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A well-known lemma by  K. Essv, E~ ([1], w 39, Bd. 1) and its sharpenings 
obtained by  k .  C. B~R~:r [2] and V. M. ZOLOTA~EV (eL (25)) allow to estimate the 
distance sup I F (x) - -  G (x) I of two distribution functions F and G in terms of the 
closeness of their characteristic functions. Similarly, using the Laplace transform 

c O  

fez~d(~(x)-  G(x)), ]z I =_<~ 
- - o O  

one might t ry  to estimate the ratios 1 F (-- x) , iv(-- x) . ana  ~( - (_~-m the interval 0_<x<~A 1 - G(x) -- 
and in this way simplify the derivation of limit theorems including the calculation 
of large deviations. We consider here the case where Gis the normal law ~5 ~ N (0, 1). 

Lemma. Let ~ be a random variable with distribution/unction F,  mean m ~ M ~, 
dispersion a 2 ~ D ~ and finite moments o/ any order M[  ~]Ic ~ c~, ]c ---- 1, 2, . . . .  
Let ~ be the k-th cumulant o /~  and 

�9 ~[k!Ha2\  1 

where H ~ O. Then in the interval 

l g x g c~zJ , (~ < ~H 
the ]ollowing relations hold: 

1 - - F ( m + x a )  z3 ~[x_,( x )  
1-~(~)  - e ~  ~ /  1 + / ~ ( 5 ,  H ) ~ - ,  (2) 

e ( - ~ /  - e - ~ - ~ ( -  l + / ~ ( g , H )  . (2') 
Here, 

I/i (~, H) ] < 8 H {1 + 7,2 (1 + 2(ld +_ rain(s)4( 1{�89 ~)~-- ~)3H-*, �89 H-  I}) 4} (3) 

i -~ 1, 2, the number ~ and (~1~ with 0 < ~ < ~H are determined by the equations 

2 ' q - -  ( 1 - - 6 )  3 ' - -  2 ' ( 4 )  

o o  

~H is a real root o/ the equation ~ ~ 1 and ,~(t) ~ ~ 2kt ~ is the power ~eries o] 
k=O 

Cra~r  which conver~es /or ]tl < ~ ,  where 

[~[  =< (~ + 3)~+~, ~ = o, 1 , . . . .  (5) 
We remark tha t  

~/r > 1 (6) 
1 -k 14,55 max {H, H�89 
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A more precise estimate for h(~, H) is given in (38) and (39). The coefficients i~ 
1 

are determined by the first k + 3 eumulants (ef. (42), (43)). We always set ~ - =  r 

1 
~ -  = 0. ~oreover,  0 always denotes some quanti ty not exceeding 1 in absolute 

value. 
Instead of the formular (1) in terms of semiinvariants, which is equivalent to 

= A~_ 2 , I ~ = 3 , 4 , . . .  (1') 

it  is sometimes more convenient to use immediately the Laplace transform 
+r 

~p(z) = ~ e~xdF(x -t- m) 

in order to define H and A. 

R e m a r k .  I f  there exist H < c~ and A < co satisfying 

I In V(z) l i~,= ~ --< IIA2, (1") 

then the assumptions of the lemma are satisfied and (2) and (2') hold with these H 
and A. 

Here we take the principle value of logarithm. Before entering the proof of the 
lemma we obtain with its help some theorems on probabilities of large deviations. 

Let  {~ (t), 0 ~ t < c~} be a measurable stochastic process. We say that  ~ (t) 
belongs to the class T(k) if 

Ml~(t) l �9 =< c~ < oo. 

Consider the random variable 
T 

r = S~(t)dt 
0 

and let 

and 8 (D (tl .... , t~) he the correlation function of ]r order of the process ~ (t), 
which is simply the semiinvariant of the random vector (~(tl) ..... ~(t/~)). 

