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Coalescence and Spectrum of Automorphisms 
of a Lebesgue Space 

D. NEWTON 

Introduction 

Throughout T will denote an automorphism of a Lebesgue space (M, #). Let 
g(T)={endomorphisms q~ of (m,#) such that (aT=TO} and d(T)={auto-  
morphisms q~ of (M, #) such that q~ T= T~b}, if g(T)=s~C(T) then we say that T 
is coalescent. This concept has been used in topological dynamics, Auslander 
[1], and was given a measure theoretic setting by Hahn and Parry [4], where 
it was shown that totally ergodic automorphisms with quasi-discrete spectrum 
are coalescent. It is clear that the property of being coalescent is an isomorphism 
invariant of T, we will show that it is also an invariant of weak isomorphism but 
not of spectral isomorphism. The relation between coalescence and entropy is 
not clear. It is possible to find spectrally equivalent automorphisms with equal 
(zero) entropy one of which is coalescent and the other is not, however, we have 
been unable to construct a coalescent automorphism with positive entropy. 

In this paper we look at the relation between coalescence and the spectrum 
of an automorphism. To this aim we introduce the notion of unitary coalescence 
for unitary operators on a seperable Hilbert space and give necessary and suffi- 
cient conditions for a unitary operator to be unitarily coalescent. From this we 
are able to deduce a sufficient condition for an automorphism T to be coalescent. 
In paragraph 3 we construct an invariant partition, which may be trivial, asso- 
ciated with the spectrum of T such that the corresponding factor transformation 
is coalescent and has zero entropy. Finally we consider some examples. 

1. Preliminaries 

For the theory of Lebesgue spaces and their endomorphisms see Rohlin [13, 
14]. If ~b is an endomorphism of the Lebesgue space (M,/~) then Ur will denote 
the isometry ofL 2 (M) defined by Ur f=fo  c~. We note that Ur is unitary if and only 
if Ur is onto, i.e. if and only if ~b is an automorphism of (M, #). The theorems and 
proofs in the following paragraph depend on the theory of spectral multiplicity 
and the results that we use may be found in Halmos [6], Plessner and Rohlin [12]. 

2. Unitary Coalescence 

Let U be a unitary operator on a seperable Hilbert space 3zt. Denote by J(U) 
the set of isometries of H which commute with U and by ~(U) the set of unitary 
operators of ~ which commute with U. We say that U is unitarily coalescent 
if J (U) - -~ (U)  or, equivalently, if each isometry in J (U)  is onto. 
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Lemma 1. Let A denote the U-reducing subspace of ~g~ consisting of all those 
elements whose spectral type with respect to U has uniform finite multiplicity. 7hen 
U ' ( A ) : A  for each U' ~J(U).  

Proof Let A n denote the subspace of those elements of ~ whose spectral 
types have uniform multiplicity n, n denotes a positive integer; note that An may 
be trivial. Then A = �9 A, and each An is a U-reducing subspace. If suffices to 

n 

show that U' (An)= A,. If An is trivial then the result is clear, otherwise, An may 
be decomposed into a direct sum of n cyclic subspaces generated by elements 

xl . . . . .  xn, An = ~ Z(xi), where Z(xi) is the subspace generated by the set {Unxi �9 
i = 1  

n=0,  + ,  1, _+2,...}, and each x~ has the same spectral type, #, say. Let U'eJ(U) ,  
then the images U' xi, i = 1, ..., n, have the following properties: 

1. The spectral type of U'xi is #n, hence U'x~eA n. 

2. The cyclic subspaces Z(U'xi). i = l , . . . , n  are pairwise orthogonal and 

Z ( U ' x i ) c A , ,  i= 1 .... , n. It then follows that A ,=  + Z(U'xi), i.e., U'(An)=A n. 
See [61 w167 63, 64. ~= 1 

With the help of the above lemma we can give necessary and sufficient condi- 
tions for U to be unitarily coalescent. 

Theorem 1. A unitary operator U on a seperable Hilbert space Jt ~ is unitarily 
coalescent if and only if there is no spectral type with uniform infinite multiplicity. 

