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1. Introduction 

This note contains various sufficient conditions for singularity and non-abso- 
lute-continuity of pairs of measures on a real linear space. Some of the results carry 
over to more general situations, e. g. to measures on a group or semigroup. 

Section 2 contains some results on singularity of a measure with respect to a 
translate of itself, and related results on singularity of more general pairs of measur- 
es. We improve the main theorem of [1], Theorem 2, by  weakening the hypothesis 
and giving a shorter proof. Then we point out some consequences close to others'  
work ([3], [4]). Section 3 gives some results which do not involve translations. 

2. Singularity of Translates 

Let S be a real linear space and ~ a a-algebra of subsets of S. Let  S* (5 p) be the 
linear space of all Z-measurable  reM linear funetionals on S. 

Suppose # is a finite (nonnegative, countably additive) measure on ~ .  For any 
x in S we define the translate of # by  x: 

# x ( A ) ~ - - # ( A - - x ) ,  A - - x e S f .  

On S* (~ ) ,  we let ~ be the topology of convergence in/~-measure, metrized 
by  the pseudo-metric 

d (/, g) = f]  / (x) - -  g (x) [/(1 + I / (x) - -  g (x) l) ~ (x).  

For any x in S and linear functional L on S, we let ex (L) ~ L (x). For two measures 
/~ and v, the s ta tement  that/~ and v are singular will be written/~ ~_~. 

Theorem 1. Given x in S, i /ex is not continuous on S* ( ~ )  /or J'~, then/~ _j_/~x. 

_Proo/. The hypotheses imply tha t  there a re /n  and / in S* (5 p) with In --> / for 
:~-~ bu t /n  (x) --]-~] (x). Taking subsequences, we may  assume tha t  for some neighbor- 
hood U of/(x) ,  ]n(X) ~ U for all n, and tha t  ]n(Y) -->](y) for ju-almost all y in S. 
Lett ing 

A ~- (y : /n  (y) --> / (y)}, 

we then have/z  (S ~ A) --~ 0, while 

/~x (A) _--/~{y:/n(x + y) -~ /(x + y)} 

~--/~{y: /n(x) -~ ]n(Y) --->](x) + / ( y ) }  
---/~ {y: / ,  (x) --~ / (x)} = O. 

Thus/~ 1 #x, q. e. d. 
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Theorem 1 also holds if  S is a set with addition replaced by  an arbi trary binary 
operation, and the real line as the range of the homomorphisms in S* (5 z) is 
replaced by  any separable metric topological group G. The proof is essentially the 
same. This encompasses certain other natural  cases, e .g .  where S is a locally 
compact abelian group and G is the circle group. However, at  present I know of no 
interesting applications except where S is an infinite-dimensional linear space. 

For p > 1 let 

s;(~) = {L + S* (~):If L(x)[~d~(x) < ~} 

with the pseudo-norm 
][LlIv= (I[L[Pd~u) lip. 

Then S;  (/~) is a subspace of S* (~q~) with a topology finer than 3"g, so we have 

Corollary 1. I / e x  is not continuous on S;  (#) /or  [I [] ~, then # 1 [~x. 

Theorem 2 of [1] is the case p = 2 of Corollary 1. In  turn, results of several 
other authors can be obtained, as indicated in [1] and later in this paper. 

Corollary 2. Suppose # and v are finite measures on 5~ such that ex is not conti. 
nuous on S* ( 3 ~) /or 3"~+~. (For example, suppose p ~ I and ex is not continuous on 
S~ (# --l- v).) Then tt -i. v x. 

Proo]. # + v • (# -4- v) x by  Theorem 1, so/x •  q.e.d. 
Corollaries 1 and 2 for p ~-- 2 arc closely related to Theorem 4.3 of RAo and 

V~mA])AgAZXW [3], which is stated in terms of certain matrices. However, transla- 
ting one result into the other seems to take almost as much or more time than  
giving direct proofs, so we shall not go into further details. 

A measure # on a a-algebra 5 ~ in a linear space S will be said to have mean x in 

S f f  ]L(y )d /~(y )  = L(x )  

for all L in S* (SP). 

We turn now to a generalization of a recent result of S~ErP [4]. Let  S be the 
linear space of all sequences x = {xn}~__ i of real numbers (a countably infinite 
Cartesian product of real lines). 

Theorem 2. Let { P n } ~  1 be a sequence o/probability measures on the real line such 
that/or some y in S, M > O, and ~ > O, 

Pn ((Yn - -  M ,  yn + M))  ~ o: /or all n .  

Let a ~ S satis/y Z a2n = oo. Let P = ~ Pn on S. Then P .l_ pa .  
~ = 1  

Proo]. We may  assume Yn = O. I f  ~n > 0, the transformation {xn} ---> {Xnxn} 
of S replaces an for our purposes by  ~nan. I f  

2n = 1/max(l ,  Ianl), 
all the hypotheses are preserved, so we can assume ] as/  ~ I for all n. Let  

M + I ,  x > M + l  

/(x)= x ,  Ixl_<M+l 
- - M - - l ,  x < - - M - - 1 .  
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Let  bn be the mean ofpn o ]-1 and cn the mean of 

qn = p~'o / -1 .  

Then clearly ~]an[ < l b n - c n l  < 1 for all n. Let  -~{Xn}= {/(xn)}, and 
Q = 1-[ qn. Now the measures # = (P o F-1)-b and v = Q-c are both products of 
probabil i ty measures with mean 0 and supports in ( - - 2 M  --  2, 2 M  + 2). Thus 
the coordinate linear functionals xn on S belong to S~ (/x + v), and the x ,  are 
orthogonal, with 

[{ xn l] 2 < V2(2 M + 2) for all n .  

