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On the Structural Information Contained in the Output of GI/G/~ 
By 

D. G. K~NDALL* and T. LEwis**  

1. Introduction 

I t  is a familiar fact that  the output  of the stochastic service system GI/G/c~ 
may not by  itself contain sufficient information to identify the interarrival-time 
and service-time distributions. For example, the output  of M/G/oo is a Poisson 
stream ([6]; see also [3]) and so contains no information about  the form of the 
service-time distribution; one can learn nothing from it beyond the intensity of the 
Poisson output, and this does not depend on the service-time distribution. I t  has 
been suggested [3] that  complete structural information about the system may  be 
obtained if we have access to the infinite permutat ion P which converts the order 
of arrival (with an arbi trary customer labelled 0) into the order of departure (with 
this same customer labelled 0). The permutat ion P may  itself contain structural 
information; here, however, we are going to assume that  we are supplied with one 
complete output-record 

(. . . ,  t-2, t-l ,  to, tl, t~ . . . .  ) ., (1) 
i 

together with the associated permutation P; we shall prove tha t  then (i) the i~iter- 
arrival-time distribution dA is completely identifiable, and (ii) the service-t~ne 
distribution dB is completely identifiable up to a location parameter. (Alteration of 
the location of dB shifts the output  rigidly along the time-scale and leaves P 
unchanged; obviously we could never detect this.) 

As was explained in [3], the output  of GI/G/oo can be interpreted as a randomly 
delayed renewal process. Such point-processes often form the input to a queueing 
system [2, 4]; it is this fact which is responsible for our interest in the present 
problem. 

We are here concerned only with the uniqueness of dA and dB, and not with 
their estimation from empirical data. Tha t  task would call for quite different 
methods, and will be discussed elsewhere [5]. 

2. Characteristic functions of non-negative random variables*** 

I f  ~(t)  z EeitU where u is a non-negative random variable and t is real, we 
shall say tha t  ~b belongs to the class ~ + .  This sub-class of the whole family 5V of 
characteristic functions has some very special properties; for example, SMITH [7] 
has remarked that  the set of zeros of ~b cannot contain a non-degenerate interval, 
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and tha t  two members  ~bl and ~b2 of JY~+ mus t  coincide if they  agree on a non- 
degenerate interval. We here record two similar bu t  much stronger results; we 
shall make  use of  them in w 3 *. 

Theorem A. Let q5 ~ JC+; then the set {t: fiS(t) - -  0, - -oo <: t ~ oo} has Lebesgue 
measure zero. 

Theorem B. Let q51 and q52 belong to ~C+; then fi51 -~ qD2 i/ ~)1 (t) ~ q52 (t) 
throughout a t-set o/positive Lebesgue measure. 

Proo/s. Both  theorems follow if we prove the assertion of Theorem A for the 
Fourier-Stieltjes t ransform ~b of a non-null  totally-finite signed measure # on 
[0, oo). Le t  

/ ( z ) ~ - f e x p  - - ~ u  /~(du) ( I z ] _ _ < l , z , - - 1 ) ;  (2) 
0 -  

t h e n  / is analytic for ] z I < 1 and bounded and continuous on the punctured  disk 
on which it is here defined. At  a point  z = e i~ (--  ~ < 0 < ~) of  the perimeter of 
the disk, (1 - -  z)/(1 + z) ~- - -  i t an  0/2, and thus 

lim ] (r e ~~ - -  ] (e ~~ ---- ~b (tan 0/2) (--  ~ < /0  < ~) .  (3) 
r - -+l  

From a theorem proved by the brothers RIESZ in 1916 (for which see, for example, 
[1], p. 46) we know tha t  the bounded analyt ic  function / mus t  vanish identically ff 
its FATOU radial limit lira /(re io) vanishes on a 0-set of  positive Lebesgue measure, 

r - ->l  

and so/z mus t  vanish (because f e-su# (du) will vanish for all real s > 0) if ~5 (t) ---- 0 
on a t-set of positive Lebesgue measure. 

3. The identification problem 

We now return to the identification problem formulated in the introduction.  
We know the epochs of  depar ture  of  the successively depart ing customers, and we 
know the permuta t ion  P and so know in wha t  order those customers arrived a t  
the system. Thus, if  C, C', and C" are three customers who arrived consecutively 
in t ha t  order, we will be able to observe the epochs at which they  each departed.  
Now suppose tha t  in fact  

C arrived at  T 

C' arrived at  T q- u '  
and 

C" arrived at  T -~ u' ~- u" 

and depar ted at  T -k v, 

and depar ted at T -k u '  -k v ' ,  

and departed at  T -k u '  q- u "  -k v " .  

F rom observations on triplets like this we can determine the joint distr ibution of  
the differences 

x = u '  + (v' - -  v), y = u"  + (v" - -  v ' ) ,  (4) 

* I t  is only fair to add that we could equally well have used SMITH'S theorem in w 3 at 
the cost of an extra step or two. 
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of  the elements in the second column (by an appeal to the strong law of  large 
numbers) *. We shall prove tha t  the joint distr ibution of  x and y uniquely deter- 
mines d A  and d B  up to an error in the location of  the latter. 

