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1. Introduction 

There have been several axiomatic characterizations [1, 2, 3, 4] of Shannon's 
entropy and more recently [5, 6, 7, 8] of R6nyi's entropy of order g. These axioms 
have been chosen to provide a convenient measure  of the uncertainty of the 
outcome of a random experiment. 

However, these axiomatic characterizations have little apparent  connection 
with the coding theorems of information theory. In  this note a generalized entropy 
is defined in a way tha t  connects entropy directly with a coding problem. I f  
additional hypotheses are imposed this generalized entropy becomes the l~6nyi 
or Shannon entropy. In  fact, the final theorem of this paper  is a characterization 
of the entropy of order g which is different from those mentioned above. 

Let  X ~ { x l ,  x2 . . . . .  Xm} be a finite set of events and let P : (Pl, P2, . . . ,  Pro) 
be an associated distribution of probabilities, so tha t  the probabili ty of x~ is p~ and 

p~ : 1. Suppose tha t  we wish to represent the events in X by  finite sequences 
of elements of the set {0, 1 . . . .  , D - -  1} where D > 1. There is a uniquely deci- 
pherable code [9] which represents x~ by  a sequence of n~ elements ff and only if 
the integers n~ satisfy the inequality 

m 

D -n '  =< 1. (1) 
i=1 

Now suppose tha t  there is a "cost function" ~o associated with the length so 
tha t  the "cost"  of using a sequence of length n is ~ (n). Then the average cost of 
encoding X by  a distribution of lengths _N = (n l ,  nu,  . . . ,  nm) is 

I t  will be assumed tha t  q0 is a continuous strictly monotonic increasing function 
on the non-negative real numbers. Then ~o has an inverse, ~0-L We can now 
introduce a mean length for the cost function ~ by  

L ( P ,  N ,  q)) = q)-I(C) ---- ? - l (  ~ p i q ) ( n ~ )  ) .  (2) 

The reason for calling L a mean length is tha t  when n l  ~ n2 . . . . .  nm ~ n~ 
then L = n. Moreover, if  ~ (x) ~ x, 

L ( P , N ,  q~) = ~ p i n ~ ,  

the ordinary mean length. 
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A coding problem of some interest is to minimize the cost by an appropriate 
choice of the distribution of lengths, subject to the constraint (1). Since L is a 
monotonic increasing function of C, an equivalent problem is to minimize L, 
subject to (1). This minimum will be called the generalized entropy and denoted 
by H (P, q:). Thus, 

H (P, ~) = infL (P, N, ~), (3) 
N e S  

where S is the set of all real distributions N = (nl,  n2, . . . ,  nm) for which (1) is 
satisfied. Since the numbers n,~ are not restricted to integer values in (3), H (P, ~) 
merely provides a lower bound on the values of L which are possible in a real coding 
problem. However, when we consider coding sequences of elements of X, H (P, ~) 
sometimes takes on added significance [9, 10]. 

2. Properties ol generalized entropy 

In  view of the general nature of H ( P ,  q:) it is not to be expected that  many 
results can be derived. However there are some properties which follow from 
(I)-- (3). For example: 

(i) I f  P = (pl,  P2, . . . ,  Pro), H ( P ,  cf) is a symmetric function of Pl,  P2, " . ,  ~0m. 

(ii) I f  P1 = (Pl, p2 . . . . .  Pro) and P~ ~ (pl,  Io2 . . . . .  pro, 0), H(P1 ,  ~) ~ H(P2 ,  ~). 

(iii) I f  P---- (1 ,0 ,0 , . . . , 0 ) ,  H ( P , ~ ) = O .  

(iv) I f  P = (pl, p 2 , . . . ,  Pro), H ( P ,  qD) ~ 1ogDm. 

Property (i) is obvious from the definitions. Property (ii) follows easily from the 
observation that  D -nm+l can be made arbitrarily small without affecting the 
value of L (where nm+l is the length corresponding to the event of probability 0). 
Property (iii) follows similarly, by letting nl -~ 0 and the other nl -> oo, since in 
this case L ~- nl. Property (iv) is a consequence of the fact that  (1) is satisfied ff 
n~ ---- 1ogDm for i ---- 1, 2 . . . . .  m. 

