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On a Stochastic Integral Equation of the Fredholm Type 

W.J. Padgett and Chris P. Tsokos 

1. Introduction 

Stochastic or random integral equations arise often in the engineering, 
biological, and physical sciences, and recent attempts have been made to develop 
and unify the theory of such equations [1, 3-5, 8, 10, 14], to mention a few. In 
this paper we will be concerned with a certain class of random Fredholm integral 
equations. Specifically, we will investigate a stochastic integral equation of the 
Fredholm type of the form 

oo 

x(t;o~)=h(t;m)+ ~ko(t, 3;co)e(z,x(z;oo))d3, t>O (1.1) 
0 

where 

(i) o~ef2, where (2 is the supporting set of the probability measure space 
(O, A, P); 

(ii) x(t; co) is the unknown random variable for each tr  the nonnegative 
real numbers; 

(iii) h(t; o~) is called the free random variable or stochastic free term defined 
for each t ~ R + ; 

(iv) ko(t, z; co) is called the stochastic kernel and is defined for t and "c in R+; 
and 

(v) e(t, x) is a scalar function defined for teR+ and x~R,  the real numbers. 

The Eq. (1.1) is a generalization of a stochastic integral equation considered 
by Anderson [1] in that the kernel is stochastic, the equation is nonlinear, and 
the interval of integration is R+ = [0, oo]. 

We shall actually study a more general stochastic integral equation of the 
mixed Volterra-Fredholm type of the form 

t 

x(t; co)= h(t; co)+ 5 k(t, 3; co)f(3, x(z; co)) dz 
0 

co 

+ ~ ko(t,z;c'))e(%x(3;co))d3 , t>O 
0 

(1.2) 

where, in addition to (i)-(v) above, 

(vi) k(t,r;o)) is a stochastic kernel defined for t and r in R+ 
0___3_<t< oo; and 

(vii) f(t ,  x) is a scalar function of teR+ and xER. 

such that 
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Thus, Eq.(1.1) is a special case of Eq.(1.2). Also, the random nonlinear 
Volterra integral equation which was studied by Tsokos [14] is a special case 
of Eq. (1.2). 

We will obtain some very general results concerning the existence and uni- 
queness of random solutions of Eqs. (1.1) and (1.2). The tools that will be employed 
are the well-known fixed-point theorems of Banach and Krasnosel'skii [9] and 
the theory of "admissibility" of linear topological spaces which was introduced 
into the study of integral equations by Corduneanu [6]. 

Nonstochastic versions of Eq. (1.2) have been considered by Miller, Nohel, 
and Wong [11], Petrovanu [12], and Corduneanu [7], among others. 

2. Preliminaries 

Throughout the paper we shall make the following assumptions concerning 
the functions in Eq. (1.2). The functions x(t; co) and h(t; co) will have values in 
the space L2=L2((2, A,P ) for each tER+. Also, e(t,x(t;co)) and f(t,x(t;co)) 
under certain conditions will be functions of t~R+ with values in L 2 . The stochastic 
kernels k(t,z;co) and ko(t,z;co ) will be bounded except perhaps on a set of 
probability measure zero for each fixed t and z satisfying 0_< ~_< t and 0 _< z < ~ ,  
0=<t< ~ ,  respectively. That is, the values of k(t, z; co) and ko(t , z;co) will be in 
L~(O, A, P) so that for fixed t and z the products k(t, z; co)f(z, x(z; co)) and 
ko(t, z; co) e(z, x(z; co)) will be in L2. 

Further, it will be assumed that the stochastic kernels are continuous functions 
of (t, z). That is, if we denote the norm of an element of the space L~ (~, A, P) by 

then as n --, oo 

and 

Ill ~ = P - e s s s u p  I �9 I, 

IIIk(t.,  %)-k(t, ~)[11 ~ 0 

[llko(t., z.)-ko(t, v)[[[--+0 

whenever (t,, r , )~ ( t ,  ~) as n~ov .  It also will be assumed that for each teR+, 
ko(t, ~; co) is such that I][ko(t, r)l][ is integrable with respect to -ceR+ and 

IIIk0(t, ~)11/" Nx(~)]IL2 

is integrable with respect to ~ R +  for every function x under consideration. 