Proof If there is no spectral type of uniform infinite multiplicity then Jg = A, 
where A is the subspace described in Lemma 1. It then follows from Lemma 1 
that if U ' s J ( U )  then U'(~,~g) = ~r ~, i.e., U' is onto and therefore U'eqI(U). Hence 
J ( U )  =q/(U) and U is unitarily coalescent. 

Assume now that there is a type with uniform infinite multiplicity, then 
may be decomposed as follows: 9el = A G B where B = �9 Z(xn) and the elements 

n>=l 

xn all have the same spectral type. It follows from [61 w 60 that there exist unitary 
operators U,: Z(Xn)~ Z(Xn+I) such that Un UIz(x.~ = Ulz(x,+l)Un, where UIz~.) 
means the restriction of U to the U-reducing subspace Z (xn). We now construct 
an element U ' s J ( U ) \ q I ( U ) .  Define U' to be the identity on A and to be equal 
to Un on Z(xn) and then extend U' to an isometry of i f .  It is easy to see that 
U'EJ(U),  to show that U'r we note that U'(gCf)=A| �9 Z(x , )+ ~f~. Hence 
U is not unitarily coalescent, n-2 

3. Coalescence of Automorphisms of Lebesgue Space 

We have already defined what we mean by saying that T is coalescent. We 
first show that coalescence is an invariant of weak isomorphism. 

Theorem 2. I f  T is coalescent and T' is weakly isomorphic to T then T' is in 
fact isomorphic to T and T' is coalescent. 

Proof Since T weakly isomorphic to T' there exist endomorphisms q~, ~b such 
that ~b T= T'~b and ~b T' = T~b. Hence ~b ~b T= T~b ~b, i.e. ~b ~ sE(T) = d (T) .  Since 
~/~b is an automorphism it follows that both ~p and ~b are automorphisms i.e. T' 
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is isomorphic to T. If ~b' e 8 (T') \ d (T') then ~b - 1 qS' q5 ~ d ~ (T) \ d (T) which contra- 
dicts T coalescent, therefore T' is coalescent. 

We remark that a direct consequence of this theorem is that isomorphism 
and weak isomorphism coincide for coalescent transformations. 

A question which we have not been able to resolve is the following: if T has 
a factor automorphism which is not coalescent does it then follow that T itself 
is not coalescent? Under the restrictive assumption that the factor is a direct 
factor the answer is yes. 

Proposition 1. I f  T ~ T~ x T 2 where 7"1 is not coalescent, then T is not coalescent. 

Proof Let ~b~g(T0\  d(T1), then ~b x I~d~(Ta x T2)--~r 1 x T2), where I de- 
notes the identity automorphism. 

Let us say that T is unitarily coalescent if its induced unitary operator Ur 
on L2 (M) is coalescent. 

Theorem 3. I f  T is unitarily coalescent then T is coalescent. 

Proof Let ~b~g(T) then U~J(UT)=~II(UT). Hence Ur is unitary and there- 
fore qSed(T) and it follows that T is coalescent. 

Corollary 1. All automorphisms with no spectral types having uniform infinite 
multiplicity are coalescent. In particular, ergodic automorphisms with discrete 
spectrum and automorphisms with simple continuous spectrum (see Girsanov [33). 

In [17] Yuzvinskii proved that the set of automorphisms with simple con- 
tinuous spectrum contains an everywhere dense G0-set in the set of automor- 
phisms of (M,/1) with the weak toPology, see Halmos [5]. 

From this and Corollary 1 we obtain 

Corollary 2. The set of coalescent automorphisms of (M, #) contains an every- 
where dense G o in the set of automorphisms of (M, /3) with the weak topology. 

We can construct a larger class of coalescent transformations which includes 
all those of Corollary 1. To do this we construct an invariant partition of (M,/~) 
associated with the spectrum of T. 

Let ~ ( T )  denote the smallest UT-reducing unitary subring of Lz(M ) which 
contains all the elements whose spectral type with respect to U T has uniform 
finite multiplicity. In other words, using the notation of w 2, o~(T) is the UT- 
reducing subring generated by A. Denote the measurable partition of M corre- 
sponding to i f (T)  by ~(T). Then T~(T)=~(T) and so there is a factor auto- 
morphism T~(r) corresponding to ~(T). 