Other bounds on H (P, ~) can be derived if ~0 is a convex or concave func- 
tion. The function ~ will be called convex if, for any probability distribution 

P ---- (pl, p2 . . . . .  p~), 

and concave if the direction of inequality is reversed. I f  ~ is convex, ~-1 is concave 
and vice versa. 

I f  ~ is concave, the fact that  ~-1 is an increasing function shows that  

L ( P ,  2V, q~) ~ ~p~n~ .  

Since n~ -~ --  1OgDP~ minimizes ~ p~n~ under the constraint (1), 

H(P, > - p, 

Thus, if T is concave and p~ ---- m -I for i ~ I, 2 ..... m, it follows from the last 

inequality and Property (iv) above that 

H (P, ~) ~--- log D m. 
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I n  fact ,  a somewha t  s t ronger  resul t  can be p roved :  

Theorem 1. Let W(x )=  q)(--logDx) and let Pc be the uni/orm distribution 
(m -1, m - l , . . . ,  m - l ) .  I/7p is concave 

H ( P 0 ,  ~) ---- logDm. 

Proo/. I f  we p u t  n~ = - -  1OgDXt (3) becomes 

Z'x~ ~< 1 

Since y~ is concave,  

Now ~0 is an  increas ing func t ion  and  so F is a decreas ing funct ion.  Therefore,  in the  
region ~ x, ~ l ,  

Hence,  since ~-1 is increasing,  

Therefore  
H (Po, q)) ~ lOgDm. 

This  i nequa l i t y  and  P r o p e r t y  (iv) above  prove  the  theorem.  
The example  

~0(x) = 1 - .Dtx (t < - -  1) 

shows t h a t  Theorem 1 is no t  a lways  t rue  i f  F is convex.  F o r  th is  example ,  

~,(x) = 1 -- x-t 

is convex.  Also,  

I f  we p u t  x~ = m -1 for i ~- 1 . . . . .  m, then  L = logDm. I f  we p u t  x l  ~ 1, x~ = x3 
. . . . .  xm -~ O, t hen  L ---- - -  t - l logDm.  Since t ~ - -  1 the  second va lue  of  L 
is less t h a n  the  first  and  so 1ogDm is no t  the  in f imum of  L. The same example ,  for 
- -  1 ~ t ~ 0, p rovides  an  example  of  a convex ~ for which ~p is concave.  

W h e n  ~ is convex  the  d i rec t ion  of  the  i nequa l i t y  (4) is reversed.  Since ? -1  is 
now concave,  i t  follows f rom (2) t h a t  

L(P,  IV, q~) ~ ~p i n ~ .  

I f  we p u t  n~ ---- - -  logDp~ we have  

H (P, qJ) ~ -- ~pilogDPi.  

3. Characterization of R6nyi and Shannon Entropy 

I f  i t  is r equ i red  t h a t  H(Po, q~) = 1OgDm when P0 is the  un i form d i s t r ibu t ion  
(m -1, m -1 . . . .  , m -1) a n d  t h a t  L (P,  N,  ~) sa t i s fy  an  a d d i t i v i t y  condi t ion,  then  the  
genera l ized  e n t r o p y  becomes e i ther  R~nyi ' s  e n t r o p y  of  order  ~ or Shannon ' s  

S* 



116 L.L. CA~IPBELL: 

entropy. The first requirement is made because it  is unnatural  that  an optimum 
code should assign unequal code lengths to eqniprobable events. The additivity 
condition which is about to be formulated is natural in itseff and also makes it 
possible to derive more precise coding theorems [9, 10]. 

Consider two independent sets of events X = {xl , . . . ,  Xm} and Y ---- {yl . . . .  , Yk} 
with associated probability distributions P = (Pl, . . . ,  Pm) and Q = (ql . . . . .  q~). 
Since X and Y are independent the probability of the pair (x~, yj) is p~qj. We 
denote by P Q the set of probabilities (p~qj). 

