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Some Convergence Results for Weighted Sums 
of Independent Random Variables 

D. L. HANSON* and F. T. W R I G H T * *  

1. Introduction 

Let Xk for k = 1, 2, . . .  or k=  0, + 1 . . . .  be independent random variables and 
let aN, k for N =  1, 2, . . .  and k as above be real numbers. Define 

(1.1) SN=~ aN, k X~ 
k 

and, when the means of the Xk's exist and are finite, define 

(1.2) S~v = Z au, k(Xk-- EXk). 
k 

The rates of convergence of P {]Sul >e} and P{lS'ul > e} to zero under various 
moment or moment-related assumptions have been studied in various papers 
including [1], [2], and [4]. The purpose of this paper is to extend some of the 
results given in the three references. The extended results are given in Section 2. 
Section 3 contains a short discussion of sharpness. Our proofs are in Section 4. 

2. Extensions of  Previous Results 

Let Xk, an, k, SN, and S~ be defined as in Section 1. It should be noted that 
the existence of first moments has not been assumed. Let F, F; and PN be such 
that 

(2.1) F(y) = sup P {[Xkl ~y} ,  
k 

(2.2) F' (y) = sup P {IX k -  EXk] > y}, 
k 

(2.3) ~ laN, klt <=pN, 
k 

and let F k and F~ be the distribution functions of X k and X k -EXk  respectively. 
Throughout  this paper C will denote various positive constants whose exact 

numerical values do not matter. Using this notation inequalities such as 1 + C <  C 
are valid. 

Where appropriate, summations will be taken only over those values of k 
for which au, k 4 = 0. Integrals will be Lebesgue Stieltjes integrals. 
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T h e o r e m  1. a) I f O < t <  1 and y ' F ( y ) < M <  oo for all y>0 ,  then P{lSsl >~}= 
0 (Ps) for every e > O. 

b) (Case t=  1.) I f  yF(y )<_M< o0 for all y > 0  and either 

[amd log las, k[ -.-+ 0 
k 

(2.4) 

o r  

(2.5) l imsupl  j" ydFk(Y)]<~ ,  
T--* oo k [ -  T, T] 

then P{ISNL>~}=O(ps) for every e>0. 

c) I f  l < t < 2  and y t F ' ( y ) < M < o o  for all y>0 ,  then P{LS}l>e}=O(pN) for 
every e > O. 

d) (Case t=2.)  I f  y2 F'(y)<=M <oe for all y > 0  and there exists a constant 
2 > 0 such that 

(2.6) ~' 2 log - t  aN, k las,~l ---- O(p~) 
k 

then P{lS~vl >~} =O(ps)  for every ~>0. 

Theorem 2. Assume Ps ~ 0 as N--+ oo. 

a) I fO < t < 1 and yt F(y) --+ 0 as y ~ o% then P {ISsl > ~} = o (ON) for every ~ > O. 

b) (Case t = l . )  I f  yF(y)-+O as y ~ o o  and either (2.4) or (2.5) holds, then 
P {ISs[ > ~} = o (Ps) for every ~ > O. 

c) I f  1 < t < 2 and yt F' (y) ~ 0 as y ~ 0% then P {IS%l > ~} = O(pN) for every s > O. 

d) (Case t=2.)  I f  y 2 F'(y)--* 0 as y--* oe and there exists a 2 > 0  such that (2.6) 
holds, then P {IS~[ > c} = o (ON)Jbr every ~ > O. 

Though the assumption is not listed explicitly in his theorem statements, 
Rohatgi assumes throughout [4] (in his (6)) that ~ laN, J <  C<oo for some 

k 

0<  t' < t when t <  1. In our Theorems 1 a and 2a (the case t <  1) we have eliminated 
this assumption entirely. Our example shows that the assumption cannot be 
eliminated when t =  1 but our Theorems 1 b and 2b show that in that case it can 
be replaced by the "weaker" assumption (2.4) or by an additional assumption 
(2.5) on the distributions. If PN ~ 0  (an assumption made by Rohatgi when he 
assumes p > 0) then it is easy to show that our assumption (2.4) is implied by 
Rohatgi's (6); if as, k=[Nk( logk )a]  -1 for N , k = l ,  2, then ~ a '  ,.. s ,k=oe if t < l  

k 
and is finite if t =  1, but ~, as, k log as, k is finite for all N and converges to zero 
as N - - .  o~. k 

Theorems 1 (c, d) and 2 (c, d) are improvements of Theorems 1 b and 2b respec- 
tively in [2]. 

