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Some Characterization Theorems for Wiener Process 
in a Hilbert Space 

B. L. S. PRAKASA RA0 

1. Introduction 

Stochastic integrals for real-valued stochastic processes have been defined and 
an extensive discussion of the various types of stochastic integrals is given in 
Lukacs [1]. Recently various types of characterizations of real-valued stochastic 
processes have been obtained by Laha, Lukacs, Prakasa Rao, Skitovich etc. 
either through independence or identical distribution of stochastic integrals. In 
particular, characterizations of Wiener process in the real line are known. For a 
discussion of these results, the reader is referred to Lukacs [1]. All these results 
deal with stochastic processes which are real-valued. 

Recently Vakhaniya and Kandelski [3] have given a definition of a stochastic 
integral for operator-valued functions with respect to stochastic processes which 
are Hilbert-space valued. Using this type of stochastic integral, we shall obtain 
characterization theorems for Wiener processes which are Hilbert-space Valued. 

Section 2 contains some preliminary lemmas. In Section 3, Kolmogorov type 
representation for infinitely divisible distributions/~ with finite second moment 
(i. e. Eu [llXll 2] is finite) has been obtained. Definitions and relevant results for 
homogeneous processes with independent increments and Wiener processes which 
are Hilbert-space valued are given in Section 4. Section 5 contains derivation of 
characteristic functional for stochastic integrals as defined in Vakhaniya and 
Kandelski [3]. Three characterization theorems of Wiener process are given in 
Section 6. 

2. Preliminaries 

Let H be a real seperable Hilbert space and let (x, y) denote the inner product 
between x s H  and yeH. Let J[x [[ denote the norm ofx. Let (f2, J ,  P) be a probability 
space. X is said to be random element in H if X is a measurable mapping from 
(g2, J )  to (H, ~) where ~ is the a-field of Borel subsets of H. For more details regard- 
ing probability measures on H, the reader is referred to Parthasarathy [2], 

Suppose, X, Y are random elements taking values in the Hilbert space H and 
A and B are bounded linear operators on H. 

Lemma 2.1. I f  X and Y are independent, then AX and BY are independent. 

Proof For any Borel set/~, {x: Ax~F} is also a Borel set in H since A is a 
bounded linear operator and hence a continuous operator. Hence for any two 
Borel sets F1, F2 

P[AX~F1, BY,  F2] =P[XeG1, YeGz] 
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where 
G I = { x : A x ~ F 1 }  and G 2 = { y : B y ~ F 2 } .  

Since X and Y are independent, it follows that 

P [ X  ~G1, Y~Gz]= P [ X  ~G1] P[  Y~G2] 

= P [AXeF1] P [BYeF:].  

Lemma 2.2. I f  X has characteristic functional fi(y), then A X  has the charac- 
teristic functional fi(A' y). 

Proof Let fiA(Y) denote the characteristic functional of AX. Clearly 

ft A (y ) = E [ e i(AX' Y)] 

= E [e i(x' a'y>] = fi(A' y). 

Lemma 2.3. I f  X has an infinitely divisible characteristic functional, then A X  
has an infinitely divisible characteristic functional. 

Proof Let fi(y) denote the characteristic functional of X. For  any n there exists 
a characteristic functional ft, such that fi(y)= [fi,(y)]" for all y~H.  Now 

fia(Y) = fi(A' y) = [fi,(A' y)]". 

Since fi,(A' y) is the characteristic functional of AZ when Z has the charac- 
teristic functional ft, (y), it follows that/~A (Y) is an infinitely divisible characteristic 
functional (i. d. c. f.). 

Lemma 2.4. I f  ~t(y) is an i. d, c.f, then [fi(y)]t is an i.d.c.f for real number t> O. 

Proof Since fi is i.d., fi is different from zero for all y e H  (Theorem 4.2, p. 171, 
Parthasarathy [21) and log/) can be represented in the form 

log fi(y)= i(xo, y ) - �89  (S y, y)+ ~ K(x, y) M(dx) 
n 

where xoeH,  S is an S-operator and M is a a-finite measure with finite mass 
outside every neighbourhood of the origin and 

IlxlJ2 M(dx)< ~ 
{ilxll =< I} 

where 
K(x, y) = e i(x' y) - 1 i (x, y) 

l+llxl{ 2 

and every functional of the above form is the log of an i. d. c. f. Consider 

log [/~(y)]' = t log/~(y) 

= t{i(Xo, y ) - �89  (Sy, y)+ 5 K(x, y) M(dx)} 
H 

= i(x', y ) - �89  (S'y, y) + 5 K(x, y) M'(dx) 
u 

where x '= t xo, S'= t S and M ' =  t M. Clearly S' is an S-operator and M' satisfies 
conditions similar to those of M. 

