On a Stochastic Integral Equation of the Fredholm Type

W.J. Padgett and Chris P. Tsokos

1. Introduction

Stochastic or random integral equations arise often in the engineering, biological, and physical sciences, and recent attempts have been made to develop and unify the theory of such equations [1,3-5, 8, 10, 14], to mention a few. In this paper we will be concerned with a certain class of random Fredholm integral equations. Specifically, we will investigate a stochastic integral equation of the Fredholm type of the form

$$
\begin{equation*}
x(t ; \omega)=h(t ; \omega)+\int_{0}^{\infty} k_{0}(t, \tau ; \omega) e(\tau, x(\tau ; \omega)) d \tau, \quad t \geqq 0 \tag{1.1}
\end{equation*}
$$

where
(i) $\omega \in \Omega$, where Ω is the supporting set of the probability measure space (Ω, A, P);
(ii) $x(t ; \omega)$ is the unknown random variable for each $t \in R_{+}$, the nonnegative real numbers;
(iii) $h(t ; \omega)$ is called the free random variable or stochastic free term defined for each $t \in R_{+}$;
(iv) $k_{0}(t, \tau ; \omega)$ is called the stochastic kernel and is defined for t and τ in R_{+}; and
(v) $e(t, x)$ is a scalar function defined for $t \in R_{+}$and $x \in R$, the real numbers.

The Eq. (1.1) is a generalization of a stochastic integral equation considered by Anderson [1] in that the kernel is stochastic, the equation is nonlinear, and the interval of integration is $R_{+}=[0, \infty]$.

We shall actually study a more general stochastic integral equation of the mixed Volterra-Fredholm type of the form

$$
\begin{align*}
x(t ; \omega)=h(t ; \omega) & +\int_{0}^{t} k(t, \tau ; \omega) f(\tau, x(\tau ; \omega)) d \tau \tag{1.2}\\
& +\int_{0}^{\infty} k_{0}(t, \tau ; \omega) e(\tau, x(\tau ; \omega)) d \tau, \quad t \geqq 0
\end{align*}
$$

where, in addition to (i)-(v) above,
(vi) $k(t, \tau ; \omega)$ is a stochastic kernel defined for t and τ in R_{+}such that $0 \leqq \tau \leqq t<\infty$; and
(vii) $f(t, x)$ is a scalar function of $t \in R_{+}$and $x \in R$.

Thus, Eq. (1.1) is a special case of Eq. (1.2). Also, the random nonlinear Volterra integral equation which was studied by Tsokos [14] is a special case of Eq. (1.2).

We will obtain some very general results concerning the existence and uniqueness of random solutions of Eqs. (1.1) and (1.2). The tools that will be employed are the well-known fixed-point theorems of Banach and Krasnosel'skiï [9] and the theory of "admissibility" of linear topological spaces which was introduced into the study of integral equations by Corduneanu [6].

Nonstochastic versions of Eq. (1.2) have been considered by Miller, Nohel, and Wong [11], Petrovanu [12], and Corduneanu [7], among others.

2. Preliminaries

Throughout the paper we shall make the following assumptions concerning the functions in Eq. (1.2). The functions $x(t ; \omega)$ and $h(t ; \omega)$ will have values in the space $L_{2}=L_{2}(\Omega, A, P)$ for each $t \in R_{+}$. Also, $e(t, x(t ; \omega))$ and $f(t, x(t ; \omega))$ under certain conditions will be functions of $t \in R_{+}$with values in L_{2}. The stochastic kernels $k(t, \tau ; \omega)$ and $k_{0}(t, \tau ; \omega)$ will be bounded except perhaps on a set of probability measure zero for each fixed t and τ satisfying $0 \leqq \tau \leqq t$ and $0 \leqq \tau<\infty$, $0 \leqq t<\infty$, respectively. That is, the values of $k(t, \tau ; \omega)$ and $k_{0}(t, \tau ; \omega)$ will be in $L_{\infty}(\Omega, A, P)$ so that for fixed t and τ the products $k(t, \tau ; \omega) f(\tau, x(\tau ; \omega))$ and $k_{0}(t, \tau ; \omega) e(\tau, x(\tau ; \omega))$ will be in L_{2}.