We now define several spaces of functions which will be used in this paper. 

Definition 2.1. We let C =  C(R+, L2) denote the space of all continuous and 
bounded functions defined from R+ into L2. That is, C is the space of all second 
order stochastic processes on R+ which are bounded and continuous in mean 
square, 

E [ I x ( t + s ) - x ( t ) l  ~] ~ 0 
as s-~O, s>0.  

Definition 2.2. We will denote by Cg = Cg(R+, L2) the space of all continuous 
functions from R+ into L 2 such that there exists a positive continuous function 
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g(t) defined on R+ and a constant Z > 0  satisfying 

]lx(t)llL~NZg(t), teR+. 

The norm of a function in Cg is defined by 

IIx(t) llc~= sup g(t) -1 IIx(t)llL~. 
teR+ 

Note that for g(t)= 1, teR+, we have Cg= C. 

Definition2.3. We define the space C~--C~(R+,L2) to be the space of all 
continuous functions from R+ into L2 with the topology of uniform convergence 
on every interval [0, Q), Q > 0. That is, x, converges to x in Cc if and only if 

lim ][x,(t)--x(t)llL~O 

uniformly on every compact interval [0, Q], Q > 0. 

Note that C c is a Fr6chet space [15, pp. 24-26] with distance function defined 
by the Fr6chet combination of the following family of semi-norms: 

]Ix(0H,= sup ]]x(t)l]r,2, n = 1 ,2 ,3  . . . . .  
O<_t<_n 

Also, C ~ Cg c Co. 

Let B and D be a pair of Banach spaces such that B, D ~ Co, and let T denote 
a linear operator from C~ into itself. We now define what is meant by the "ad- 
missibility" of a pair of Banach spaces. 

Definition 2.4. The pair of Banach spaces (B, D) is said to be admissible with 
respect to the operator T: Cc-~ Cc if and only if T(B) ~ D. 

The following lemma concerning the continuity of Tis a result of Tsokos [14]. 

Lemma 2.1. If the topologies of B and D are stronger than Cc and the pair 
(B, D) is admissible with respect to T, a continuous linear operator from C~ 
into itself, then T is a continuous operator from B into D. 

Hence, it follows from Lemma 2.1 that such an operator T is bounded, and 
if K I > 0  is the norm of T, then we have 

IITxliD <=K1 [IxllB, 

Another space of functions that will be used is the space H of all functions 
in C c such that 

(i) ]lx(t)q]22 is integrable on R+; and 

(ii) for any function y satisfying (i), y ~ H if the inner product 

(x(t), y(t))L: = j x(t; co) y(t; co) alP(co) 
s~ 

is integrable on R+, where the bar denotes the complex Conjugate. 
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Let H 1 and H 2 be Hilbert spaces contained in H with norms defined by 

{; ltx I1H, = IIx(t) 11~2 dt  i=  1, 2. 

In order to study Eq. (1.2) we shall first consider the following stochastic 
integral equation, for M--- 1, 2, ... �9 

t 

x(t; co)=h(t; co)+ j" k(t, r; co)f(~, x(r; co)) dr 
o (2.1) 
M 

+ ~ ko(t, r; co) e(r, x(r; co))dr, 
o 

for te[0,  M]. In connection with the Eqs,(1.1), (1.2), and (2.1), we define the 
following linear operators from C c into itself which are continuous as a result 
of the continuity properties of k(t, ~; co) and ko(t, ~; co): 

and 

for t eR+,  and 

and 

t 

(Tx) (t; co)= ~ k(t, r; co) x(r; co) dr, (2.2) 
0 

oo 

(Wx) (t; co)= ~ ko(t, r; co) x(r; co) dr, (2.3) 
0 

t 

(T M x) (t; co)= ~ k(t, ~; co) x(r; co) dr, (2.4) 
0 

. ~  (HIM x) (t; co)-- 

for te  [0, M], M = 1, 2, . . . .  

M 

ko (t, ~; co) x(r;  co) dr, (2.5) 
0 

By a random solution of a stochastic integral equation such as Eq. (1.2) we 
shall mean that for each t~R+, x(t;co) satisfies the equation almost surely. 
In order to investigate the existence and uniqueness of random solutions of the 
stochastic integral equations given above, we will use the fixed-point theorems 
of Banach, Schauder, and Krasnosel'skg E9]. Krasnosel'skiFs theorem which 
contains the results of Banach and Schauder will now be stated. 