The proofs of Theorems 1 and 2 for t < 1 do not use independence. Independ- 
ence has been used in the proofs of this type of theorem where Markov's inequality 
is used with other than first moments (as when dealing with (4.7) and (4.11)), and 
when a sort of double truncation occurs (as results in (4.9)). The proofs given 
here of Theorems 1 and 2 for t < 1 (obviously) avoid both of these uses of inde- 
pendence. Is independence necessary when t---1? 



Some Convergence Results for Weighted Sums of Independent Random Variables 83 

Other questions of possible interest are: 

(2.7) Can (2.4), (2.5), or (2.6) be weakened? 

(2.7) What sort of minimal assumption(s) do we need o n  {TN} when t > 2 7  

The second question is probably more interesting and more important than 
the first. 

The technical report [3] on which this paper is based also contains some 
"series results" extending and generalizing Rohatgi's Theorems 3 and 4, Theo- 
rems 3 and 4 of [1], and Theorems 3 and 4 of [2]. Theorem 5 of [2] can also be 
extended to cover the case t < 1. 

3. Sharpness of Results 

We have not investigated the sharpness of these theorems to the same extent 
that the sharpness of Theorem 4 of [2] was investigated. Perhaps the main reason 
for including any results of this type is that Theorems 1 and 2 are "discontinuous" 
when t =  1 and t =  2. It seems desirable to show that (2.4), (2.5), and (2.6) cannot 
just be omitted. 

Theorem 3 shows that the condition "ytF(y)<M< ~ for all y > 0 "  cannot be 
weakened in Theorem 1 (or in Theorem 1 c of [2] which covers the case t > 2), 
and that the condition " y F ( y )  -~ 0 as y -~ ~ "  cannot be weakened in Theorem 2 
(or in Theorem 2c of [2] which covers the case t>2).  

In both Theorem 1 and Theorem 2 the cases t = 1 and t = 2 required special 
treatment. Our example shows that when t =  1 some additional hypothesis (over 
those when t <  1) must be added, and Theorem 4 shows that some additional 
hypothesis (over those when 1 < t < 2) is needed when t--2.  

Theorem 3. Ift>O, p>0 ,  lira F(y)=0,  and 
y ~ o  

lira sup ytF(y)= ov (lira sup y tF(y)> 0), 
y ~ O ~  y ~ o 9  

then there exist a symmetric random variable X and a sequence {as} of real num- 
bers such that P {IX] > x} < F(x) for all x >= O, laNI t< CN -p, and 

l i m s u p N P P { l a N X l > l } = ~  ( l imsupNPP{lasXl>l}~O).  
S ~ o~ S ~ ct:~ 

Example. Let t = 1, let 
1 y=~l 

F ( y )  = 
rain { 1, 1/y log y} y > 1, 

and let X 1, X2, ... be independent and identically distributed random variables 
1 s 

such that P{Xk>y}=F(y  ). Note that EXk=oe. If AN=-~ ~ X k  then As~o �9  
k = l  

with probability one so on some set B of probability at least one half As ~ oe 
uniformly. Let dx be a uniform lower bound for A N on B chosen so that lira dN= or. 
Define N~ 0o {1 

aN,k= l/d~ k = l  . . . . .  N and N = l ,  2, . . .  

otherwise. 
6* 
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Then pN = 1/lfd~n ~ 0, y tF(y)~O,  but 

P {[SNI > 1} > P [B ~ {JSn[ > 1 }] 

>P[Bc~ {I/~N> 1}] 

and the last quantity is at least �89 for large enough N. 

Theorem 4. Let X1, X2 . . . .  be independent, identically distributed, symmetric 
random variables such that y2 p {IX1[ > y} --' 0 as y ~ oo and E X  2 = oo. Then there 
exist a sequence of positive constants {as} such that an-~ oo as N-*  oo and such 
that 

P Xk/an > 1 ~ 1 as N-~ oo. 
1 

4. Proofs 

Proofs of  Theorems 1 and 2. In Theorem 2 it is assumed that Pn ~ 0. This is 
not  assumed in Theorem 1, however we assume it in our  proof  of Theorem 1. 
The case pn+-~0 can be taken care of as it is in the proof of Theorem 1 in [2]. 

When 0 < t < 1 we note that 

(4.1) P {[SNI > e} < ~ P {lau, k Xk[> 1 } 
k 

(4.2) +f{l~a,,,k YN, kI>a} 
k 

where 

{ o k i f ' a n ,  kXk] <-1 
(4.3) YN k = -- 

' otherwise. 