Further, it will be assumed that the stochastic kernels are continuous functions of (t, τ). That is, if we denote the norm of an element of the space $L_{\infty}(\Omega, A, P)$ by

$$
\||\cdot \|=P-\underset{\omega \in \Omega}{\operatorname{ess} \sup }| \cdot \mid
$$

then as $n \rightarrow \infty$

$$
\left\|\left\|k\left(t_{n}, \tau_{n}\right)-k(t, \tau)\right\| \rightarrow 0\right.
$$

and

$$
\left\|k_{0}\left(t_{n}, \tau_{n}\right)-k_{0}(t, \tau)\right\| \rightarrow 0
$$

whenever $\left(t_{n}, \tau_{n}\right) \rightarrow(t, t)$ as $n \rightarrow \infty$. It also will be assumed that for each $t \in R_{+}$, $k_{0}(t, \tau ; \omega)$ is such that $\left|\left\|k_{0}(t, \tau)\right\|\right|$ is integrable with respect to $\tau \in R_{+}$and

$$
\left\|\left\|k_{0}(t, \tau)\right\| \cdot\right\| x(\tau) \|_{L_{2}}
$$

is integrable with respect to $\tau \in R_{+}$for every function x under consideration.
We now define several spaces of functions which will be used in this paper.
Definition 2.1. We let $C=C\left(R_{+}, L_{2}\right)$ denote the space of all continuous and bounded functions defined from R_{+}into L_{2}. That is, C is the space of all second order stochastic processes on R_{+}which are bounded and continuous in mean square,

$$
E\left[|x(t+s)-x(t)|^{2}\right] \rightarrow 0
$$

as $s \rightarrow 0, s>0$.
Definition 2.2. We will denote by $C_{g}=C_{g}\left(R_{+}, L_{2}\right)$ the space of all continuous functions from R_{+}into L_{2} such that there exists a positive continuous function
$g(t)$ defined on R_{+}and a constant $Z>0$ satisfying

$$
\|x(t)\|_{L_{2}} \leqq Z g(t), \quad t \in R_{+} .
$$

The norm of a function in C_{g} is defined by

$$
\|x(t)\|_{C_{\mathbf{s}}}=\sup _{t \in \mathbf{R}_{+}} g(t)^{-1}\|x(t)\|_{L_{2}}
$$

Note that for $g(t)=1, t \in R_{+}$, we have $C_{g}=C$.
Definition 2.3. We define the space $C_{c}=C_{c}\left(R_{+}, L_{2}\right)$ to be the space of all continuous functions from R_{+}into L_{2} with the topology of uniform convergence on every interval $[0, Q), Q>0$. That is, x_{n} converges to x in C_{c} if and only if

$$
\lim _{n \rightarrow \infty}\left\|x_{n}(t)-x(t)\right\|_{L_{2}} \rightarrow 0
$$

uniformly on every compact interval [0, Q], $Q>0$.
Note that C_{c} is a Fréchet space [15, pp. 24-26] with distance function defined by the Fréchet combination of the following family of semi-norms:

$$
\|x(t)\|_{n}=\sup _{0 \leqq t \leqq n}\|x(t)\|_{L_{2}}, \quad n=1,2,3, \ldots
$$

Also, $C \subset C_{g} \subset C_{c}$.
Let B and D be a pair of Banach spaces such that $B, D \subset C_{\mathrm{c}}$, and let T denote a linear operator from C_{c} into itself. We now define what is meant by the "admissibility" of a pair of Banach spaces.

Definition 2.4. The pair of Banach spaces (B, D) is said to be admissible with respect to the operator $T: C_{c} \rightarrow C_{c}$ if and only if $T(B) \subset D$.

The following lemma concerning the continuity of T is a result of Tsokos [14].
Lemma 2.1. If the topologies of B and D are stronger than C_{c} and the pair (B, D) is admissible with respect to T, a continuous linear operator from C_{c} into itself, then T is a continuous operator from B into D.

