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1. Introduction

There have been several axiomatic characterizations [1, 2, 3, 4] of Shannon’s
entropy and more recently [4, 6, 7, 8] of Rényi’s entropy of order «. These axioms
have been chosen to provide a convenient measure of the uncertainty of the
outcome of a random experiment.

However, these axiomatic characterizations have little apparent connection
with the coding theorems of information theory. In this note a generalized entropy
is defined in a way that connects entropy directly with a coding problem. If
additional hypotheses are imposed this generalized entropy becomes the Rényi
or Shannon entropy. In fact, the final theorem of this paper is a characterization
of the entropy of order « which is different from those mentioned above.

Let X = {&1, 22, ..., m} be a finite set of events and let P = (p1, P2, ..., Pm)
be an associated distribution of probabilities, so that the probability of #; is p; and
Z p; = 1. Suppose that we wish to represent the events in X by finite sequences
of elements of the set {0,1,..., D — 1} where D > 1. There is a uniquely deci-
pherable code [9] which represents x; by a sequence of n; elements if and only if
the integers n; satisfy the inequality

fp—mgl. )
i=1

Now suppose that there is a “cost function” ¢ associated with the length so
that the “cost” of using a sequence of length n is ¢ (n). Then the average cost of
encoding X by a distribution of lengths N = (n1, #g, ..., #ty) is

C=3 pipn).

It will be assumed that ¢ is a continuous strictly monotonic increasing function
on the non-negative real numbers. Then ¢ has an inverse, p~1. We can now
introduce a mean length for the cost function ¢ by

L(P,N, ) = ¢g~H(C) = "X 3, piop(ma)) - (2)

The reason for calling L a mean length is that when n1 = ng = *++ = 5y = 2,
then L = n. Moreover, if ¢(z) = z,

L(P,N,qp)= sz R,
the ordinary mean length.
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A coding problem of some interest is to minimize the cost by an appropriate
choice of the distribution of lengths, subject to the constraint (1). Since L is a
monotonic increasing function of C, an equivalent problem is to minimize L,
subject to (1). This minimum will be called the generalized entropy and denoted
by H (P, ¢). Thus,

H(P,¢)=infL(P,N,¢), 3)
NeS
where S is the set of all real distributions N = (n1, ng, ..., ) for which (1) is

satisfied. Since the numbers #; are not restricted to integer values in (3), H (P, ¢)
merely provides a lower bound on the values of L which are possible in a real coding
problem. However, when we consider coding sequences of elements of X, H (P, ¢)
sometimes takes on added significance [9, 10].

2. Properties of generalized entropy

In view of the general nature of H (P, ¢) it is not to be expected that many
results can be derived. However there are some properties which follow from
(1)—(3). For example:

G) If P = (p1, p2,---» Pm), H(P, p) is a symmetric function of py, ps, ..., pm.
(i) If Py = (p1,p2,-.., Pm) and Py == (p1, P2, ..., P, 0), H(Py,p) = H(Pz, ¢).
(i) ¥ P=(1,0,0,...,0), H(P,¢) =0.
(i) If P = (p1, p2, ..., m), H(P, ) <logpm.
Property (i) is obvious from the definitions. Property (ii) follows easily from the
observation that D~"= can be made arbitrarily small without affecting the
value of L (where .41 is the length corresponding to the event of probability 0).
Property (iii) follows similarly, by letting 71 — 0 and the other n; — oo, since in
this case L == n;. Property (iv) is a consequence of the fact that (1) is sat1sﬁed if

=logpm fori =1,2,...,m.

Other bounds on H (P, ¢) can be derived if ¢ is a convex or concave func-
tion. The function ¢ will be called convex if, for any probability distribution
P = (p1,p2; ..., Pm),

> Pi@) = ¢( 2 mw),

and concave if the direction of inequality is reversed. If ¢ is convex, ¢! is concave

and vice versa.
If g is concave, the fact that ¢~ is an increasing function shows that

L(P,N,¢) = szni

Since n; = — logpp; minimizes mei under the constraint (1),
H(P,q) = — 2 pilogops - 4)
Thus, if ¢ is concave and p; = m~1 for i = 1, 2, ..., m, it follows from the last

inequality and Property (iv) above that
H(P,¢)=logpm.
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In fact, a somewhat stronger result can be proved:
Theorem 1. Let y(x) = @(— logpz) and let Py be the uniform distribution
(m=1,m=1, ..., m~1). If p is concave

H(Po, l;D) logpm

Proof. If we put n; = — logpx; (3) becomes
H(Py,p —1nf¢p‘1< Z P /cz)>
=1

Since y is concave,
1 - 1
o 2P @) Zw(ﬁzwi :

Now ¢ is an increasing function and so y is a decreasing function. Therefore, in the
region > a; <1,

1 1
p (o Su) z9 () = pllogom).
Hence, since ¢~1 is increasing,

-1 (;717 X (xz)) = logpm.

H(Py, p) =logpm.

Therefore

This inequality and Property (iv) above prove the theorem.
The example
p@)=1—Dr  (t<—1)

shows that Theorem 1 is not always true if  is convex. For this example,
p@)=1—a?

is convex. Also,
1 1 1 _
L=¢1 (% Z?p(x,,)) = Tlog]_) (E sz- t) .