Theorem 1. / ]  ~ (t) e T (~) and 

T T 
I S"" ;s?) (tl . . . .  , t~) d t l . . ,  dt~l ~ k:H1 - -  A ~ '  (7)  
0 o 

/or all k ~_ 3 then/or F ( x )  = P {r < x} the relations (2) and (2') hold with m = m ~ ,  
a =  aT,  H = H 1 , A  ~ A,2 and 

T T 
~ = Y"" S s?)( t l ,  . . . ,  t~) dtl . . .  d ~ .  (S) 

o o 

In fact, ~ as defined by the equality (8) is the eumulant of order k of the 
random variable tT  (cf. [9], (1. 14)), and by comparing (7) with (1') we obtain the 
proof of the theorem. 
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Let  

$1, . . . ,  ~n, n > 1 (9) 

be independent random variables with M~ 1 = 0, ] = 1, 2 . . . . .  n, 

n 

j = l  i = 1  

and _Fkn the cumulant of Sn of order k. 

Theorem 2. I] the eondition o/S .  N. BEgNSW~IN: 

IMpel g k ! H 2 K k - 2 ~ $ t ,  ] = 1  . . . .  , n  (10) 

is saris/led/or all k ~ 3, where H~ and K are some positive numbers, then/or 

(~) = ~ { &  < x} 

the relations (2) and (2') hold with m ---- 0, ~ = Bn, H = ~, 

A - -  B~ 
max {K(1 + 2H2),V2max a~'} 

l < ] < n  
an~ | = T',~.. 

We set 

zo = (max{K(1 + 2H2),  V2max ai})-l .  

Then, taking into account (10), we obtain in the circle l zl =< zo 

2 ~ M ~  = 1 + 01~1~;. q~,(z) = M e  zO = 1 + ~, kT. 

Moreover, ]n(1 + w) = w + 0]wl2 for Iwl =< ~, ~nd since I~oyl =< ~, we have 

~ '=1  

o r  

I lng& (z)[Iz[ =zo < 3 ~2 n2 ~ ~0 "L'n " 

The inequality thus obtained shows that  (1") holds for a = Bn, H = ~, A = zo Bn. 
This proves the theorem. 

Limit theorems of Cram6r's type with calculation of large deviations for sums 
of independent random variables (9) had been proved by various authors (cf. 
If. C~A~R [4], V. V. PETROV [5], [6], W. RICHT~g [7]) under the condition of 
C~AM~R and P~T~OV: there exist positive numbers A, L and I such that  

Z<=IMe~'I<=L for I~I=<A, ] = l , . . . , n .  

In  addition these authors assumed that  B~ ~ c2n with some c > 0. We remark 
that  in this case we can choose 

H - -  A~c~' A = A B n ~ A c ~ n ,  
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where ~ = 2~ -4- max{Ilnl l ,  IlnLI} since 

I ln~ S"(z) II~I-A < ~ {I]nl ~a,(z)1 till =A + 2~} < n~ ' .  
i = 1  

Consider random variables X1 . . . .  , Xn,  forming a Markov chain with n 
moments  of time, t ransi t ion probabilities PI  (w, A) from the state w at  time/" into 
the measurable set of  states A at  t ime ] + 1, initial probabi l i ty  distr ibution 
P0 (A) and coefficients of ergodieity 

~n = 1 --  max  sup(Pj(co, A ) - -  P j ( ~ , A ) I .  

e . g .  

t 

(s, t) = f ~ (u) du or r (s, t) = ~ ~ (~) 
s s ~ _ k ~ t  

where ~ (t) is some stochastic process. Le t  ~,~t denote the a-algebra generated by  
the events {~ (u, v) < x}, s ~ u < v < t. 