Hence, it follows from Lemma 2.1 that such an operator T is bounded, and if $K_{1}>0$ is the norm of T, then we have

$$
\|T x\|_{D} \leqq K_{1}\|x\|_{B} .
$$

Another space of functions that will be used is the space H of all functions in C_{c} such that
(i) $\|x(t)\|_{L_{2}}^{2}$ is integrable on R_{+}; and
(ii) for any function y satisfying (i), $y \in H$ if the inner product

$$
(x(t), y(t))_{L_{2}}=\int_{\Omega} x(t ; \omega) \overline{y(t ; \omega)} d P(\omega)
$$

is integrable on R_{+}, where the bar denotes the complex conjugate.

Let H_{1} and H_{2} be Hilbert spaces contained in H with norms defined by

$$
\|x\|_{H_{i}}=\left\{\int_{0}^{\infty}\|x(t)\|_{L_{2}}^{2} d t\right\}^{\frac{1}{3}}, \quad i=1,2
$$

In order to study Eq. (1.2) we shall first consider the following stochastic integral equation, for $M=1,2, \ldots$:

$$
\begin{align*}
x(t ; \omega)=h(t ; \omega) & +\int_{0}^{t} k(t, \tau ; \omega) f(\tau, x(\tau ; \omega)) d \tau \tag{2.1}\\
& +\int_{0}^{M} k_{0}(t, \tau ; \omega) e(\tau, x(\tau ; \omega)) d \tau
\end{align*}
$$

for $t \in[0, M]$. In connection with the Eqs. (1.1), (1.2), and (2.1), we define the following linear operators from C_{c} into itself which are continuous as a result of the continuity properties of $k(t, \tau ; \omega)$ and $k_{0}(t, \tau ; \omega)$:

$$
\begin{equation*}
(T x)(t ; \omega)=\int_{0}^{t} k(t, \tau ; \omega) x(\tau ; \omega) d \tau \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(W x)(t ; \omega)=\int_{0}^{\infty} k_{0}(t, \tau ; \omega) x(\tau ; \omega) d \tau \tag{2.3}
\end{equation*}
$$

for $t \in R_{+}$, and

$$
\begin{equation*}
\left(T_{M} x\right)(t ; \omega)=\int_{0}^{t} k(t, \tau ; \omega) x(\tau ; \omega) d \tau \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(W_{M} x\right)(t ; \omega)=\int_{0}^{M} k_{0}(t, \tau ; \omega) x(\tau ; \omega) d \tau \tag{2.5}
\end{equation*}
$$

for $t \in[0, M], M=1,2, \ldots$.
By a random solution of a stochastic integral equation such as Eq. (1.2) we shall mean that for each $t \in R_{+}, x(t ; \omega)$ satisfies the equation almost surely. In order to investigate the existence and uniqueness of random solutions of the stochastic integral equations given above, we will use the fixed-point theorems of Banach, Schauder, and Krasnosel'skiir [9]. Krasnosel'skiĭ's theorem which contains the results of Banach and Schauder will now be stated.

Theorem 2.1. Let S be a closed, bounded convex subset of a Banach space and let U and V be operators on S satisfying:
(i) $U(x)+V(y) \in S$ whenever $x, y \in S$;
(ii) U is a contraction operator on S;
(iii) V is completely continuous.

Then there is at least one point $x^{*} \in S$ such that

$$
U\left(x^{*}\right)+V\left(x^{*}\right)=x^{*} .
$$

In order to use Theorem 2.1 in obtaining the results in the next section we will need conditions which guarantee that the operator W_{M} given by Eq. (2.5) is completely continuous. The following lemma states such conditions.

Lemma 2.2. If the integral operator W_{M} defined by Eq.(2.5) maps from H_{2} into H_{1} and the stochastic kernel k_{0} is such that

$$
\int_{0}^{\infty} \int_{0}^{M}\left\|k_{0}(t, \tau)\right\|^{2} d \tau d t
$$

exists and is finite, then W_{M} is bounded and completely continuous.
The proof of Lemma 2.2 follows the technique of Schmeidler [13, p. 45].

3. Existence Theorems for a Random Solution

In this section we shall prove several theorems concerning the existence and uniqueness of random solutions of the Eqs. (1.1), (1.2), and (2.1).