If we put @; =m=tforéi=1,...,m, then L =logpm. f weput 1 = 1, 22 = 23
= o =g, = 0, then L = — t~llogpm. Since ¢ << — 1 the second value of L
i8 less than the first and so logpm is not the infimum of L. The same example, for
— 1 < ¢t < 0, provides an example of a convex p for which y is concave.

When ¢ is convex the direction of the inequality (4) is reversed. Since @1 is
now concave, it follows from (2) that

L(P,N,p) = Zpini.
If we put n; = — logpp; we have
H(P,p) < — > pilognp;.

3. Characterization of Rényi and Shannon Entropy

If it is required that H (Po, ¢) = logpm when Py is the uniform distribution
(m~1, m71, ..., m~1) and that L(P, N, ¢) satisfy an additivity condition, then the
generalized entropy becomes either Rényi’s entropy of order o or Shannon’s
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entropy. The first requirement is made because it is unnatural that an optimum
code should assign unequal code lengths to equiprobable events. The additivity
condition which is about to be formulated is natural in itself and also makes it
possible to derive more precise coding theorems [9, 10].

Consider two independent sets of events X ={z1,...,2n} and Y = {y1,...,yx}
with associated probability distributions P = (p1, ..., pm) and @ = (g1, ..., ¢x).
Since X and Y are independent the probability of the pair (x;, y;) is pig;. We
denote by P @ the set of probabilities (p;gy).

Let ; be represented by a sequence of length n; and let y; be represented by a
sequence of length m;. Moreover, suppose that the pair (z;, y;) is represented by
the sequences for x; and y; put side by side. Then the length of the sequence for
(%, y5) is ng -+ my. Let us denote these three distributions of lengths by N, M,
and N 4 M respectively. Then, if I is to be a measure of mean length, it is natural to
require that

L(PQ:N‘I“M’QD) =L(P’N’(p) —I'L(Q:M,Q?),
or that
g HUY Doigipmi+m)) =D pipm)) + oD gp(my)).  (B)

This is the additivity condition mentioned earlier.
The solution of the functional equation (5) is easily found. Let m = &k = 2 and
let M = (a, a). For this case (5) becomes
P11 - @) + pag(n2 + @) = 7 pr@(n) + P2p(n2)) +a.  (6)
But it is known [11, p. 122] that the only strictly monotonic increasing solutions
of (6) are
Po(x) =cx+b
and
i(x) =y D +b,

where ¢ > 0 and p¢ > 0. It is easy to verify that (5) is satisfied by o and ¢
The mean lengths associated with these functions are

L(P; N: (PO) = sznl
and
1
L(P,N, 5) =~ logp > ps D'™.

It is easily shown that
lim L(P, N, ¢r) = 2 pimi .
t—0

It is well known [9] that the minimum of L(P, N, go) is
H(P, po) = — > pilogppr,
which is just Shannon’s entropy.

As the example following Theorem 1 shows, if ¢ << — 1 then H (Py, ¢1) <
< logpm, where Pg is the uniform distribution. Since we wish to exclude this
possibility, we shall consider only the case ¢t = — 1.
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The result of minimizing L (P, N, ¢;) is Rényi’s entropy of positive order, as
is shown by the following:
Lemma. Let — 1 <t << oo, t=:0 and let o« = (1 + £)~1. Then

infL(P, N, ¢;) = Hy,

NeS
where
1 "
Hy= = logp (21%)- (M)
Proof. By Hélder’s inequality,
(2ENP (2t < 2 & (8)

where p~1 - g1 =1 and p < 1. In (8), let

p=—t, g=1—a, &=p7 D™, n=pi.
The relation o« = (1 -+ )~1 is equivalent to p~1 +- ¢~1 = 1. Then

(3Pl (S e S DM,
where the last inequality follows from (1). Taking logarithms, we have that
L(P,N, ) = H (9)
for any N which satisfies (1). But the choice
ni = — alogppi + logn (D %)

satisfies (1) and produces equality in (9). This completes the proof.

A result similar to this was proved in [10]. The Lemma shows that H (P, ;)
= Hy,. 1t was pointed out above that L(P, N, ¢p) is the limit as ¢t -0 of
L(P, N, ;). It is also easy to prove from (7) that

w
Hy=limHy = — pilogomi, (10)
a—1 =1

so that the Lemma, suitably interpreted, also holds for ¢ = 0. There remains the
case t = — 1, & = oco. Now

Hoo =1im Hy = — logp p*,

where p* is the largest of p1, ..., pm. Also, for t = — 1,
L(P,N,p1) = —logp > D~ = —logpp* (> D) = — logpp*,

when (1) is satisfied. But equality is approached in this inequality if 7; —> 0 and all
other 7; — oo, where j is such that p; = p*. Thus, for t = — 1,

H(P, (P—l) = Hoo:
and hence

H(P,g)=Hy, a=(1+01, —1=t<oco. (11)

The results of this section can be summarized as follows:
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Theorem 2. Let ¢ be a continuous strictly monotonic increasing function
which satisfies the additivity condition (5) and let H(Po, ¢) = logpm when
Po=(mY,m™L,...,m1). Then the generalized eniropy H (P, p) must be the
entropy of positive order, H, , for some @ > 0.

Tt is even possible to extend (11) to the case t = oo, & = 0 [10], although ¢
is no longer defined, since

lim L(P, N, ;) = maxn;
t—o0 1£ism
and

Hp=logpm.
Clearly,

inf (maxn;) = logpm = Hy.
NeSl1l=i=m
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