Theorem 4. Assume that ~ (s, t) satisfies the/ollowing strong mixing condition of 
M. ROSENBLATT 

sup sup I P ( A B ) - -  P ( A ) P ( B ) ]  <=e - ~  
O~t~_T--~:  AeTs 

B e ~ v  

where ST > O. In  addition, assume that there are 

I <=To <= ~ + 1  and Cro , f  < oo 

Set 
n 

Sn ~ Xj ,  2 = Bn = H S n .  
i = l  

Theorem 3. I[ with probability 1 

I x j l _ - < r  i = 1 , 2  . . . . .  n ,  ~ . > 0 ,  

then there exists an absolute constant Ha > O, H4 > 0 such that/or F (x) ---- P {Sn < x} 
the relations (2) and (2') hold with 

O: n B n  
m = M S n ,  a = B n ,  H ~ H 3 ,  A - -  C n H 4  " 

The proo[ of this theorem follows from the fact t ha t  the k-th cumulant  | of  
the sum Sn can be est imated in the following way:  

I ~ l  < ~ , ~ = u, 4 , . . . .  (11) 

Let  ~ (s, t) be a random function which is an addit ive funct ion of the interval  
(s, t), t h a t  is, 

(s, u) + ~ (u, t) = ~ (s, t) 

with probabil i ty  1 for all 0 g s < u < t g T 

m (s, t) = M ~ (s, t),  a2 (s, t) = ~ ~ (s, t),  
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such that 

[ ~(8, s + To)] < C~0, 
To ~ T 

with probabil i ty  1 / o r  all 0 ~-- s ~ T - -  To. Then  there exists  an  absolute constant 
H5 > O, H6 > 0 such that /or F ( x )  = P{~(O,  T )  ~ x}  the relations (2) and (2') 
hold wi th  m = m (0, T) ,  a -~ a (0, T) ,  H -~ H~ and 

A - -  ~ ( O , T )  
CTo, TH6 To " 

The theorem results from the following inequality for cumulants of the 
random variables ~ (0, T): 

k !//5 C~2'~ a 2 (0, T ) / / ~  
I ~ 1  ~ ~(~-~, , k ~-- 3, 4 , . . . .  (12) 

The proof of the inequalities (11) and (12) is involved and will not be given here. 

P r o o / o / t h e  lemma.  Without restricting the generality we set m ~- 0, a : 1, 
A > 0. On account of (1') the series 

= ( K k. ~ 1 -~ (13) 

converges for I z ] < A, and K (z) and ~ (z) = exp {K(z)} are analytic in the circle 
]z I <  A. Since the moments /~s = M~ ~ exist and can be expressed by the 

dsqo(z) l 
cumulants in closed form, we have fls - -  dz~ ] z=o and, by (13) and Cauchy's 

inequality, we find that  for 

s, [~A2 ( 2H~1 )} 
, s = 1 , 2 , . . . .  

Therefore the Laplace transform ~ (z) ~ M e  z ~ exists and is analytic in the circle 
[ z [ < A and there In ~ (z) : K (z). 

Let  us start  from the transformation of ESSCH]~ [10] and C~AME~ [d]. For 
arbitrary 0 ~ h ~ A we have 

1 - -  F ( x )  = fd_F(x)  -~ ~ ( h ) f e - h U d F a ( y ) ,  (14) 
X 

where the distribution function Fa of the random variable ~ (h) is determined by 
the relation 

d e n  (y) - -  ehydF(Y) ~(h) (15) 

The main mass of the approximating distribution 1 --  ~b (x) is concentrated in the 
neighborhood of the point x. Therefore we should choose h in such a way that  

1 
~(h) exp { b y }  takes its maximum at the point y ---- x, tha t  is, h should be defined 

by the equation 

x = ddh In ~ (h) : m (h). (16) 
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From (15) we easily find that  r e ( h ) =  MS(h)  and a 2 ( h ) -  din(h) 

I f  F~ is the distribution function of the normalised random variable 

~(h) ' 
we derive from (14) and (16): 

c o  

1 --  F (x) ---- ~ (h) e -hmO) S e-h~(h)u d/Th (y). (17) 
o 

In the following let 0 ~ h = ~A where 0 < ~ < ~ / ,  and ~u is determined by 
the condition 

6 H ~ / ~  
I .  (18) 

( z  - @)3 - -  

For the characteristic function [~ (t) ---- M exp {it ~(h)} of the distribution function 
-~a we have 

-itm(h) &t ~t ] 

~o(h) 