Let  us write q~ and ~P for the characteristic functions of  d A  and d B ,  so tha t  
q5 (t) ~ E e  itu and T(t)  = E e  itv (t real). The characteristic function of the distri- 
but ion of  x will be 

L(t) = ~ ( t ) [  ~ ( t ) ] 2 ,  (5) 

and the joint characteristic funct ion of the distr ibution of  (x, y) will be 

M ( t ,  ~) ---- qi(t) ~5(~) T ( - -  t) T ( t  - -  3) T(~) ,  (6) 

so tha t  both  functions L and M can be considered known. 
I f  we know M, then we must  also know the funct ion defined by  

N (t) = M (t, t) ---- qS(t) L ( t )  . (7) 

Now �9 and T and therefore also L vanish at  most  in a set of measure zero, and so 
~5 (t) is given almost  everywhere by  N ( t ) /L  (t), and so is determined for all real t by  
cont inui ty;  t ha t  is, d A  is uniquely determined by  the data  supposed given. 

Exac t ly  the same a rgument  applied to (5) shows tha t  IT(t)12 is uniquely 
determined (it is equal almost  everywhere to {L ( t ) } 2 / N ( t ) ) ,  and so T(t)  is known 
for every real t save for a phase-factor. I n  order to show tha t  d B  is known up to a 
shift in location we have to prove tha t  the undetermined phase-factor has the 
form e Ibt. To establish this we have found it necessary to make use of  the bivariate 
funct ion M. I t  should be noted tha t  the facts T e  J~C+, I T ]  ~ known, are not  in 
themselves sufficient to determine the distr ibution d B  up to a shift in location. 
For  a counter-example,  take the distinct characteristic functions T1,  ~2 e ~C+ 
given by  

~ 1  (t) : ~ (t) ~ ( t ) ,  ~[Y2 (t) --~ ~ (t) ~ ( - -  t) e ~et , 

where ~ is any  member  of  ~ + ,  and ~ is any  asymmetr ic  characteristic function 
with range [0, el; for example, 

~( t )  = 1 - -  p -[- petCt(O < p <: 1, p :~ �89 

Suppose then t h a t  two solutions ~ = 2 and T --~ # are compatible with the 

data,  so t h a t  IL l  = 1, 1, - -  ILIIINI a. e. W e  shall  have  

M (t, ~) 
2 ( - -  t ) 2 ( t  - ~ ) 2 ( 3 )  - -  ~(t)o(~) - -  i t ( - -  t ) # ( t  - -  ~ ) # ( T )  

provided tha t  each of  t and ~ lies outside a certain null-set (the zero-set for ~b), 
whence by  cont inui ty  

) . ( - -  t) ]~(t - -  T) ~(~)  : t t ( - -  t) l t ( t  - -  v)  # ( v )  (8) 

for all real t and v. F rom this we obtain 

= t ~ ( t -  ~) ~(t) ~ ( -  ~)1~(-t) t~(~) ] 2 , 

�9 By considering triplets with arrival-ordinals congruent to 0, 1, and 2 (modulo 3) we e~n 
find the probability that the pair of random variubles (x, y) lies in any rectangle R having 
rational vertex-coordinates. We can do this for every R because there are only countably many 
such rectangles. The distribution of (x, y) is then uniquely determined. 
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and so (the two squared modul i  being equal) we find t h a t  

2 (t - -  7) # (t) /t  ( - -  7) = pt (t - -  7) 2 (t) 2 ( - -  ~), (9) 

first everywhere  save when 12 ( - -  t) l = lit ( - -  t) l = 0 o rwhen  14 (7) 1 = I#  (7) 1 = 0, 
and  then  (trivially) everywhere  else. 

We now change the sign of 7, and pu t  fl (t) = 2 (t)/# (t) save in the  null-set Z 
on which 12 (t)] = [# (t) I = 0. F r o m  (9) we then  find t h a t  

fl(t + 7) --=/~(t)fi(r) (10) 

except  when some one of t, % or t + T lies in Z. 
Now 2(0) = 1 and 2 is continuous,  so t h a t  141 = i s l  > 0 th roughout  some 

neighbourhood ( - -  s, s) of  the  point  t = 0; no point  of  Z can lie in this neigh- 
bourhood.  I t  follows t h a t  the  funct ion fi is continuous and  satisfies the Cauchy 
funct ional  equat ion (10) in the  ha lved  neighbourhood ( - - s / 2 ,  e/2), and t h a t  
fi(0) = 1, and so we mus t  have  

f l ( t ) = e  i~t, 2 ( t ) = e i b t ~ ( t )  . 0  (11) 

th roughout  the halved neighbourhood.  
P u t  # I  (t) = etbttt (t) for all real t, so t h a t  # l  coincides with 2 on ( - -  e/2, e/2). 

Going back to (9) (which holds when # is replaced b y  tti) and changing the  sign 
of T we find t h a t  

2(t @ ~) ftl(t)~l(7:) = ~ l ( t  @ T)2(t)2('~) (12) 

for all real t and  7. Le t  J be the set on which 2 (t) = ~tl (t). Then  

(i) ( - -  el2, el2) E J \ Z ,  
and 

(ii) t + r ~ J whenever both t and v tie in J \ Z .  Now let 

tl = t + T�92 

t2 = tl + z2 ,  

tn = tn-1 + ~n; 

then i tera t ion of (ii) shows t h a t  

(iii) tn e J provided that t and all r ' s  lie in J \ Z  and/urther provided that all o/ 
tl ,  . . . ,  tn-1 lie outside Z. 

Choose any  t in ( - -  el2, el2), and let t' be a rb i t ra ry .  When  n is sufficiently large 
we can pu t  t' = tn and sat isfy the conditions of  (iii) b y  ensuring t h a t  all the ~'s lie 
in ( - -  s/2, el2) and t h a t  all the "br idg ing"  points  tl . . . .  , tn-1 avoid Z. Thus  t' is in 
J ,  which mus t  therefore be the whole line, and  so 

2 (t) = ~1 (t) = e ibt # (t) 

for all real t, as required. 
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