Hence [/~(y)]' is an i.d.c.f, for any t>O. 
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Lemma 2.5. I f  #n converges weakly to # and #, are i.d., then # is i.d. 

Proof (Theorem 4.1, p. 170, Parthasarathy [2J.) 
We shall now give some relations between various types of convergence for 

random elements in H. 

Definition 2.1. X , - * X  in quadratic means as n - - - ~  if 

E I I X . - X I I : - ~ 0 .  

In such an event we write X,  q.m. ;* X. 

Definition 2.2. X,  ~ X in probabili ty if for every ~ > 0, 

P(I[X.-XII>~)-~O as n ~ .  

In such an event we write X,  ~ X. 

Definition 2.3. X,,--~ X in law if the measures #, induced by X,  converge weakly 
to the measure # induced by X. In such an event we write X,  x > X. 

Lemma2.6 .  X.  q . m ~ x ~ x  ~ x ~ x n  x ~X. 

Proof By Chebyshev's inequality, for any ~ > 0 

P(}IX,-  Xll > ~l) <-_ + E i IX , -  Xll 2 

which clearly proves that X,  q.m. > X ~ X ,  P > X. 
Now suppose X , - ~ X .  Choose any ~/>0. Then for n sufficiently large 

P([IX,-Xll  < 7 ) >  1 - e .  Let B be any open set in H. Then B =  (uSa;  ~eB} where 
S~ are open spheres contained in B. Let B - "  denote the union of spheres S~-" 
where S~-"--~b if the radius of S~ is smaller than or equal to r /and  S~ ~ denotes 
the sphere with the same centre as S~ but radius decreased by q if the radius of 
S~ is greater than ~/. Clearly B-"TB as ~/~,0. Now 

P[{IIX,-XII  <=q}~{XcB-"}] 

=P[I{X,-X([  <=7] + P[XeB-"]  -P[{LIX,-XEI < r /}n{X6B-"} l  �9 

Hence 
P[ { I IX,-  XII <=rl}n{X e B - ' }  ] >= P[X EB-']  - e. 

But I IX,-  XII <q and X eB -~ imply that X,  eB. Therefore 

P(X, EB)> P({IIX,-XII <~/}n{XeB-"})  

>:P[XeB-~]-~  
which shows that 

lim inf P(X,  eB)> P[XeB-"]  -~ ,  

Taking limit as q+0, we obtain that 

lira inf P(X, e B) >= P(X ~ B) - e. 
n ~ o o  
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Since e is arbitrary, it follows that for every open set B 

lira inf P(Xn ~ B) > P(X ~ B). 

Hence X,  * , X by Theorem 6.1, p. 40 of Parthasarathy [2]. 

3. S o m e  Theorems  on Representation of  Infinitely Divisible Distributions 

Theorem 3.1. A function tp(y) is the characteristic functional of an infinitely 
divisible distribution ~ on X if and only if it is of the form 

q) (y) = exp [i (Xo, y ) -  �89 (S y, y) + J K(x, y) M(dx)] 
H 

where xoeH,  S is an S-operator, M is a a-finite measure with finite mass outside 
every neighbourhood of the origin and 

(x, y) 
S Ilxlj2M(dx) <~ Here K ( x , y ) = e i ( X ' y ) - l - i  l+[ix[12 . 

{llxll =< i} 

The representation is unique. (Note that M {0}--0.) 

Proof. See Theorem 4.10, p. 181 of Parathasarathy [2], 

Lemma 3.1. I f  # is an infinitely divisible distribution with 

j Ilxll~(dx)<oo, then J Ilxll~M(dx)<oo 
H H 

where M is the a-finite measure in the canonical representation. 