Expanding In ~0 (z) in its Taylor series in the neighborhood of the point h given by 

h-{- It[ < (52A, ~ < (~2 < 1 that  is, by  ~(h) = 

It[ _~ (~(h)((~ --  ~ ) A ,  (19) 

we find 

.. m(h) (h it ln/~ ( t ) = - - ~ - - ~ - - l n ~ ( h ) + h ~ ,  + ~ ) =  

t~ (it)3 iot _ (20) 
= -- 2 -  -}- 6a-~@ (In ~ (z))'" z = h -}- a(n) 

t2 [tl3H 
= --  ~ -  -]- 0 aZ(h)( 1 _ ~2)4 A , 

so that  

(h~+(zl)'" = ~. (~=~),-- 0 ~--21(~-- 1). 
k=8 k= 

In  the same way 

o'2 (z) ----- (In ~ (z))" =- 1 -t- ~.. ~z~-~ _ 

and 

= I - { -  A = 
k=8 

60Hlzl  

a2 (h) = 1 + 0 O- (21) 
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We set 

1 3 T 0 = ~ a  (h) ( 1 - -  82)aA , T - - - - eT0 ,  (22) 

where 0 < e < �89 will be chosen later. Le t  82 (8 < 82 < 1) satisfy the relation 

~2 -- d e a 2 (h) 
( 1 - - ~ ) 4 - -  H ( 2 3 )  

Then, on account of (19), (22), (23) and the inequali ty ]ea --  1] =< ]~]el~l, for 
It t g T we obtain 

[ h  (0 - e-t2/2[ < e -  ~l~(ert'J~ + ,n1~(m _ 1) < It l3  ~-(11~-~)~ (24) 
- -  ~-- T o  " 

Nex t  we exploit  an inequal i ty  which follows from a lemma of V. M. ZOLOT~a~V 
([13], lemma 3): let F be some distr ibution function, G a funct ion of  bounded 
variat ion with the properties 

q = s u p ] G ' ( x ) ] < o o ,  G ( - - ~ ) = l - - G ( o o ) = O  

and / and g the Fourier-Stiel t jes t ransforms of  these functions. Then  for all 
T > 0 and all ~ > A the inequal i ty  

2(s(A) -~ Q(T)) (25) s u p l F ( x  ) - G(x) ~ 2q T(4s(A) -- A) 

holds, where 

8(1)----AS 1 - - c o s l  dl. 
o 

A is a positive solution of the inequal i ty  4s  (~) = ~, 

0 

We apply  the inequal i ty  (25) for an est imate of  sup I -Pa (Y) --  ~5 (y) ]. I n  our 
1 

case q - -  2 V ~ 2 ~ 2 T = s T 0 ,  

Q(T)  < ~o [/a(t) - -  e -t'12 [ < t~e-(ll2-~)t~dt = .  
= 2(I -- 2e)~ ' 

hence for arbi t rary  0 < ~ < �89 

2d(e) (26) 
sup [/73 (y) - -  ~ (y) [ ~ V2 z To ' 

where 

s(~) I + 
d(~) ---- rain ~ .~1~ 2(1 -- 2e)~ (27) 

I > A  4 ~  -- 1 

A calculation shows t ha t  the  min imum is a t ta ined  for 

8 = 0,282, 1 = 3,600 

and equals 10,79. 
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Now we can approach the evaluat ion of the righ t -hand side of  equat ion (17). 
We have 

1 - -  F ( x )  : ~(h)  e -hm(h) I ( h ) ,  

I (h))  : 111 (h) 2[_ 12 (h) ,  
oo 

11 (h) = S e-h~(h)Y d (Pa (y) - -  ~ (y)) ,  (28) 
0 

oo 

12 (h) : ~ e-h~(h)Y d ~  (y) . 
0 

By definition, h > 0 and a (h) > 0, hence the est imate (26) allows to s tate  tha~ 

4d 
I I1 (hi ] __< I F~ (0) --  ~b (0) I + sup l Fh (y) --  ~ (Y) I ----< V ~  To" (29) 