Throughout the remainder of this paper we will assume that the topologies of the Banach spaces B and D and of the Hilbert spaces H_{1} and H_{2} which were defined in Section 2 are stronger than the topology of C_{c}. We will also need from time to time some of the following conditions:
(a) The stochastic kernel k_{0} will be said to satisfy condition (a) if

$$
\int_{0}^{\infty} \int_{0}^{\infty} \mid\left\|k_{0}(t, \tau)\right\| \|^{2} d \tau d t
$$

exists and is finite.
(b) The function f will be said to satisfy condition (b) with Lipschitz constant λ and spaces B and D if $x(t ; \omega) \rightarrow f(t, x(t ; \omega))$ is a mapping Φ_{f} from the set

$$
S=\left\{x: x \in D,\|x\|_{D} \leqq \rho\right\}
$$

into B satisfying

$$
\left\|\Phi_{f}(x)-\Phi_{f}(y)\right\|_{B} \leqq \lambda\|x-y\|_{D}
$$

for $x, y \in S$, where λ and ρ are constants and B and D are Banach spaces.
We now prove the following theorem with respect to the existence of a random solution of Eq. (2.1).

Theorem 3.1. Consider the stochastic integral equation (2.1) subject to the following conditions:
(i) H_{2} and H_{1} are Hilbert spaces, $\left(H_{2}, H_{1}\right)$ is admissible with respect to each of the linear operators T_{M} and W_{M} given by Eqs. (2.4) and (2.5), respectively, and k_{0} satisfies condition (a);
(ii) f satisfies condition (b) with Lipschitz constant λ and spaces H_{2} and H_{1};
(iii) Φ_{e} is a continuous mapping of S into H_{2} such that $\left\|\Phi_{e}(x)\right\|_{H_{2}} \leqq \gamma$, for some constant $\gamma>0$;
(iv) $h \in H_{1}$.

Then there exists at least one random solution of Eq. (2.1), provided that $\lambda K_{1 M}<1$ and

$$
\|h\|_{H_{1}}+K_{1 M}\left\|\Phi_{f}(0)\right\|_{H_{2}}+\gamma K_{2 M} \leqq \rho\left(1-\lambda K_{1 M}\right),
$$

where $K_{1 M}$ and $K_{2 M}$ are the norms of T_{M} and W_{M}, respectively.

Proof. To obtain the desired result, we will show that the fixed-point theorem of Krasnosel'skiĭ (Theorem 2.1) is applicable.

By definition, H_{1} and H_{2} are also Banach spaces, and the set S of condition (b) with D replaced by H_{1} is clearly closed, bounded and convex.

Let $x, y \in S$. Define the operators U_{M} from S into H_{1} by

$$
\left(U_{M} x\right)(t ; \omega)=h(t ; \omega)+\int_{0}^{t} k(t, \tau ; \omega) f(\tau, x(\tau ; \omega)) d \tau
$$

and V_{M} from S into H_{1} by

$$
\left(V_{M} x\right)(t ; \omega)=\int_{0}^{M} k_{0}(t, \tau ; \omega) e(\tau, x(\tau ; \omega)) d \tau
$$

for $t \in(0, M]$. We must show that U_{M} and V_{M} satisfy the conditions of Theorem 2.1.
To show that the first condition holds, observe that

$$
\left\|U_{M} x+V_{M} y\right\|_{H_{1}} \leqq\|h\|_{H_{1}}+K_{1 M}\left\|\Phi_{f}(x)\right\|_{H_{2}}+K_{2 M}\left\|\Phi_{e}(y)\right\|_{H_{2}}
$$

since $K_{1 M}$ and $K_{2 M}$ are the norms of T_{M} and W_{M}, respectively. But by condition (ii) of this theorem, we have

$$
\begin{equation*}
\left\|\Phi_{f}(x)\right\|_{H_{2}} \leqq \lambda\|x\|_{H_{1}}+\left\|\Phi_{f}(0)\right\|_{H_{2}} \tag{3.1}
\end{equation*}
$$