Theorem4. The factor automorphism TO(T)is coalescent. 

Proof It is sufficient to consider the case ~(T) = 5, T~(r) = T(otherwise replace M 
by M/~(T), T by Tr ). Let ~b6g(T), then Ur and by Lemma 1 UcAA)=A. 
Since Ur is a ring homomorphism and commutes with U T then the smallest 
Ur-reducing subring containing A is also reducing for Uo. But, by assumption 
this subring is L2 (M), therefore Ur e ~ (T) and hence q~ e ~r (T). Thus g (T) = ~ '  (T) 
and T is coalescent. 

Theorem 5. ~(T)<_n(T), where n(T) denotes the maximum partition with zero 
entropy, hence h(T~r) )-- 0. 
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Proof Let L2(1z(T)) denote the unitary subring corresponding to the meas- 
urable partition re(T), since T~(T)---n(T) ,  this is a Ur-reducing subring. The 
unitary operator Ur has uniform infinite Lebesgue spectrum in the orthogonal 
complement of L2(~(T)), Rohlin and Sinai [15], hence A c L 2 ( ~ ( T ) )  and 

(T) c_L 2 (~ (T)) by the definition of ~ (Y). Thus ((T) < ~ (T). 

Examples. If T is an ergodic automorphism with discrete spectrum then 
((T)=rc(T)=e. If T is a totally ergodic automorphism with quasi-discrete but 
not discrete spectrum then ( (T)+rc(T)=e .  In fact T~(r) is the maximal factor 
automorphism of T with discrete spectrum. If T has continuous spectrum with 
uniform infinite multiplicity then ((T)= v. 

4. Normal Dynamical Systems 
We first recall a few definitions and properties of normal dynamical systems. 

Let ~ be a continuous finite measure on the unit interval I. We construct the 

normal dynamical system T~ as follows: let M = ~ R,, where R, is the real line for 

each n, let T~ be the shift transformation on M, i.e. if ~o=(m~)EM then T~o=cd 
where c~', = c~.+ 1. Define the coordinate function x, on M by x,(~o)=m., then we 
define a measure P~ on the a algebra generated by the cylinder sets of M by the 
requirement that the sequence {x,} should form a stationary Gaussian sequence 
with covariance measure ~. See [2], [7] for more details. If ~r denotes the closed 
linear span of {x,} in L2 (M) then L2 (M) is the smallest unitary subring contain- 
ing ~. The maximal spectral type of UT-, in the orthogonal complement of the 

constant functions is the class of measures equivalent to ~ 7"/2", where ~/" denotes 
,=1 

the n-fold convolution of ~ with itself. If we write Lz(M)= CO:Y| where C 
denotes the subspace of constant functions, then the subspace :Y is a cyclic sub- 
space, ~Y=Z(xo), and the spectral measure of the element x o is ~/. The spectral 

measure of Ur restricted to H is rl"/2" and if t/• ~ tl"/2" then the measure t 1 
n = 2  2 

occurs with uniform finite multiplicity 1 and hence ~ c A (see w 2). 

Theorem6, I f  tl J_~tl"/2" then ~(Tn)=e and so T~ is coalescent and has zero 
entropy. 2 

Proof We have remarked above that under this assumption ~r~A. Since 
L2(M ) is the smallest subring containing ~r it must also be the smallest subring 
containing A. Therefore ~ ( T ) = L 2 ( M  ) and ((T)=~, The remaining assertions 
follow from Theorems 4, 5. 

We remark that a similar technique to that used in the proof of Theorem 6 
enables one to prove Pinsker's result that normal dynamical systems with singular 
covariance measure have zero entropy. 

Theorem 7 [Pinsker]. I f  tl is a singular measure then the normal dynamical 
system T, has zero entropy. 
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Proof Since ~ is a cyclic subspace with singular spectral type it follows that 
c L2 (rc(T,)). (In the orthogonal complement of L 2 (n (T)), T has Lebesgue type.) 