Proof. We shall write # = [x o, S, M] to denote the canonical representation 
of any infinitely divisible distribution #. Suppose X has distribution #. Then - X 
has distribution ~ with characteristic functional ~ ( - y )  where/~(y) denotes the 
characteristic functional of #. Let z=~*f i .  Then z has the representation 
[0, 2S, M +  M]. In particular z is a symmetric infinitely divisible distribution. 
Furthermore 

j IIxll2~(dx)=2 J llxll 2 ~(dx).  
H it/ 

Let v denote the Gaussian distribution with the characteristic functional e-{s y, ,). 
Then �9 = v �9 e(M*) where M* = M + M and e(M*) has the characteristic functional 
exp { j K*(x, y) M*(dx}} where K*(x, y)= cos(x, y ) -  1. Furthermore 

H 

J IlxliaM*(dx) =2 5 Ilxll2M(dx) 
H H 

whenever any of the numbers is finite. In view of these remarks it is enough to 
prove the Lemma when g is of the form [0, 0, M] where M is symmetric. Let us 
first suppose that M is finite measure. Let M(H )=  t and F =  t -1M.  Then 

oo r tr2; 
r = O  r'~ 
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where F '  denotes  the convolu t ion  of F for r t imes and hence 

I Irx[12#(dx) =e- t  ~ t ' f  I]x]12rr(dx) 
~=o r !  

=e- t  ~ ff r f ilxli2 F(dx ) 
,~o r! ?~ 

oo t r -  1 

= ~ IlxlteM(dx) 
r~ 

which shows that,  ~ 1] x I[ 2/~ (dx) is finite implies that  
H 

I lixliZM(dx) < c~. 
H 

If  M is not  finite, then we can find an increasing sequence of finite symmetr ic  
measures  3//, approx ima t ing  M. Let/~,  = [0, 0, 21//,]. Then we obta in  that  

[. [r p.(dx) = ~. [IxllZM.(dx) �9 
H H 

We note  that  #.  is an increasing sequence of  finite measure  converging to 
measure/~.  Hence  

j ]lxllZ#.(dx) ---~ [. Ilxl]2#(dx) 
H H 

as n ~ oo which implies that  

Ilxpl2 M,(dx) ---" ~ IlSll2 #(dx) 
H H 

as n ~ 00. But 
Ilxrl2 Mo(dx) ~ ~ Ilxll2 M(dx) 

H H 

which proves  that  
j ]lxllZl2(dx) = j ]lxl)ZM(dx) 

H H 

even when M is not  a finite measure.  This proves  in par t icular  that  

Ilxll2 M(dx)< oo. 
n 

Theorem 3.2. # is an infinitely divisible distribution with 

S EIxll 2 ~ ( d x ) <  
H 

if and only if the characteristic functional of [2 viz. fi(y) can be written in the form 

fi(y) = exp [i(xl, y)+ ~ L(x, y) R (dx)] 
H 

where x 1 ~H and O< R(H)< o~ and R {0}---1, L(0, y ) = - � 8 9  (S y, y) where S is an 
S-operator. Here 

L(x,y)=[ei~x'Y)-l-i(x,y)] Ilxl1-2 for x#O,  x , y ~ H .  

This representation is unique. 
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Proof. By Theorem 3.1, there exists Xo, S and M giving the canonical represen- 
tation for fi(y). Further this triple is unique. Since ~ llxll 2 ~(dx) < oo, by the previous 
lemma ~ I[xll 2 M(x)<  oo. Now t/ 

H 

logfi(y)=i(xo,y)-{(Sy, y)+ ~ K(x,y)M(dx). 
H--{0} 

Define 
Ilxll2 M(dx) 

N ( A ) = J  1+ {Ix{I 2 

for Borel sets A not containing 0e l l .  Then 

logf i (y )= i (xo ,y)+  ~ K(x,y) 
H-{0}  

Define R {0} = 1 and 

l+l lxt l  ~ 1 
]lxl{ a N(dx)- (Sy, y). 