Hence, applying condition (iii) of the theorem, we obtain

$$
\begin{aligned}
\left\|U_{M} x+V_{M} y\right\|_{H_{1}} & \leqq\|h\|_{H_{1}}+K_{1 M} \lambda\|x\|_{H_{1}}+K_{1 M}\left\|\Phi_{f}(0)\right\|_{H_{2}}+K_{2 M} \gamma \\
& \leqq\|h\|_{H_{1}}+K_{1 M}\left\|\Phi_{f}(0)\right\|_{H_{2}}+K_{2 M} \gamma+K_{1 M} \lambda \rho \\
& \leqq \rho\left(1-K_{1 M} \lambda\right)+K_{1 M} \lambda \rho=\rho,
\end{aligned}
$$

from the last hypothesis of the theorem. Hence, $U_{M} x+V_{M} y \in S$ for x and y in S.
To show that the second condition of Theorem 2.1 holds, we must show that U_{M} is a contraction operator on S. We have that

$$
\begin{aligned}
\left\|U_{M} x-U_{M} y\right\|_{H_{1}} & \leqq K_{1 M}\left\|\Phi_{f}(x)-\Phi_{f}(y)\right\|_{H_{2}} \\
& \leqq K_{1 M} \lambda\|x-y\|_{H_{1}}
\end{aligned}
$$

using condition (ii) of the theorem. Since $\lambda K_{1 M}<1$ by hypothesis, U_{M} is a contraction operator on S.

We must now show that the third condition of Theorem 2.1 holds. From condition (i) of the present theorem and Lemma 2.2, the operator W_{M} is completely continuous from H_{2} into H_{1}, and by condition (iii) above Φ_{e} is a bounded continuous operator from H_{1} into H_{2}. We may express the operator V_{M} as the composition of W_{M} and Φ_{e}, and therefore, V_{M} is a completely continuous operator from S into H_{1} [9].

Therefore, the conditions of the fixed-point theorem of Krasnosel'skĭ hold, and there exists at least one random solution of Eq. (2.1) for $M=1,2, \ldots$, which completes the proof.

It is clear that the sequence of integral operator W_{M} from Hilbert space H_{2} into H_{1} converges as $M \rightarrow \infty$ to the operator W from H_{2} into H_{1} given by Eq. (2.3), and that W is a completely continuous operator from H_{2} into H_{1} [2, p. 290] provided k_{0} satisfies condition (a). Hence, we have the following result.

Theorem 3.2. Consider the random integral Eq.(1.1) subject to the following conditions:
(i) H_{2} and H_{1} are Hilbert spaces, $\left(H_{2}, H_{1}\right)$ is admissible with respect to the linear operator W given by Eq. (2.3), and k_{0} satisfies condition (a);
(ii) same as condition (iii) of Theorem 3.1; and
(iii) same as condition (iv) of Theorem 3.1.

Then there exists at least one bounded random solution of Eq.(1.1), provided

$$
\|h\|_{H_{1}}+\gamma K \leqq \rho,
$$

where K is the norm of W.
The proof is similar to that for Theorem 3.1.
We now turn to the problem of existence of a unique random solution of Eq. (1.2). Banach's fixed-point theorem will be employed in this case.

Theorem 3.3. Suppose the stochastic integral equation (1.2) satisfies the following conditions:
(i) The pair of Banach spaces (B, D) is admissible with respect to each of the linear operators T and W defined by Eqs. (2.2) and (2.3), respectively;
(ii) f satisfies condition (b) with Lipschitz constant λ and spaces B and D;
(iii) e satisfies condition (b) with Lipschitz constant ξ and spaces B and D; and
(iv) $h \in D$.

Then there exists a unique random solution of Eq.(1.2), provided $\lambda K_{1}+\xi K_{2}<1$ and

$$
\|h\|_{D}+K_{1}\left\|\Phi_{f}(0)\right\|_{B}+K_{2}\left\|\Phi_{e}(0)\right\|_{B} \leqq \rho\left(1-\lambda K_{1}-\xi K_{2}\right),
$$

where K_{1} and K_{2} are the norms of T and W, respectively.
Proof. Let us define the operators U and V from S into D by

$$
(U x)(t ; \omega)=h(t ; \omega)+\int_{0}^{T} k(t, \tau ; \omega) f(\tau, x(\tau ; \omega)) d \tau
$$

and

$$
(V x)(t ; \omega)=\int_{0}^{\infty} k_{0}(t, \tau ; \omega) e(\tau, x(\tau ; \omega)) d \tau, \quad t \geqq 0 .
$$

We will show that the operator $U+V$ satisfies the conditions of Banach's fixedpoint theorem; that is, $U+V$ is a contraction operator from S into S.