The expression (4.1) is easily shown to be of the right order of magnitude; 
the method has appeared several times in the literature (see, for example, the 
handling of expression (2.15) in [2]) and the details will be omitted. 

If 0 < t < 1 then 

P {lE aN, k YN, kl> e} < 1  ~ laN, kl EIYz~,kl. 
k ~ -  g. 

For Theorem 1 we bound E IYN, k[ as follows: 

elYN,~l= 

< 

< 

YldP{JXkI>=Y}I 
[0, lan, kl - 1] 
[aN, kl - 1 

e{Ixk[ >=y} dy 
0 

Lazr kl  - 1 

f V(y)dy 
0 

< 1 +  ~ M y - t d y  
1 

< C[1 + laW, kit-I]. 
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For  large enough N this is bounded by ~-x ClaN, k] . Thus in this case (4.2) is 
bounded by e - l ~  [aN, kl I-ClaN, d ~-~] which is O(pN). Under the hypotheses of 

k 
Theorem 2 we note that if sup y~F(y)=M, then M a ~ 0 as a--+ ~ and thus 

y > a  

T T 

<=aTt_lq " Ma 
l - t "  

We can make this small by first choosing a large enough that Ma/(1- t) is small 
and then choosing T large enough that a T t- 1 is small. Thus 

T 

(4.4) T t-t ~ F(y) dy ~ 0 
0 

We now note that 

as T-+ oo. 

]aN, jl - 1 
1---~laN, klElYN, k[< l-l-[~laN, k[t]suplaN, j[1-t ~ F(y) dy. 

k = 8 k J 0 

By assumption p N ~ 0  so sup [aN, j [ ~ 0 ,  and from (4.4) it then follows that the 
expression above is o(pN). J 

So far we have proved Theorems 1 and 2 when 0 < t < 1. A centering effect 
first occurs when t = 1 and the proof  is different from the proof  for 0 < t < 1. We 
note that 

(4.5) P {[Su[ >e} < ~  P {lama Xk[ > 1} 
k 

(4.6) + P { I Z  aN, k EYN, kl >e/Z} 
k 

(4.7) +P{]~ au, k(Y~,k-- EY;~,k)t > e/2}. 
k 

As in the case 0 < t <  1 we omit the details relating to expression (4.5). 

The probability (4.6) is either 0 or 1. We will show that ~ aN, k EYN, k~O SO 
that for sufficiently large N the probability is 0, Now k 

IZ amkEYN, d<ZlaN, dl ~ ydFk(y)l. 
k k [--laN, k[--l,IaN, kl -~1 

Since PN--* 0 so does sup laN, k]. It follows from (2.5) that for large enough N the 
k 

expression I ~ Y dFk(y)I is uniformly bounded in N and k. Thus in 
[ -  laN, e[ - 1, laN, ~,1 - q 

both Theorems 1 and 2 

]~ aN, k EYmk] <= C pN--*O 
k 
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so (4.6) is 0 for large enough N if (2.5) is assumed. If (2.4) is assumed instead, then 

' ] 
I~ aN, k EYN, k] < 2  laN, kl My -1 d y 

k k 1 

as in the proof of these theorems when 0 < t < 1. This is bounded by 

C ~ lamk[ [1--log laN, kl] = CpN-- C 2 laN, kl log lamk [ . 
k k 

Both terms go to 0 as N ~  ~ so (4.6) is again 0 for large enough N. 

To bound (4.7) we use the second moment in Markov's inequality (the first 
moment was used when 0 < t < 1) and obtain 

P{I~ aN, k(YN, k--EYmk)l>e/2} 
< = C ~  2 2 aN, k E(YN, k-- EYN,k) 

k 
2 2 <= C 2 aN, k EY~,k 

k 

-= C E a2 y2 N,k ~ IdP{IXkI>=Y} 
k [0, laN, k[ - t] 

laN, kl -a 
<C~a~,k ~ 2yP{IXkl>y}dy 

k 0 

] =< C 2 aN,2 k 2y(M y-2)dY 
k 1 

<= C ~ a2,k[1 +log  laN, kl -a] 
k 

< C pN [sup ]aN, kl + SUp laN, kl log laN, kl-1]. 
k k 

Since sup laN, kl---~0 both the expressions in brackets are o(1) and thus (2.18) is 
k 