R(A)=  j" (1 + ILx[I 2) N(dx) 
A 

for Borel sets A not containing 0. Therefore 

lo8 fi(y)=i(Xo, y)+d K(x, y) e(dx) 
IIxll 

where the integrand is appropriately defined at x = 0. Hence 

logfi(y)=i(xo,y)+~{ei,~,)_l i(x,y) } 2R tx 1 + I{xll 2 }]xl[- (dx) 

(x, y) R(dx)+ ~ L(x, y) R(dx). i(xo, Y)+ i{~[ 1 + [Ix[[ 2 ti 
It is clear that 

R ( H ) = I +  ~ (l+lLxHZ)N(dx) 
H-{O} 

= 1 +  ~ ]tx}12M(dx) 
u-{o} 

= 1 + ~ Hx[tZM(dx) 
H 

is finite by Lemma 3.1. Therefore 

(x,y) -R(dx) <[ty[t ~ [Ixll R(dx) 
1+ Jlxll 2 lq- Ilxll 2 

=< [lyl] R(H) 
which shows that 

(x,y) R(dx) 
d 1+  Ilxll 2 

is a bounded linear functional on H. Hence there exists an element x;  e H such that 

(x,y) R(dx) (x;, y)=~ 1+ iIxll2 
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for all yeH.  This implies that 

log fi(y) = i(Xo, y) + i(x'o, y) + S L(x, y) R (dx) 
H 

=- i(xl ,  y) + ~ L(x, y) R (dx) 
H 

where xl=xo+X'o~H. The uniqueness of the representation follows from the 
uniqueness of the representation in Theorem 3.1. 

4. Homogeneous Process with Independent Increments 

Let A be the interval [-0, 1] and ~ denote the class of Borel subsets of [0, 1]. 
For each A ~ ,  let ~(A) be a random element with the following properties. 

(4.1) If A and A' are disjoint Borel subsets of [0, 1] then ~(A) and ~(A') are 
independent and eb ( A w A') = eP ( A ) + ~ ( A'). 

(4.2) ~b(A) has stationary increments i. e. ~(A) and q~(A') are identically distributed 
if the Lebesgue measure of A and A' are equal. 

(4.3) Let #t denote the probability measure of ~b([0, t]). Then /~t converges 
weakly to the distribution degenerate at the origin as t -~ 0. 

Clearly ftt(y)~O for all t > 0  and for all y~H. Furthermore {~t, t>0}  forms a 
one-parameter convolution semi-group of distributions. In fact /~t is infinitely 
divisible for each t and we have the following theorem. 

Theorem4.1. Let {#~, t>0}  be a one-parameter convolution semi-group of 
distributions such that gt converges weakly to the distribution degenerate at the 
origin as t --* O. Then fit (Y) has the canonical representation 

fit(y) = exp  t[ K(x, y) M(dx)-�89 (So y, y)+i(xo, y)]  
H 

where x o s H, M is a a-finite measure with finite mass outside every neighbourhood 
of the origin and ~ II x I[ 2 M(dx) < oo. Here xo, S and M are uniquely determined 

Hxll_-<l 
and So is an S-operator. 

Proof See Theorem 7.1, p. 201 of Parthasarathy [2]. 

Theorem 4.2. Suppose {#t, t>0}  is a one-parameter convolution semigroup of 
distributions with ~ Ilxl[Z ktl(dx)< oo and such that l~t converges weakly to the 

H 

distribution degenerate at 0 at t--~O. Then fit(Y) has the canonical representation 

fi, (y) = exp t [i (xl, y) + ~ r(x, y) R (dx)] 
H 

where x l~H,  R ( H ) < o o  and L(0, y ) = - � 8 9  y) where S is an S-operator and 
R {0} = 1. Here x 1, S and R are unique. 

Proof This follows from Theorem 3.2 as Theorem 4.1 follows from Theorem 3.1 
(cf. Theorem 7.1, p. 201 of Parthasarathy [2]). 

Definition 4.1. A process ~b on A with the properties (4.1), (4.2) and (4.3) is 
said to be a homogeneous process with independent increments. The process is 
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said to have mean zero if x l = 0 in the representation of 4 ([0, 1]). The S-operator 
S in the representation is called the associated S-operator. 

Definition 4.2. A homogeneous process r on A with independent increments 
is said to be a Wiener process with mean 0 if the characteristic functional/~(y) 
of 4([0,  t]) has the representation 

/~t (Y)= exp [ - � 8 9  t(Sy, y)], 
where S is an S-operator. 

5. Stochastic Integrals for Operator-Valued Functions 

Let 4 be a homogeneous process on A with independent increments with 
mean 0 and with E~[l[Xl[ 2] < oo where / i  is the distribution of 4([0, 1]). Let S 
denote the S-operator associated with 4. For  any bounded linear operator A, 
define 

n (A) = [Tr (AS A')] ~ + [Tr (A' SA)] ~. 