Thus since ~ (bn - -  Cn) 2 = 0% ec-b is not continuous on $2( # -k v). Hence by  
Corollary 2,/~ A_ v e-b, i.e. P o F -1 .L p a  o F -1, so P _i. pa ,  q. e. d. 

Theorem 1 (i) of S~]~eP [4] is the special case of our Theorem 2 in which the Pn 
are all equal to a given p. 

3. Results Not Involving Translations 

We begin with the following known and easily proved fact:  

Theorem 3. Let S be a set, 50 a a-algebra o/subsets o / S ,  and tz and v / i n i t e  
measures on 5:. Let . ,g(5:)  be the linear space o/ all 5:-measurable real-valued 
]unctions on S. Then ~ is absolutely continuous with respect to/z  i / a n d  only i] the 
identity on .~g ( S:) is continuous/rom ~-u to J'~. 

For  translation of a measure, Theorem 1 differs from the "only if"  par t  of 
Theorem 3 by  a strengthening of the hypothesis (to discontinuity on the subspace 
S* (5:) c ~g/(5:)) and the conclusion (from non-absolute-continuity to singuiarity). 

Let  S be a real linear space. 5:  a g-algebra of subsets of S, and tz and v finite 
measures on 5~ We shall say /z  is subordinate to v, written # s v, ff the identi ty 
on S* (5:) is continuous from Y~ to J ' u .  This is clearly a reflexive and transitive 
relation (partial ordering). We have the following immediate consequence of 
Theorem 3 : 

Corollary 3. I ] / z  is absolutely continuous with respect to v, then/x s v. 
For any  A and B in 5:  we let/ZA (B) = # ( A n  B). Then dearly/zA is a finite 

measure on 5# and/XA s/Z. We shall say/z is uni]orm i f / t  s/xA whenever t z (A) > 0. 
We then have 

Theorem 4. I f  v is uni/orm and is not subordinate to ~, then iz _k v. 

Pro@ Whenever v (A) > 0, we have v s VA, So VA is not subordinate to /x. 
Hence by  Corollary 3, ~A iS not absolutely continuous with respect to /z .  Thus 
# A_ v, q. e. d. 

We next  show tha t  Gaussian measures are uniform. A Borel probabil i ty 
measure P on the reM line is called Gaussian ff there are constants a > 0 and m 
such tha t  for each Borel set B, 

P ( B )  ~-- f exp (--  (x - -  m)2]2 a s) dx/a],/2-~, 
B 

or ff P is a point mass at  m (this can be regarded as the limiting ease a ---= 0). 
A measure /~ on a a-algebra 5:  in a linear space S will be called Gaussian ff 
S* (50) ----- S~ (/z), and for each [ in S* (~9 ~ the measure/~ o [-1 on the real line (the 

9* 
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"dis t r ibut ion o f / " )  is Gaussian. (We shall no t  use the well-known fact  t h a t  this 
implies Gaussian joint  distributions.) 

Theorem 5. A n y  Gaussian probability measure i~ on a linear space S is uni/orm. 

Proo]. Suppose # ( A ) >  0 and  / n - - > /  for 3-~A. Then  / n -  ]--> 0 on A in 
# - m e a s u r e . / n  - -  / has  a Gaussian dis tr ibut ion for each n. For  any  e > 0, 

# { x :  I / n - - / [ ( x )  < e} > # ( A ) - -  e 

for n large. Thus  as n--> 0% the mean  and var iance  o f / n  - - ]  approach  O, so 
/n - -  / -+  0 for Y-x, and  # s #A, q. e. d. 

For  a Gaussian measure  #, the  topology ~--a is identical  to the  topology of the  
pseudo-norm I] 1[ ~ for any  p ~ 1. Of course [] ]I 2 is generally the  mos t  convenient .  
I t  is known t h a t / z  and  #x are mutua l ly  absolutely continuous i f /z  has mean  zero 
and ex is continuous for 3-~ [1, Theorem 3], i. e. f g  ~- ~--~. However ,  there are 
Gaussian measures  # and v wi th  zero means  and  ~--~ ---- ~--,, ye t /~  3_ v. Necessary 
and  sufficient conditions for s ingular i ty  of  Gaussian measures  have  been given by  
several  authors,  including FELDMA~I [2]. 

Since the  results in section 2 seem to  have  mos t  of  their  applicat ions using the  
"Hf lhe r t "  norms II II ~, i t  m a y  seem na tura l  to invest igate  analogues of Corollary 3 
for such norms.  We  can say v is 2-subordinate t o /~  if  the  inden t i ty  is continuous 
f rom So (#) to $2 (v). However ,  we can have  v absolutely cont inuous with respect  
t o / ,  bu t  not  2-subordinate t o / , ,  e. g. in the real line wi th  

x 2 d/~ (x) < ] x 2 dv (x) = + c~. 

Various other  unpleasant  phenomena  also result  f rom the fact  t h a t  a no rm 1[ L [I 2 
m a y  be significantly increased b y  L having ex t remely  large values on sets of  very  
small  probabil i ty .  I t  seems advisable to  el iminate such things either b y  hypothesis  
or b y  t runca t ion  (as in the  proof  of  Theorem 2). The few results I have  along these 
lines do not  seem complete enough to be wor th  s ta t ing here. 
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