Theorem 2.1. Let S be a closed, bounded convex subset of a Banach space 
and let U and V be operators on S satisfying: 

(i) U(x)+ V(y)GS whenever x, yeS;  

(ii) U is a contraction operator on S; 

(iii) V is completely continuous. 

Then there is at least one point x*6S such that 

U ( x * ) +  V(x*)=x* .  

In order to use Theorem 2.1 in obtaining the results in the next section we 
will need conditions which guarantee that the operator W u given by Eq. (2.5) 
is completely continuous. The following lemma states such conditions. 
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Lemma 2.2. I f  the integral operator WM defined by Eq. (2.5) maps from H 2 

into H 1 and the stochastic kernel k o is such that 

~ M  

[. LIIko(t, ~)lllZ & dt 
0 0 

exists and is finite, then W M is bounded and completely continuous. 

The proof of Lemma 2.2 follows the technique of Schmeidler [-13, p. 45]. 

3. Existence Theorems for a Random Solution 

In this section we shall prove several theorems concerning the existence 
and uniqueness of random solutions of the Eqs. (1.1), (1.2), and (2.1). 

Throughout the remainder of this paper we will assume that the topologies 
of the Banach spaces B and D and of the Hilbert spaces H 1 and H2 which were 
defined in Section 2 are stronger than the topology of C c. We will also need 
from time to time some of the following conditions: 

(a) The stochastic kernel k o will be said to satisfy condition (a) if 

~ IIIko(t, ~)1112 d~ dt 
0 0 

exists and is finite. 

(b) The function f will be said to satisfy condition (b) with Lipschitz constant 2 
and spaces B and D if x(t; co)~f( t ,  x(t; o))) is a mapping ~I  from the set 

S--{x: xeD,  ][XlID<P} 
into B satisfying 

I [~ ' i ( x ) -~ f ( y ) l lB  < ,t IIx-yltD 

for x, yeS,  where 2 and p are constants and B and D are Banach spaces. 

We now prove the following theorem with respect to the existence of a 
random solution of Eq. (2.1). 

Theorem3.1. Consider the stochastic integral equation (2.1) subject to the 
following conditions: 

(i) H 2 and H 1 are Hilbert spaces, (He, HO is admissible with respect to each 
of the linear operators TM and W~ given by Eqs. (2.4) and (2.5), respectively, and 
k o satisfies condition (a); 

(ii) f satisfies condition (b) with Lipschitz constant A and spaces H 2 and H1; 

(iii) 4~ is a continuous mapping of S into H a such that IIq~e(X)lln2<7, for some 
constant ~ > 0; 

(iv) he H1. 

Then there exists at least one random solution of Eq. (2.1), provided that 
2K1M< 1 and 

bth Ilul + K1M IIq~s(O)II~2 + T K2M < p(1 --2K1M), 

where KI~  and K2~ are the norms of T M and WM, respectively. 
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Proof. To obtain the desired result, we will show that the fixed-point theorem 
of Krasnosel'ski~ (Theorem 2.1) is applicable. 

By definition, H 1 and/-I2 are also Banach spaces, and the set S of condition (b) 
with D replaced by HI is clearly closed, bounded and convex. 

Let x, yeS.  Define the operators U M from S into H I by 
t 

(U M x)(t; o))= h(t; co)+ ~ k(t, ~; co)f(z, x(z; co)) dr ,  
0 

and V M from S into/ /1 by 
M 

(VM x)(t; co)= ~ ko(t , z; co) e(z, x(z; co)) dr, 
0 

for re(0, M]. We must show that U M and V u satisfy the conditions of Theorem 2.1. 