Moreover 

OHh 2 
x = m (h) : h h~- i  : h § 

3 0 H h  2 (1 

where, as before, 

Similarly, 

6H6  
Q-- (I _~)3 �9 

I ~ hk-i = 
(k -- I)~ / 

O t t j  Ohe 

k = 3  

The relations (30) and (31) show ~hat 

Ohe 
h a ( h )  = x + 2 

In  fact,  in ~he case a (h) =< 1 they  imply 

x -- _-_ h a 2 (h) < h a (h) _< h _< x + 2 ' 

and in the case a (h) _>-- 1 we have 

he(1 -- ~) < h < h a (h )  <-- ha2(h)  < x + he 
X-- 2 -- -- -- = 2 ' 

which gives (32). Therefore 

( I2(h)  = e -~u-u~]2 1 + 0 2 ~ ,  dy : e~'m(1 --  4}(x)) J- R 
k = l  

where by  the equal i ty  

�9 [ e-X~'y~dy - -  x~+l 
0 

(31) 

(32) 
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and the estimate 

2x = 2--e(1--~ ) < i + ~  < I '  

derived from (30), we obtain 
co  

_< < 1 
IRl %_~VZ~xk2x] =/~x2(1-o)+o~" 

I f  x ~ 1, then 

} max 1 - - ~  , ~  < ( 1 - - ~ b ( x ) ) e  x~12< 1 
= = 1 / ~ '  

thus we finally find 

I2(h)  = eZ~/2 (1 -- ~5(x)) (1 + 
4 
3 2 ( 1 ~ - } - 0 ~  )" 

0e 

The relations (28), (29), (22), (23), (33) and (34) lead to 

1-  F(x) _~( x) 
1 --  q~(x) ~ --~ ~(h)  e x~12 (1 -{-/((~, H)  ~ , 

where 
16dH 4A 

3(1_  ~)~-(1_(~2)4 -~ 3x 2(1-- 0) -]- ~(~ " 

Remembering that  

A h 1 6H6 
x - -  6x ~ 1- -~ - (1 - -~ ) )  ' ~ -  ( 1 - ~ ) 3 '  

we can also write 

141 

(33) 

(34) 

(35) 

(38) 

16dH 4H . (36) =< + 

h 
We had set ~ = A"  However, the relations (35), (36) remain true if we select h 

and d arbitrarily, but  so as to satisfy the conditions 0 < h ~ dA, ~ < dH. Since 
d 

then a2(h) = ~ m ( h )  > 0 by the equation (16) x = re(h) there corresponds to 

each value x a value h. In order to fulfil the inequality 0 < h g dA it is necessary 
to consider values x which satisfy the condition 

0 < x ~ A ,  ~ < ~ H ,  (37) 

where 

= ~ ( 2  - o + o~), 

b e c a u s e x - - h ( l - ~ - ~ ( 1 - - ~ ) ) ,  by(30). 

Thus 

16 Od(s)H 4 OH 
11(5, H) = 1(6, H) --  + 3(1 r (1 62) 4 
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where (i and  ~ a r e  r e l a t ed  b y  the  equal i ty-~ = ~ ( 2  - -  p q- (ip), 63 wi th  (i < (i2 < 1 

is the  posi t ive  solut ion of  the  equa t ion  

~2 - -  6 e(r~(h) a 2 ( h ) > l - - 0 ,  0 < e < � 8 9  
(1 --  62) 4 - -  H ' = 

and  d (s) fulfills the  i nequa l i t y  (27). 

In passing we make the following remark. If, in order to estimate Q(T) ,  we use instead of 
(24) the inequality 

Ilk(t)--e-t~/2[ <= e-t2J2(eltpI T~ - -  1 ) <  IT~lo~ e-t212 + ~ e-(112-8)  t2 , 

then we obtain 
ct(8) < ~-13 (2) + �89 + (2 2 ~  (~ - ~p)-i 

= 4 Z-is (2) - -  1 ' 

f o r a r b i t r a r y 0 < ~ < � 8 9  and 2 > A .  
If  we chose 2 so as to minimize the expression 

23(2) + �89 
42-1s (2) -- 1 ' 

then 2 = 3,2467, thus 
0,35 H 

d(e) < 4 0 , 8 7 4  ( l _ 0 ) g ( 1 - : ~ ( � 8 9  A.  