Then the set {A: n (A)= 0} is a linear semi-group in the linear group of all bounded 
linear operators A. The function n is a norm in the corresponding factor group. 
We shall not distinguish between a coset and the individual operators in the coset. 
In this sense n is a norm in the linear set of all bounded linear operators. Let s~ 
denote the completion of this set in the norm n. Consider the space ~2 = 
~2 (A, ~ ,  J t ,  d~) of functions A(-) with values in s4s which are strongly measurable 
and such that 

IAI 2 = j" n2(A(2))d2< oo 
A 

where ~//g is the Lebesgue measure on A. The norm in 5r 2 is as defined above. 
The set of functions whose values are bounded linear operators and which are 
piecewise constant functions is dense in ~~ 2. Using this set up, Vakhaniya and 
Kandelski [3] have defined stochastic integrals of the form 

J =  S A(2) 4(d50 
A 

for functions A( ')  in ~2.  They have proved that 

(i) E [ J ] = 0  i.e. E[(J,x)]=O for all x~H (ii) E[IjII2<=IA[ 2 and (iii) J has a 
finite S-operator Ss which has the representation 

So, = S A(2) SA'(2) d2 
A 

where Ss is understood to be a Bochner integral under convergence in the space 
d~. We shall now obtain the characteristic functional of J. 

Theorem 5.1. J has an i.d.c.f and the logarithm of the characteristic functional 
of J is ~ v(A'()O y) d2 

where v(y)= log/~(y), a 

Proof We can find a sequence of simple functions A, such that IA,-AI2--* 0 
where [A I is the norm of A as defined before. Let 

J . =  j A.(2) 4(d2) 
A 
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and 
a = S A(2) ~(d2). 

A 

It also follows that J. ~ J and hence by Lemma 2.6, J, -~ ~ J. Hence the 
characteristic functional of J, converges to the characteristic functional of J. Let 

k. 

A,(2)=At, k) for 2cA k, l < k < k ,  where (9 At, t)= [ 0, 1] and A~ are disjoint in k for 
k = l  

~ A .  4~(A,). Since are any fixed n. Then by definition J, = (k) k A (k) disjoint in k for 
k=l 

any fixed, n, the random elements ~(A, k) are independent and hence by Lemma 2.1, 
(k) k A, ~(A,) are independent. Hence the characteristic functional of J, is the product 

of the characteristic functionals of (k) (k) A, ~(A, ). Let /~ denote the characteristic 
functional of ~([0, 1]) and let v (y) = log /) (y). By Lemma 2.3, characteristic func- 
tional of A~, k) ~(d<, k)) is i.d. since/~ is an i. d. c. f. and hence characteristic functional 
of J, is infinitely divisible. Hence J has an i. d. c. f. and is nonzero. The characteristic 
functional of J, is kn 

[ I  ^ ,A(k)" 
k = l  

by Lemma 2.2 where f i ~  denotes the characteristic functional of A(,k)'X when 
X has the distribution of r But 

/~a~ k, (Y) = [/~1 (Y)] lark'1 

where ]A~)I denotes the Lebesgue measure of A(f ). Hence the characteristic func- 
tional of J ,  is 

kn [-[ 

Therefore log of characteristic functional of J .  (well-defined since it is not zero) 
k~ 

is given by ~ v(A~fry)[A~k)[. We know that this converges to the log of charac- 
k = l  

teristic functional of J. Hence the log of c.f. of J is 

I v(A' (2) y) d2 
A 

kn 
t ), ! since A. A in the norm in 5r and ~ v(At.k)'y)[A~k)[ is an approximating sum 

for the above integral, k= 

6. Characterization Theorems 

Theorem 6.1. Suppose �9 is a homogeneous process on A = [0, 1] with independent 
increments with mean 0 and ~ I[ x I[ 2 IZ (dx) < ~ where IZ is the distribution of~([0,  1]). 

H 

Let A( ' )  and B(')  be functions in ~2  satisfying the following properties. 

(6.1) a - s u p  [IA(2)ll < ~ ;  b - s u p  [IB(2)H < ~ .  
2 2 

(6.2) H;=H~]=H for all 2cA  
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where H A denotes the subspace spanned by the operator A(2) etc. 