To show that the first condition holds, observe that 

[1UM X + VM Y lira < lib [[r~, + glM [l't'f(x)rlt~= + K2M lithe (Y)1["2 

since K~M and K2M are the norms of TM and WM, respectively. But by condition (ii) 
of this theorem, we have 

I[%(x) rl~2_-<-~ Hxllm + I1%(0) 11~=. (3.1) 

Hence, applying condition (iii) of the theorem, we obtain 

IIUMX-t-VMYIIH, <_ I[hllm 4-KxM2 IIXIIH,+KIM ll~/5~(0) Ilu2 +K2M V 

_-< lib lira + K1M H~bf(O)IIH= + K2M 7 q-K1M ")~ P 

~p(1  --K1M 2)+ K1M 2 p =p,  

from the last hypothesis of the theorem. Hence, UMX+ VMyeS for x and y in S. 

To show that the second condition of Theorem2.1 holds, we must show 
that U M is a contraction operator on S. We have that 

[I aM X --  U M y IIH1 <K1M II%(x)- %(y)IrH~ 
<=K1M A ]]x-- yllm 

using condition (ii) of the theorem. Since 2K1M<I  by hypothesis, UM is a con- 
traction operator on S. 

We must now show that the third condition of Theorem 2.1 holds. From 
condition (i) of the present theorem and Lemma 2.2, the operator WM is com- 
pletely continuous from H 2 into/ /1,  and by condition (iii) above ~e is a bounded 
continuous operator from HI into H 2. We may express the operator V M as the 
composition of W M and r and therefore, V M is a completely continuous operator 
from S into H1 [9]. 

Therefore, the conditions of the fixed-point theorem of Krasnosel'skii hold, 
and there exists at least one random solution of Eq. (2.1) for M = 1, 2 . . . .  , which 
completes the proof. 

It is clear that the sequence of integral operator W M from Hilbert space H2 
into H 1 converges as M ~ o e  to the operator Wfrom H 2 into/41 given by Eq. (2.3), 
and that W is a completely continuous operator from H e into H~ I-2, p. 290] 
provided ko satisfies condition (a). Hence, we have the following result. 
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Theorem 3.2. Consider the random integral Eq. (1.1) subject to the following 
conditions: 

(i) H 2 and H 1 are Hilbert spaces, (H2, H1) is admissible with respect to the 
linear operator W given by Eq. (2.3), and k o satisfies condition (a); 

(ii) same as condition (iii) of Theorem 3.1; and 

(iii) same as condition (iv) of Theorem 3.1. 

Then there exists at least one bounded random solution of Eq. (1.1), provided 

Ilhllm + T K < p ,  
where K is the norm of W. 

The proof is similar to that for Theorem 3.1. 

We now turn to the problem of existence of a unique random solution of 
Eq. (1.2). Banach's fixed-point theorem will be employed in this case. 

Theorem 3.3. Suppose the stochastic integral equation (1.2) satisfies the following 
conditions: 

(i) The pair of Banach spaces (B, D) is admissible with respect to each of the 
linear operators T and W defined by Eqs. (2.2) and (2.3), respectively; 

(ii) f satisfies condition (b) with Lipschitz constant 2 and spaces B and D; 

(iii) e satisfies condition (b) with Lipschitz constant ~ and spaces B and D; and 

(iv) he D. 

Then there exists a unique random solution of Eq. (1.2), provided 2K1 + ~K2 < 1 
and 

[IhllD+/1 II~b~(0)l[B + K2 I I ~ ( 0 ) I I B < P ( 1 - 2 K l - ~ K 2 ) ,  

where K 1 and K 2 are the norms of T and W, respectively. 

Proof Let us define the operators U and V from S into D by 
T 

(Ux) (t; co)= h(t; co)+ ~ k(t, r; o) f(z ,  x(z; co)) dz 
0 

and 0(3 

(Vx)(t;co)= ~ko(t,z;o~)e(z,x(~;co))dz, t>=O. 
0 

We will show that the operator U + V satisfies the conditions of Banach's fixed- 
point theorem; that is, U +  V is a contraction operator from S into S. 

To show that U + V maps from S into itself, let x ~ S. We have 

Ilgx + gxllD < Ilhllo+ g l  ][~f(x)lIB+ g2 IIq~e(x)llB 

from the statement following Lemma 2.1 and the conditions on T and W given 
in (i). Using inequalities similar to inequality (3.1) and the last hypothesis of 
the theorem, we obtain that 

LIUx + Vxllo <= Ibhllo+ Kx II%(0)ll~+ga 114~(0)[IB+(gx 2+K2 3) tlxllD 
=<p(1 --K~ 2 - K  2 ~)+ (K1 2 + K 2  3) P=P. 