But the smallest unitary subring containing Y" is L2(M) therefore Lz(M)= 
L 2 (~(Tn)) and hence n (T~)= e. The result is proved. 

Returning to the concept of coalescence, a natural question is to ask when 
T~ is not coalescent. 

Theorem 8. Every normal dynamical system with positive entropy is not coales- 
cent. 

Proof A normal dynamical system T~ has positive entropy if and only if 
rl=ql+q2 where 04:~/t~l and ~/2 • l, where l denotes Lebesgue measure on the 
unit interval. If r/=~/l+~/2 then T ~  ~1 • T~2 (this is true for any decomposition 
of q into pairwise orthogonal measures) and it will suffice, by Proposition 1, to 
show that T~I is not coalescent. Let ~/'1 be any measure absolutely continuous 
with respect to ~h and not equivalent to r h. Then T~ is a factor automorphism 
of T~I and can be chosen to be a proper factor in the sense that if $ T~I = T~i 
then ~b can be chosen to be an endomorphism which is not an automorphism. 
However, by a theorem of Versik [16], all normal dynamical systems T~, with 
r/~ l, are isomorphic. Hence there exists an automorphism ~ such that $ 7~ = 
T ~ .  The endomorphism g,~b clearly belongs to g(T~l ) but not to d(T~i) thus 
T~ is not coalescent. 

Note. The theorem of Versik mentioned in the proof of Theorem 7 appears 
without proof in [16]. A proof may be constructed from the following remarks: 

1. T l is a Bernoulli automorphism with infinite entropy and T~, v/~ l, is a fac- 
tor of Tt, 

2. T,, t /~ l, has infinite entropy [11], 

3. Every factor automorphism of a Bernoulli automorphism is a Bernoulli 
automorphism [10], 

4. Bernoulli automorphisms with infinite entropy are isomorphic [9]. 

5. Examples 
It was stated in the introduction that coalescence was not a spectral invariant. 

We will give an example to show this. 

In Newton and Parry [8] there is constructed an example of a normal dynam- 
o(3 

ical system T, such that t/_l_l and ~ t/"/2 "-=- I. This normal dynamical system has 
2 

a factor system T,' with countable Lebesgue spectrum and zero entropy. Let 
S = T,' x T,' x ... be the direct product of a countable number of copies of T,' then 
S has countable Lebesgue spectrum and zero entropy. Consider the two auto- 
morphisms T, and T~ x S. Firstly they are spectrally isomorphic, the spectral 
decomposition of both in the orthogonal complement of the constants consists 
of the measure q with uniform multiplicity 1 and the measure l with uniform 
infinite multiplicity. Secondly they both have zero entropy. By Theorem 5 T~ is 
coalescent, however S is not coalescent, since it commutes with the one-sided 
shift, and therefore T, x S is not coalescent. This example shows that coalescence 
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is no t  a spectral invar iant .  The above a rgumen t  shows that  T, and  T, x S are no t  
weakly i somorphic  and  so also gives an example of two spectrally equivalent  
au tomorph i sms  with equal  en t ropy  which are no t  weakly isomorphic.  

A ques t ion put  to me by Par ry  in conversa t ion  is the following: if T has 
positive en t ropy  does it follow that  T is no t  coalescent? It  is fairly easy to show 

oO 

that  the n-shift is no t  coalescent. Let X =  {0, 1 . . . . .  n - l } ,  take M =  l-[ Xi, where 
- - o 0  

X i = X for each i, # the direct  p roduc t  of the normal i sed  uni form measure  on  X 
and  T the shift t r ans fo rmat ion  on M. A n  e n d o m o r p h i s m  that  commutes  with T 
is given by 0 (co,)= (co',) where co; = c o , -  co,_ 1; ~ is n to 1 and  therefore belongs 
to g ( T )  bu t  no t  d ( T ) .  By Theorem 2 and  Sinai 's  Weak  I somorph i sm theorem 
it follows that  any  Bernoul l i  a u t o m o r p h i s m  with en t ropy  equal  to log n is no t  
coalescent. However  we have made  no  progress towards proving that  any  other 
Bernoul l i  au tomorph i sms  are no t  coalescent. 
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