Let x~ be represented by a sequence of length nt and let Y1 be represented by a 
sequence of length mj. Moreover, suppose that  the pair (x~, yj) is represented by 
the sequences for xt and yj put  side by side. Then the length of the sequence for 
(xi, yj) is ni ~- m I. Let  us denote these three distributions of lengths by N, M, 
and N~-M respectively. Then, i fL  is to be a measure of mean length, it is natural to 
require that  

L ( P  Q, N -t- M, 9)) = L ( P , N ,  9)) -}- L (Q ,M,  9)), 

or that  

9)-1(~ ~.plqjg)(n I _~_//b])) = 9)-1 ( ~  iDl 9) (T~/)) -~ 9)- l (~qj9)(m])) .  (5) 

This is the additivity condition mentioned earlier. 
The solution of the functional equation (5) is easily found. Let  m ----- k ---- 2 and 

let M = (a, a). For this case (5) becomes 

9)-1 (Pl 9) (nl ~- a) -1-/)2 9) (n2 -~- a) ) ---= 9) -1 (/91 9) (nl) -~/92 9) (n2)) -~ a .  (6) 

But it is known [11, p. 122] that  the only strictly monotonic increasing solutions 
of (6) are 

9)o (x) = c x § b 

and 

9)t (x) = ~ Dtx § b, 

where c > 0 and yt  > 0. I t  is easy to verify that  (5) is satisfied by 9)o and 9)t. 
The mean lengths associated with these functions are 

L(P,  N, 9)o) = ~ p~ni 
and 

I t  is easily shown that  

1 ~ 9t Dtn~. L (P, N, 9)t) ---- T logD 

l imL (P, h r, 9)t) ---- ~p~n~. 
t-->0 

I t  is well known [9] tha t  the minimum of L (P, 2V, 9)o) is 

H (P, 9)0) ----- -- ~ P~ 1OgD p~, 

which is just Sharmon's entropy. 

As the example following Theorem 1 shows, ff t < --  1 then H(Po,  9)t) < 
< logom, where P0 is the uniform distribution. Since we wish to exclude this 
possibility, we shall consider only the case t ~ - -  1. 
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The  result  of  minimizing L (P, N,  ~0t) is R6nyi ' s  en t ropy  of posi t ive order, as 
is shown b y  the following: 

Lemma.  Let - -  1 < t < c~, tr and let ~ = (1 ~- t) -1. Then 

i n f L  (P,  N ,  q~t) = H e ,  
Nes 

where 

1 logn i �9 (7) 
He-- l--c~ i 

P r o @  B y  I t6 lder ' s  inequali ty,  

( ~ ~P)llp ( ~_~ .~)l/q ~ ~ ~:i T],/, (8) 

where p-1  _~ q-1 = 1 and p < 1. I n  (8), let 

_ _  ~l.lt p - = - - t ,  q =  l o~, ~ i = p E l l ~ D - n ~ ,  r l~=r~  . 

The relat ion ~ = (1 + t) -1 is equivalent  to p-1 q_ q-1 = 1. Then  

( N '~  n t n n - i # (  x;~ 1o~)1/(1-~) < ~ D - n ,  < 1 

where the  last  inequal i ty  follows f rom (1). Tak ing  logari thms,  we have  t h a t  

L (P, N, ~0~) => H~ (9) 

for any  N which satisfies (1). Bu t  the  choice 

n~ = - -  ~ logn p~ + 1OgD ( ~ p~) 

satisfies (1) and  produces equal i ty  in (9). This completes  the proof. 
A result  similar to this was p roved  in [10]. The L e m m a  shows t h a t  H(P,q)~) 

He.  I t  was poin ted  out  above  t h a t  L ( P ,  N, ~o0) is the  l imit  as t - ~  0 of  
L ( P ,  N ,  q)t). I t  is also easy to prove  f rom (7) t h a t  