To show that $U+V$ maps from S into itself, let $x \in S$. We have

$$
\|U x+V x\|_{D} \leqq\|h\|_{D}+K_{1}\left\|\Phi_{f}(x)\right\|_{B}+K_{2}\left\|\Phi_{e}(x)\right\|_{B}
$$

from the statement following Lemma 2.1 and the conditions on T and W given in (i). Using inequalities similar to inequality (3.1) and the last hypothesis of the theorem, we obtain that

$$
\begin{aligned}
\|U x+V x\|_{D} & \leqq\|h\|_{D}+K_{1}\left\|\Phi_{f}(0)\right\|_{B}+K_{2}\left\|\Phi_{e}(0)\right\|_{B}+\left(K_{1} \lambda+K_{2} \xi\right)\|x\|_{D} \\
& \leqq \rho\left(1-K_{1} \lambda-K_{2} \xi\right)+\left(K_{1} \lambda+K_{2} \xi\right) \rho=\rho .
\end{aligned}
$$

That is, $U x+V x \in S$ whenever $x \in S$.

We must now show that $U+V$ is a contraction. Let x and y be in S. Then we have

$$
\begin{aligned}
\|U x+V x-U y-V y\|_{D} & \leqq K_{1}\left\|\Phi_{f}(x)-\Phi_{f}(y)\right\|_{B}+K_{2}\left\|\Phi_{e}(x)-\Phi_{e}(y)\right\|_{B} \\
& \leqq\left(K_{1} \lambda+K_{2} \xi\right)\|x-y\|_{D}
\end{aligned}
$$

using conditions (ii) and (iii) of the theorem. By hypothesis, $K_{1} \lambda+K_{2} \xi<1$, and we have that $U+V$ is a contraction on S.

Therefore, by Banach's fixed-point theorem, there exists a unique $x^{*} \in S$ such that

$$
U x^{*}+V x^{*}=x^{*} ;
$$

that is, x^{*} is the unique random solution of Eq. (1.2), completing the proof.
For the case that W is the null operator, we obtain the results of Tsokos [14]. For the case that T is the null operator, we immediately obtain conditions under which the random Fredholm integral equation (1.1) possesses a unique random solution.

Corollary 3.4. Consider the random integral equation (1.1) subject to the following conditions:
(i) The pair of Banach spaces (B, D) is admissible with respect to the linear operator W given by Eq. (2.3);
(ii) same as condition (iii) of Theorem 3.4; and
(iii) same as condition (iv) of Theorem 3.4.

Then there exists a unique random solution of (1.1), provided $\xi K_{2}<1$ and

$$
\|h\|_{D}+K_{2}\left\|\Phi_{e}(0)\right\|_{B} \leqq \rho\left(1-\xi K_{2}\right)
$$

where K_{2} is the norm of W.

4. Special Cases

In this section we present some special cases of Corollary 3.4 by taking as the Banach spaces B and D specific spaces such as C_{g} or C. These special cases are much more useful in practice than the general results given in the previous section.

Theorem 4.1. Consider the stochastic integral equation (1.1) subject to the following conditions:
(i) there exists a constant $Z>0$ and a positive continuous function $g(t)$ on R_{+}such that

$$
\int_{0}^{\infty}\left|\left\|k_{0}(t, \tau)\right\|\right| g(\tau) d \tau \leqq Z, \quad t \in R_{+}
$$

(ii) $e(t, x)$ is continuous in $t \in R_{+}$and $x \in R$ such that $|e(t, 0)| \leqq \gamma g(t)$ and

$$
|e(t, x)-e(t, y)| \leqq \xi g(t)|x-y|
$$

for $\|x\|_{C},\|y\|_{C} \leqq \rho$ and γ and ξ constants; and
(iii) $h(t ; \omega) \in C$.

Then there exists a unique random solution, $x \in C$, of Eq. (1.1) such that $\|x\|_{C} \leqq \rho$, provided that $\|h\|_{C}, \xi$, and γ are small enough.