(6.3) f [IIA(,~) xll z -IIB(2) xll 2] d2 
A 

is either strictly greater than zero or strictly less than zero for all xeH-{0} .  Then 

SA(2)~(d~) and ~B(2)~(d2) 
A A 

are identically distributed if and only if �9 is a Wiener process and A(') and B(') 
satisfy the relation 

A()O SA'()O d).= ~ B(2) SB'(2) d2 
A A 

where S is the S-operator associated with ~. 

Proof Let v(y)--log fi(y). Suppose further that 

~A(2)~(d2) and SB(,~)~(d2) 
A A 

are identically distributed. Then by Theorem 5.1, it follows that 

v (A' (Z) y) d2 = ~ v (B' ().) y) d2 
A A 

for all y e/-/and each of them is the logarithm of an infinitely divisible characteristic 
functional. Let 

v(y)= ~ L(x, y) R(dx) 
H 

where R {0}--1 and L(0, y)= - l (Sy ,  y) where S is the associated S-operator and 
R(H) is finite and L(x, y) is as defined before for x~=0. 

We shall write Az for A (2) when it is convenient to do so. Now consider 

S v(A'()O y) d)L= ~ [ ~ L(x, A'(2)y) R(dx)] d2 
A A H 

_1 ~ (SA'().)y, A'(2)y)d2 
A 

=~ ["~ol ei'a'z)x'Y)--l--i(A(2)x'Y)l{xlla R(dx)] d2 

1 ~ (SA'(2)y, A'(2) y)d2 
A 

[ ei~Z")-l-i(z'Y) R(dA~'z)]d2 

-�89 ~ (A(2) SA'(2)y, y) d2 
A 

~ [ttJ{O} ei(z'y)-I-i(z'y)]]Z][2 [[Aflz[, 2']z'}2 R(dA;l z)] d~ 

--�89 i (A(2) SA' (2) y, y) d)~. 
A 
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Let RA(dz)- l}zl[2 R(dA; lz). 
Then IIA-f l zll2 

(6.4) Sv(A'(2)y)d2= ~[ ~ L(z,y)Ra(dz)]d2-�89 ~(A(2)SA'(2)y,y)d2. 
A A H--{0} A 

Since IL(z, y){< q[yl{ 2 uniformly in z, and 

~ [n~o, ,,A~l z,[ 2 R (dA;' z)] d2= ~ [tt ~o} ']Az~-~]~ xjl2 R (dx)] d2 

<= [ f rrXrl2 R(dx)] 
A LH-J{O} IJXl} 2 

=a2 R(H)< oo 
the order of integration in R.H.S. of (6.4) can be interchanged. Define 

Ra(dz)= ~ R'~(dz) d2, 
A 

i.e. for any Borel set F in H - { 0 } ,  

Ra(F)= j R~a(F) d2. 
A 

Then in view of the previous remarks it follows that 

S v(A'(2) y) d2= ~ L(z, y) RA(dZ)- �89 ~ (A(2) SA'(2) y, y) d2. 
z n-{o} A 

Similarly we obtain that 

I v(B'(2)y) d2 = I L(z, y) R~(dz)-�89 ~ (B(2) SB'(2) y, y) d),. 
A H - f 0 }  A 

Let SA be defined by the relation 

SA = S A(2) SA'(,~) d,~ 
A 

where the integral defined is understood to be a Bochner Integral under con- 
vergence in the space ds  as defined in Vakhaniya and Kandelski [3]. S B is sim- 
ilarly defined. Then 

v(A'(2) y) d2=  j" L(z, y) RA(dZ)-�89 a y, y) 
a n - { o }  

where S.4 is an S-operator. 