1 H1 ----- l i m H e  = - -  ~ p~ ogDp~, (10) 
~--~1 i = 1 

so t h a t  the  L e m m a ,  su i tab ly  in terpreted,  also holds for t = 0. There remains  the  
case t = - -  1, ~ = oo. Now 

H ~  - -  l i m H ~  = - -  lOgDp*, 
r162 oo 

where p*  is the  largest  of  p l ,  . . . ,  Pm. Also, for t = - -  1, 

L ( P ,  N ,  ~o-1) = - -  l o g D ~ p i D - " '  >= - -  logDp* ( ~  D - ~ 9  ~ - -  1OgDp*, 

when (1) is satisfied. Bu t  equal i ty  is approached  in this inequal i ty  if  n i -+ 0 and all 
o ther  ni -~  c~, where ] is such t h a t  p1 = p*.  Thus,  for t -= - -  1, 

H (P,  of-z) = H~o, 

and hence 

H ( P ,  q~t) = H e ,  cr -~ (1 q- t) - 1 ,  - -  1 ~ t < cx~. (11) 

The  results  of  this section can be summar ized  as follows: 
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Theorem 2. Let ~ be a continuous strictly monotonic increasing /unction 
which satis/ies the additivity condition (5) and let H ( P 0 ,  ~)--~ logDm when 
P0 ~--( m - l ,  m-l,  . . . ,  m-l) �9 Then the generalized entropy H(P,  q~) must be the 
entropy o/ positive order, Ha, /or  some ~ > O. 

I t  is even possible  to  ex t end  (11) to  the  case t ---- oo, ~ -~ 0 [10], a l though ~0 

is no longer  defined, since 

l i m L ( P ,  N,  ~t) ~-- maxn~ 
t->co I _~ i =< m 

and  

Clearly, 

H0 ~- ]ogD m .  

inf  (maxn~) -~ logDm --~ H0.  
2 f e S  l ~_i~_m 

References 

[1] S~ANNON, C. E. : A mathematical theory of communication. Bell System techn. J. 27, 
379--423 and 623--656 (1948). 

[2] FADIEV, D.A. :  On the notion of entropy of a finite probability space. Uspechi mat. 
Nauk l l ,  227--231 (1956). 

[3] KENneL, D. G.: Functional equations in information theory. Z. Wahrscheinlichkeits- 
theorie verw. Geb. 2, 225--229 (1964). 

[4] L~v., P. M. : On the axioms of information theory. Ann. math. Statistics 35, 415--418 
(1964). 

[5] R ~ Y I ,  A. : On measures of entropy and information. Proc. Fourth Berkeley Sympos. 
math. Statist. Probability I, 547--561 (1961). 

[6] ACZ~L, J., and Z. D ~ 6 c z v :  Charakterisierung der Entropien positiver Ordnung und der 
Shannonschen Entropie. Acta math. Acad. Sci. Hungar. 14, 95--121 (1963). 

[7] D~6czu  Z.: ~ber  die gemcinsame Charakterisicrung der zu den nicht vollst~ndigen 
Verteilungen geh5rigen Entropien yon S~L~ON und von R ~ Y I .  Z. Wahrscheinlich- 
keitstheorie verw. Geb. 1, 381--388 (1963). 

[8] ACZ~L, J. :  Zur gemeinsamcn Charakterisierung der Entropien a-ter Ordnung und der 
Shannonschen Entropie bei nicht unbedingt vollst~ndigen Verteilungen. Z. Wahr- 
scheinlichkeitstheorie verw. Geb. 3, 177--183 (1964). 

[9] FEINSTET~, A.: Foundations of Information Theory. New York: McGraw-Hill 1958. 
[10] C~WPBELL, L. L. : A coding theorem and R6nyi's entropy. Inform. and Control 8, 423--429 

(1965). 
[11] Acz~L, J. :  Vorlesungen fiber Funktionalgleichungcn und ihre Anwendungen. Basel- 

Stuttgart: Birkh~nser 1961. 
Department of Mathematics 
Queen's University 
Kingston, Ontario, Canada 