Proof. We must show that under the above conditions, the pair $\left(C_{g}, C\right)$ is admissible with respect to the integral operator W given by (2.3). Let $x \in C_{g}$. Then, using the definition of the norm in C_{g}, we have

$$
\begin{aligned}
\|W x\|_{L_{2}} & \leqq \int_{0}^{\infty}\left\|k_{0}(t, \tau) x(\tau)\right\|_{L_{2}} d \tau \\
& \leqq \int_{0}^{\infty}\| \| k_{0}(t, \tau)\| \| x(\tau) \|_{L_{2}} d \tau \\
& \leqq\|W x\|_{L_{2}} \leqq \sup _{t \geqq 0} g(t)^{-1}\|x(t ; \omega)\|_{L_{2}} \int_{0}^{\infty}\| \| k_{0}(t, \tau)\|g(\tau) d \tau \leqq\| x \|_{C_{s}} Z
\end{aligned}
$$

by condition (i) of the theorem. Thus, W is a bounded operator and $W x \in C$. Hence, $\left(C_{g}, C\right)$ is admissible with respect to W.

Condition (ii),

$$
|e(t, x(t ; \omega))-e(t, y(t ; \omega))| \leqq \xi g(t)|x(t ; \omega)-y(t ; \omega)|,
$$

implies that

$$
\left\|\Phi_{e}(x)-\Phi_{e}(y)\right\|_{C_{z}} \leqq \xi\|x-y\|_{C}
$$

for $\|x\|_{C},\|y\|_{C} \leqq \rho$. Likewise, $|e(t, 0)| \leqq \gamma g(t)$ implies that $\left\|\Phi_{e}(0)\right\|_{c_{g}} \leqq \gamma$. Therefore, Corollary 3.4 applies with $B=C_{g}$ and $D=C$, provided that $\|h\|_{C}^{g}$, ξ, and γ are small enough in the sense that

$$
\xi K_{2}<1 ; \quad\|h\|_{C}+K_{2} \gamma \leqq \rho\left(1-\xi K_{2}\right),
$$

completing the proof.
For $g(t)=1$ for all $t \in R_{+}$, we see that the Banach spaces in Theorem 4.1 both become C, and the conditions simplify even further.

The authors are grateful to the referees for their very helpful suggestions.

References

1. Anderson, M.W.: Stochastic Integral Equations, Ph. D. Dissertation, University of Tennessee, 1966.
2. Bachman, G., Narici, L.: Functional Analysis. New York: Academic Press 1966.
3. Bharucha-Reid, A.T.: On the Theory of Random Equations. Proc. Sympos. appl. Math. 16, 40-69. Providence, R. I.: American Mathematical Society 1964.
4. Bharucha-Reid, A.T.: Random Integral Equations. New York: Academic Press (to appear).
5. Bharucha-Reid, A.T.: On Random Solutions of Fredholm Integral Equations. Bull. Amer. math. Soc. 66, 104-109 (1960).
6. Corduneanu, C.: Problèmes globaux dans le théorie des équations intégrales de Volterra. Ann. Mat. pura appl. 67, 349-363 (1965).
7. Corduneanu, C.: Some Perturbation Problems in the Theory of Integral Equations. Math. Systems Theory 1, 143-155 (1967).
8. Ito, K.: On a Stochastic Integral Equation. Proc. Japan Acad. 22, 32-35 (1946).
9. Krasnosel'skiii, M.A.: Topological methods in the Theory of Nonlinear Integral Equations. New York: Pergamon Press, Macmillan 1964.
10. McKean, H. P.: Stochastic Integrals. New York: Academic Press 1969.
11. Miller, R.K., J.A. Nohel, and J.S.W. Wong: A Stability Theorem for Nonlinear Mixed Integral Equations. J. math. Analysis Appl. 25, 446-449 (1969).
12. Petrovanu, D.: Equations Hammerstein intégrales et discrètes. Ann. mat. pura appl. 70, 227-254 (1966).
13. Schmeidler, W.: Linear Operators in Hilbert Space. New York: Academic Press 1965.
14. Tsokos, C. P.: On a Stochastic Integral Equation of the Volterra Type. Math. Systems Theory 3, 222-231 (1969).
15. Yosida, K. Functional Analysis. Berlin-Heidelberg-New York: Springer 1965.

W. J. Padgett
Department of Mathematics
University of South Carolina
Columbia, South Carolina 29208 USA
Chris P. Tsokos
Department of Statistics
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia 24061, USA
and
Department of Mathematics
University of South Florida
Tampa, Florida 33620, USA