That is, Ux+ V x s S  whenever xES. 
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We must now show that U +  V is a contraction. Let x and y be in S, Then 
we have 

pf g x + V x -  U y -  V y[ID < K 1 II~bl(x)--~bs(y)lJB + g2  [rq~e(x)- ~e(y)[18 

=<(K, )~+g  2 ~) IIx-yrlo 

using conditions (ii) and (iii) of the theorem, By hypothesis, K1 2 + K2  {<  1, 
and we have that U + V is a contraction on S. 

Therefore, by Banach's fixed-point theorem, there exists a unique x * s S  such 
that 

Ux* + V x * = x * ;  

that is, x* is the unique random solution of Eq. (1.2), completing the proof. 

For the case that Wis the null operator, we obtain the results of Tsokos 1-14]. 
For the case that T is the null operator, we immediately obtain conditions under 
which the random Fredholm integral equation (1.1) possesses a unique random 
solution. 

Corollary 3.4. Consider the random integral equation (1.1) subject to the follow- 
ing conditions: 

(i) The pair of Banach spaces (B, D) is admissible with respect to the linear 
operator W given by Eq. (2.3); 

(ii) same as condition (iii) of Theorem 3.4; and 

(iii) same as condition (iv) of Theorem 3.4. 

Then there exists a unique random solution of (1.1), provided ~ K 2 < 1 and 

IIh llv+ K2 Ir~e(O)lIB < p ( 1 - ~  K2) 

where K a is the norm of  W. 

4. Special Cases 

In this section we present some special cases of Corollary 3.4 by taking as 
the Banach spaces B and D specific spaces such as Cg or C. These special cases 
are much more useful in practice than the general results given in the previous 
section. 

Theorem4.1. Consider the stochastic integral equation (1.1) subject to the 
following conditions: 

(i) there exists a constant Z > 0  and a positive continuous Junction g(t) on 
R+ such that 

co 

~[llko(t,z)ll[g(z)dr<-_Z, teR+;  
0 

(ii) e(t, x) is continuous in teR+ and x e R  such that re(t, 0)l_-<Tg(t) and 

[e(t, x ) - e ( t ,  Y)I <~  g(t) I x -  yl 

for rlXl[c, IJyHc<=p and ~ and ~ constants; and 
(iii) h(t; c~)e C. 
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Then there exists a unique random solution, x ~ C, of Eq. (1.1) such that I[ x I1 c < P, 
provided that klhllc, 4, and 7 are small enough. 

Proof We must show that under the above conditions, the pair (Cg, C) is 
admissible with respect to the integral operator W given by (2.3). Let xeCg. 
Then, using the definition of the norm in Cg, we have 

II Wx II L2 ~ ~ II ko (t, z) x (z)II L2 dr 
o 

< ~~ r)lil [[X(r)I[L2 dr 
o 

<-<_ IlWxlln=<supg(t) -1 IIx(t; co)IlL2 ; IIIko(t, r)lll g(r)dr__< tlxllc~Z, 
t>_-o o 

by condition (i) of the theorem. Thus, W is a bounded operator and W x s C .  
Hence, (Cg, C) is admissible with respect to W. 

Condition (ii), 

]e(t, x(t; co))-e(t, y(t; co))] < ~ g(t) Ix(t; co)-y(t; co)l, 
implies that 

II~e(x)-q~e(y)llc~< ~ Ilx-yllc 

for IIxIIc, Ilyllc<p. Likewise, [e(t,O)l<Tg(t) implies that /l~e(0)lic~_--<y. Therefore, 
Corollary 3.4 applies with B---Cg and D =  C, provided that Ilhllc, 3, and 7 are 
small enough in the sense that 

~ K 2 < 1 ;  [lh[Ic+K27~p(1-~K2), 

c o m p l e t i n g  the  proof .  

F o r  g(t)--1 for all  t~R+, we see tha t  the  B a n a c h  spaces  in T h e o r e m  4.1 b o t h  

b e c o m e  C, a n d  the  c o n d i t i o n s  s impl i fy  even  fur ther .  

The authors are grateful to the referees for their very helpful suggestions. 
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