is a positive solution of the inequality 4s(4) = 4,

T
D = | (L=7) i —90] F

. We apply the inequality (25) for an estimate of sup|Fx(y) — @ (y)|. In our
case q=——VET, T=¢Ty,

I’ dt s £
QT el =2 | % - € [p.-Q2-eattgyy — ¢
)= 5, ﬂf —e MR = < Vo= ofte b= s

hence for arbitrary 0 < e < }
2d(e)

sup| Pa(y) — PO < 57 7 > (26)
where
s(4) 1
____l__..___
2(1 —2¢)
a(e) = min = Z(1=29 (@7)
1>4 4= —1

A calculation shows that the minimum is attained for
e =0,282, 1=3,600
and equals 10,79.
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Now we can approach the evaluation of the righ t-hand side of equation (17).
We have

— F(x) = ¢p(h) e_hm(h)l(h) s
I(h)) = I1(h) + I2(R),

L) = [e= O a(Fy(y) — D (), 28)
0
n= e tvangy).
0

By definition, » > 0 and ¢ (%) > 0, hence the estimate (26) allows to state that

4d
|11 (B)| < [Fn(0) — D(0)| + sup| Fuly) — PW)| = 55 7, - (29)
Moreover
< BHh <, [ b \E-3
z=mMh)="h+ -1l = — "=
2 23 a0
30HR? 0
=ht ey =B+ 21— 9)),
4 (1 - -A—)
where, as before,
6 Hé
e=1=9
Similarly,
PR 1 1 -1
hot(h) — @ “,23@"(@—2)! T - 1>!>k B
B o0 81)
0 Hh? h\k-2 __ Oh
= Bk —2) (=) =22,
a ,gg (A) 2
The relations (30) and (31) show that
ho(h) ==+ 222 (32)
In fact, in the case ¢ (h) < 1 they imply
v <hor(h) Sho(W) Sh=w+ 2070,
and in the case ¢(h) = 1 we have
ho

2~ 202 <h<hoth Shor) S+,

which gives (32). Therefore
. E ok ok .
Io(h) = V2 J‘e—zy ylz( _I_ez h;:}ﬂ ) =e2(1 — D(x))+ R
where by the equality

T - k!
ge P ykdy = zk 1
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and the estimate
ke 4 4
2 =2 —g(l—0) <145 <L
derived from (30), we obtain
hoVb - 1 4
1B122 o (52) Spmmesa=gras
If x =1, then
1 1 3 1 N 1
max{ﬁﬁ(l_F)’zm}é(l_—@(x))emlzél/%x’ (33)
thus we finally find
4 0
— o2 (1 — =2_ Ye
Is(h) = &2 (1 @(m))(l—]— 5 30— o) (34)
The relations (28), (29), (22), (23), (33) and (34) lead to
1—-F 29 _ z .
By = 0 e (14 6, 1) %), (35)
where
164 H 44 0
10| = 50 —gra—ap T 3z 20—0) T8
Remembering that
A h 1 6 HS
—— e < ==
z = oz = 0 R |
P (1 ~fa- 5))
we can also write
16dH 4H
116, 5| = 5=t 050 (36)

- a3

)

We had set § = % . However, the relations (35), (36) remain true if we select &
and ¢ arbitrarily, but so as to satisfy the conditions 0 < & < §4, § < §g. Since

then o2(h) =

m (k) > 0 by the equation (16) z = m (k) there corresponds to

each value z a value k. In order to fulfil the inequality 0 < & < d it is necessary

to consider values x which satisfy the condition

0<z=<d4, 6<dxn,
where
b= 2—0+09),
because z = ( - (1—9 ) y (30).
Thus
16 04 (e) H

(37)

46H

f1(8, H) = (8, H) = 57— —
1 3(1— ) (1 — 624 (1_5)3(1

) s

(38)
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where 6 and § are related by the equality 6 = %(2 — o+ dp), d2 with 6 <da <1
is the positive solution of the equation

da— 0 2(h
(12__62)4=£GH( ),oz(h)zl—g, 0<e<i

and d () fulfills the inequality (27).

In passing we make the following remark. If, in order to estimate @(7'), we use instead of
(24) the inequality
: 22 (olt° ¢} [¢}5
fa() — e— 2] S e— 2 (eltl1To — 1) < i —e— B2 — e~ (1/2—0)22
To T ?
then we obtain

ey < 18+ + @VIRTo(d — o)
(e) = As() —1 ’
for arbitrary 0 <e <} and 1>4.
If we chose 4 50 as to minimize the expression
2s() +14
43¢ (A)—1"
then 1 = 3,2467, thus
2,23 0,35 H
PRGN P g e s

dle) =
This estimate is valuable for large A and relatively small z. Note that
- 5,33 22 . 1 I 1\
nGml =4 {1+ 3B (Lt min {5 o=l ow).

ifd—o0and z=0(4).

Continuing the proof, it is not difficult to verify that

1 _ (14668 min{ed(1 — )t HH s(1— 6P A1)
T =508 = 1= o) :

Therefrom we obtain a more crude, but in turm clearer estimate:

SH(L+2d(e) (A4 + 620+ min {et (1 — 8B H-1, 62 H-1})4)

Ifl(gaﬂ)l é (1—6)4(1——9)% . (39)

Obviously, 6 > 6(124- 6), and only for § = dg, that is for p = 1, the equality

5 Oz (1 + 0m)
H=""9

is attained. In order to simplify the relation between ¢ and 0

(149
2
the evaluation of the right-hand side of the inequality (39) we have to replace

1 — 6 by 1 — 6. Having done so, and putting ¢ = 0,282, d(¢) = 10,79, we obtain
(3)-
2
It remains to consider L(x) = % — bz 4+ In @(h) in (35). It follows from what
we have said earlier that % can be expanded in a power series in « which converges
for |z| < dud:

in the formulation of the lemma (cf. (4)), we had set 0= . Therefore in

h=h(z)= ozo:akxk . (40)
E=1
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The coefficients ay are determined by the first £ + 1 cumulants. Moreover, from
Cauchy‘s inequality for the coefficients of a power series we find

8
|ak1§75~%—jﬁ,k=1,2,..., (41)

because | A (2) |, =5z = 0ud by (30). It is easy to verify that

3 ©1—3863
a1=1, a2:-——2—, a3=_»~6—,
_ €5 —10E8,C3+15E% (42)
ag = — 51 seee s
Using the expansion (40) we obtain
S = k — l b E
L ()= ——-k —i—z h’“—-——z Spht = zC’kw
b= =3
where
~1 -
C]cz'—z ’U?! @v g, - akv——'_'——-al;cl
=2 kitertk,=k
We set
x3 z
The inequality (41) shows that the coefficients of Cramer’s series
At) = 3 gtk
=0
are subject to the estimate (5):
M= — 2 g (43)

k+3 &+ 3)0%®

Hence
@ (h)e”? = = exp L(x) = exp {‘? 2 (%)}

which together with (51) concludes the proof of the relation (2) as well as the proof
of the lemma, because the proof of (2') runs analogously. The estimate (6) for dz
from above is verified by (4) and a simple calculation. The validity of the remark
is obvious, because it folloews from the inequality (1”') that the function In @ (z) is

analytic in the circle |z]| < —Aa—, and therefore, by Cauchy’s inequalities, (1) is
satisfied.

We remark that limit theorems on deviations of type A for sums of independent
random variables and additive functions had been considered in [8].
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