o(pN). 
When 1 < t___ 2 we note that, as in [2], 

(4.8) P{]S'NI> 3a}<2 P{laN, k(Xk--EXk)I>e} 
k 

(4.9) + ~ P {[aN, j (X j -  EXj) I > fiN} P {[ aN,k (Xk-- EXk) I > (~N} 
j * k  

(4.10) + P { I Z  as, k EZN, kl >e} 
k 

(4.11) + P { I Z  aN, k(ZN, k--EZN, k)I > ~} 
k 

where 

Z N , k _ ~ { ~ k - - E X k  i f  otherwise.laN'k(Xk--EXk)l<t~N 

Expression (4.8) is handled as in [2] and as when 0 <  t < 1. 
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Taking 6N=p~ 2t expression (4.9) is bounded by 

f~(laN, k,'~'[( 6~ ~'p 2 

6 t 
(4.12) <=p, [ sup (~]p~IXk_EXk]>  fin ;12 

I ( i-a  , i-jj �9 

Now (6N/laN. kl)t>6}/pN=p;-~ 0O as N ~  oo. Thus the part of (4.12) in square 
brackets is O(1) under the assumptions of Theorem 1 and is o(1) under the 
assumptions of Theorem 2. 

To deal with (4.10) we note that for both Theorems 1 and 2 

{E aN,k EZN, kI <= Z [aN,,',[ [ [ (Xk- EX~) dP I 
k k lair, ~, (Xk -- EX~,)I < ~ 

=E laN,,,,I [ S y dF;(y)l 
k {]y[ > 6N/JaN, k]} 

<~laN,~l ~ yldF'(y)l. 
k 6N/JaN, kl 

For large enough N this is bounded by 

~laN, kl ; YId(My-')I<C~IaN,~,I(6N/Ias,~,I) -'§ 
k 6N/larr ~1 k 

= C 6fi t+l pN= Cp~ +l)/z'. 

Since P~v -+ 0 and (t + 1)/2 t > 0 the last expression above converges to zero. Thus 
(4.10) is 0 for large enough N. 

We bound (4.11) for 1 < t < 2  as follows: 

P{I~ aN, k(ZN, k--EZN, k)] >e} 
k 

<C : 2 = ~ aN, k EZ~v, k 
k 

a: yZ lap r _ EX~l >= y} l 
k [0, ~Nllarr 1,11 

[ ,~vlla~, ~,l ] 
< C ~  a2m,k 1+ ~ y-t+~dy 

k 1 

_<_C~a 2 

2 - t  2~ t  
=<CpN[suPlaN, kl +6N ] 

k 

= o (PN)" 
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If  t =  2 we use the method used to deal with expression (2.18) of [2]. The integer 
v is even and will be chosen later. 

1 
P { l~  k aS, k(ZN, k-- EZN, k)] > e} <_ ~ E [ ~  k amk(ZN, k -  EZmk)] ~ 

~ c E E ~I laN,~I~ EIZN, k--EZN, kl ~ 
i 2 k = l  

where the first sum is taken over all positive integers a, rnl, ..., m a such that 2 =< m k 
for k = l , . . . , a  and m l + . . . + m a = v ;  and where the second sum is taken over 
fll . . . . .  fla- We bound the above expression by 

Now 

2 a  2 2 a c Z Z 6~- ~ I~,~12 E IZ~,~- ~z~,~l 2__< c Z 6;, -2a [Z ~,~ ~z~,~]. 
1 2 k = l  1 k 

E a ~ , k E Z 2 , k = E a 2 , k  ~ y~ ]dP{lXk--EXkl>--_y}[ 
k k [O,&vlla~v,kl] 

[ 6N/IaN, I,, ] = a 2 y - i  <CF,  N,k 1+ j" dy 
k 1 

For  N large enough this is bounded by 

Thus 

C ~ aZ, k lOg -1 [aN, Ul �9 
k 

P {IE amk(Zmk-- EZN, k)[ > e} <= C E (3~- 2a [E az, k log lau, kl- '] a 
k 1 k 

<_CEaV2ap~ a 
i 

v -  2 a ( 1 -  Xt) 
~=CpN 2t 

Choose v > max {2 t, 2/2}. If  2 t > 1 then the above is bounded by 

Cp~ 2t 

and if 2 t ~ 1 it is bounded by 

C p ; y -  (1- xo]/2 t = C p;y2. 

In both cases the result is o(pN). 

Proofs of Theorems 3 and 4 may be found in [3]. 
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