Now 
Ra (H - {0}) = S R{ (H - {0}) dZ 

A 

2 

}IAaxll 2 ,~1 
-- 

- {o} L A  I~.a'~I A 

8 Z. Wahrscheinlichkeitstheorie verw. Geb,, Bd. 19 
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The interchange in the order of integration is valid since sup ILA (2)11- a < oe. 
Hence 

1 RA(H-{O})= ~ - ~ - [ j  I]Azxl[ 2 d2]R(dx). 
n-{o} 

We know that the representation 

L(z, y) RA(dZ)--I (s A y ,  y) 
H -  {o} 

of the logarithm of the characteristic functional of ~ A(2) ~(d2) is unique. Hence 
A 

it follows that iRA -- RB on H - {0} and SA -- SB. Next for any Borel set F in H -  {0}, 

RA(F)= j RA(F) d). 
A 

=~ [rlSo IIAzxl]2 l[x: Aax6F]R(dx)] 

[2 ] = j ~T~g I [ 2 : A z x e F ] d 2  R(dx). 
x-{o} 

Here I(G) denotes the indicator function of the set G. Let 

Then 

a(x,F)= j IlA~xll2 l[2: Aax6F] d2. 
A 

a(x, F) R(dx). RA(F)= ~ 2 
~-~o~ IIxJI 

Hence we have for any Borel set F in H - { 0 } ,  

a (x, F) b (x, F) 
R(dx)= I 

l~-~o~ Ilxll 2 ~-~o~ lixll 2 

where b(x, F) is defined for the operator B. Therefore 

- -  R ( d x )  

S b (x, F)-  a(x, F) 
~-~o~ Ilxll ~ 

for all Borel sets F. 

In particular it follows that 

R(dx)=O 

(6.5) ~ b(x, H-(O})-a(x, H - { O } )  

~-~o} Ilxll 2 
R ( d x )  = O. 
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By the hypothesis for any x 4:0 in H, 

b(x, H -  (0})-a(x ,  H -  {0}) 

= S (]IB~ xll 2112: B a x e H -  {0}] -JlAa xJ] 2112: Az x E H - -  {0}]) d2 
A 

= ~ (llB~xll ~ -IIA~xll  2) d,~ 
A 

is either strictly greater than zero or strictly less than zero. Hence it follows from 
(6.5) that R ( H - { 0 } ) = 0 .  This in turn proves that 

v(y) = - �89 y) 

which shows that ~ is a Wiener process with mean 0. We also note J'A(2)~(d2) 
is normal random element with the S-operator ~A(2)SA'(2)d2. Conversely 

A 

suppose ~b is a Wiener process with mean 0. Then it is easy to see that ~ A(2) 4~(d2) 
and ~ B(2) ~(d2) are normal random elements and they are identically distributed 
provided 

A(2) SA'(2) d~.= ~ B(2) SB'(2) d2. 
A A 

Theorem 6.2. Suppose r is a homogeneous process with independent increments 
with mean 0 and ~ rfxJl 2/~(dx)< oo where 12 is the distribution of 4~([0, 1]). Let 

H 

A ( ' ) e ~ 2  such that 

(i) a--sup IIA(2)II <oo. 
)t 

(ii) H~ = H for all 2 where H~ denote the space spanned by A (2). Let B be a 
bounded linear operator with HB = H where H B is the space spanned by the operator 
B. Further suppose that 

I [IA(2) xJl 2 dA-]]BxlI 2 
A 

is either strictly greater than zero or strictly less than zero for all x s H - { 0 } .  Then 

IA(2)4~(d2) and Be([0,1])  
A 

are identically distributed if  and only if  �9 is a Wiener Process and A and B satisfy 
the relation 

A(4) SA' (4) d~ = BSB' 
A 

where S is the S-operator associated with ~. 

Proof. This follows from the previous theorem by choosing 

B(2)=B for all 2~[0, 1]. 

Theorem 6.3. Let X be a random element with mean 0 and finite S-operator S 
i.e. ~ Itxl1212(dx)< oo where 12 is the distribution of X.  Let A and B be bounded 

H 

linear operators with HA = HB = H where H A and H B denote the subspace spanned 
by A and B respectively. Further suppose that 

]lAxll2-]lBxl] 2 

8* 
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is either strictly greater than zero or strictly less than zero for all x e H -  {0}. Then 
A X  and B X  are identically distributed if and only if X has a normal distribution i.e. 

for all y e l l  and A and B satisfy the relation 

ASA' = BSB'. 

Proof This follows from Theorem 6.1 by taking 

A(2)=A and B(2)=B. 

Remarks. The theorems we have obtained do not seem to hold good when 
A(2) x--a(,~)x and B(2)x-  b (2)x where a(2) and b (2) are real or complex-valued 
functions on A. Further these theorems are not the natural generalizations of 
characterization theorems for Wiener processes in the real line. 
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