This estimate is valuable for large A and relatively small x. ~ote that 

< 4 H f l  5,33x z / . 1 _ _ + ~ - ~  [1 + mm {-fH-, i/1/~})4+ o(1)}, I1~(~,/t) 1 

i f  A --~ ~ and  x = o (A) . 

Continuing the  proof,  i t  is no t  diff icult  to  ver i fy  t h a t  

I < (l+6~+min{sl(l--6)~,H-i,e(l--6)aH-X}) 4 
(1--62) 4 = ( 1 - - 6 )  4 

Theref rom we ob ta in  a more  crude,  b u t  in  t u r in  d e a r e r  e s t ima te :  

I I~(LH)I  < 8H(l+w (39) 
= (1 --  6)4(1 --  e)g 

Obviously ,  ~ > 6(1 + 6) and  on ly  for (i = (in, t h a t  is for  ~ = 1, the  equa l i t y  
2 ' 

~/_/= 6H(I + 6H) " 2 is a t t a ined .  I n  order  to  s impl i fy  the  re la t ion  be tween  (i and  

in the  fo rmula t ion  of  the  l emma  (ef. (4)), we h a d  set  ~ 6(1 + 6) Therefore  in  
- -  2 " 

the  eva lua t ion  of  the  r i gh t -hand  side of  t he  i nequa l i t y  (39) we have  to  replace  

1 - -  (i b y  I - -  ~. H a v i n g  done so, and  p u t t i n g  e = 0,282, d(s)  = 10,79, we ob ta in  

(3). 
~ 2  

I t  r emains  to  consider  L (x)  = ~ - -  h x  -1- In ~0 (h) in (35). Ir  follows f rom w h a t  

we have  said ear l ier  t h a t  h can be  e x p a n d e d  in a power  series in x which converges 

for [~l < g.zl:  

h ---- h ( x )  ---- ~ a k x  ~ . (40) 
/ z = 1  
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The coefficients a~ are determined by the first k q- 1 cumulants. Moreover, from 
Cauchy's inequality for the coefficients of a power series we find 

@ 
I a~] =<3bZ~-~ , k = 1,2 . . . . .  (41) 

because I h (z) [lzl = ~ z  ~ ~HZ] by  (30). I t  is easy to verify tha t  

a1~--1, a2~-~- 2 ' a3--~ 6 
| - 10 |174 + 15 | (42) 

a4 ~ - -  24 ' . . . .  

Using the expansion (40) we obtain 

X2 co 

where 

We set 

_ _ _  _ ~ |  = C ~ x ~ ,  

k ~ 2  k = 8  

k 
~ '  v - -  1 alr 

~ ~ akl  "'" alc~ ~ k C k  
v=2 kl+'"+k~,=k 

x 3 . / x ~  
L(x) = ~ -  z (~) .  

The inequality (41) shows tha t  the coefficients of Cram6r's series 
oo 

k~O 
are subject to the estimate (5) : 

a~+2 / l k +  1 ~___ 0 ~H 

Hence 

(43) 

c f ( h ) e  x ~ / 2 - ~ =  exp L(x) = exp { ~  2 (A)} 

which together with (51) concludes the proof of the relation (2) as well as the proof 
of the lemma, because the proof of (2') runs analogously. The estimate (6) for ~g 
from above is verified by  (4) and a simple cMeulation. The validity of the remark 
is obvious, because it  folloews from the inequality (1") tha t  the function In ~ (z) is 

A 
analytic in the o~ole I~l < ~-, and therefore, by Cauchy's inequalities, (1') is 
satisfied. 

We remark tha t  limit theorems on deviations of type A for sums of independent 
random variables and additive functions had been considered in [8]. 
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