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1. Introduction 

I t  has been known for a long t ime t h a t  a second-order s ta t ionary  (or covariance- 
s tat ionary)  stochastic process has a spectral representat ion as a Fourier  integral  
defined in a suitable sense; the eovariance funct ion itseff has also a Fourier  
integral  representation. (See DOOB [2], Chapters 10 and 11, and the Appendix.)  
]%ecently (LoYNEs [7]) i t  has been shown tha t  the not ion of  second-order 
s ta t ionar i ty  can be usefully generalised, in such a way  tha t  a spectral representa- 
t ion again exists. 

Yet  in spite of  this long history, there has rarely seemed to  be any  connection 
between the second-order properties and other  aspects of  stochastic processes, 
except  in the Gaussian ease. 

I n  this paper  our aim is to  show tha t  second-order theory  can on occasion 
be usefully applied to situations to which at  first sight i t  has no relevance. Here 
two results are obta ined:  the existence of  a Fourier  representat ion for the transi t ion 
probabilities of certain discrete-time s ta t ionary  ?r chains, and the existence 
of  a limit connected with the distributions of  processes with s ta t ionary  increments.  
The first result  was originally obtained b y  K~NDAJ~5 [4], even with fewer restric- 
tions, bu t  in an  entirely different way ;  the second appears to be new. 

2. Fourier Representations for Transition Probabilities 

Suppose first t ha t  {Xn : n >= 1} or { X n :  - -  co < n < co} is a str ict ly s ta t ionary  
stochastic process, with a denumerable set of  possible values which we label 
l ,  2, 3 . . . .  for convenience. Let  !Sn = !8 (Xn ,  Xn-1  . . . .  ) be the a-field generated 
by  the r andom variables indicated. 

Theorem 1. We have 

P[Xra = i, X ~  = k / =  f ei(n-'~)~ d/z~(O) , 

where ~ti~ (0) is a /unc t ion  o/bounded variation on [-- 7~, ~], and /o r  each j,/:tjj (0) 
is non-decreasing. Consequently provided pj - P [Xm --- j/ * O, 

x t  

P [ X n  = k lXm = j] = pZ  1 f ei(n-m)~ d/~]lc(O). 

I /  ~_r162 ~ 5 ~n  is a (~-/ield containing only sets o/probability zero and one, then 

the/unctions [xjk (0) are absolutely continuous except at 0 = O. 
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Here and elsewhere there is some freedom in the t rea tment  of the end-points 
of the range of integration. For definiteness we may  suppose the lower end-point 
included and the upper one excluded. 

The proof is very simple. Let  Yn be the random vector with components 

Y n , ~ =  I ( X n = -  1), Y~,,2 =- l ( X n : 2 )  . . . .  

where I (.) is the indicator function of the event indicated. Then { Yn} is a multi- 
variate second-order stat ionary process, with covariances 

E ( ~Ym,j Yn,  k) ~" -~ [I  (Xm = j) I (Xn ~- ]c)] = P [Xm ~- ] N X n  = ]c], 

and now the representation in the theorem is a standard result (DooB [2], p. 596). 
The simplest way to prove absolute continuity under the stated condition is to 
use the Wold decomposition (DooB, p. 576). The deterministic par t  of Y~ is 
clearly measurable with respect to ~3-~o, and is in consequence constant with 
probabili ty one. Hence the #j~(0), which are the spectra and cross-spectra of 
the Yn process, can differ from the spectra and cross-spectra of the completely 
non-deterministic par t  of Yn only because of a jump at the origin, and are there- 
fore absolutely continuous except at tha t  point. 

R e m a r k s :  (i) The condition on ~ _ ~  has been used by  t~OSENBLATT [8], 
who has called such processes completely non-deterministic. 

(ii) More complicated probabilities can be expressed in a rather  similar way, 
by  using the process { Yn}, since for example 

P[X~ ~- j, X m = k ,  X n  = p]  = E[  Y~,j Ym,~ Yn, ~] . 

(Cf. BLA~c-LAPIEnR~ and FORT~T [1], p. 427, for expectations of such triple 
products.) In  principle all the properties of {Xn} can be expressed in terms of the 
measures which arise thus, although in practise this will of course be difficult. 

(iii) I t  would be interesting to know what  functions #j~ (0) are possible; in 
particular what  are the possibilities for #jj (0), which is the spectral distribution 
function of a process taking only two values 0 and 1. I t  would be equally interesting 
in the case when {Xn}  is Markov. 

(iv) We shall always restrict ourselves to discrete state-spaces, but  analogous 
results hold in other cases. We could for example deal with P [ X m  e A,  X n  e B] 
for all measurable A and B in the state-space. 

(v) Throughout the paper, attention has for simplicity been restricted to 
processes in discrete time. There is, however, no difficulty in obtaining correspond- 
ing results for continuous-time processes. 

By  far the most interesting special case is that  of Markovian {Xn},  since the 
transition probabilities are then precisely what  are required for the s tudy of 
the process. 

I f  the chain contains a positive class we can suppose it to be in equilibrium 
with the associated stationary distribution, and then if ] is in this positive class 
p~ > 0, and so the transition probabili ty p~.~) is given as a Fourier integral. Further- 
more it is quite easy to show tha t  if a chain contains only a single positive class, 
which is aperiodic, then g-co is trivial: hence the measures # ~  are absolutely 
continuous except at the origin. Now if the class has instead period d > 1, we 
need only consider the chain {Xn~} to obtain the final conclusion: 
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The transition probabilities in a positive-recurrent irreducible Markov chain 
have Fourier representations 

- - g  

where the /unctions /Zjk(O) are absolutely continuous save /or lumps at integral 
multiples o/:J: 2~/d. (It  is clearly easy to identify the jumps of #jk (0).) 

This result is of course merely a restatement  of the special case of KE~DALL'S 
Theorem I I I  [4] under the hypothesis of positive recurrence. Indeed KENDALL 
goes slightly further, obtaining the derivative of/~Z (0) explicitly. 

In  any  case however this is only a par t  of KENDALL'S theorem, since he needs 
no restriction to positive-recurrence, and it would be nice to be able to drop 
this restriction in the present approach. I t  has not been found possible to drop 
all restrictions, but  two proofs for the case in which a stat ionary measure exists 
will be given; in particular all recurrent chains will then be included. 

Suppose then tha t  the chain has an invariant  measure m~, so tha t  ~ m~ Pij ~-- mj, 
i 

with mt ~ 0 for all i. 
One approach is to set up a generalised stat ionary stochastic process {Xn}, 

so tha t  for example 

m ( X  n -~- i )  = m i ,  m ( X n  = i ,  X q  = j )  -~- m l  ~)(.q-n) 

if q ~ n. The measure m (.) then takes the place of the probabili ty measure and 
may  be infinite for certain events, However  the process (Yn) can be defined in 
precisely the same way as before, and the proof of the existence of Fourier 
representations remains valid. 

Alternatively there is a slightly different proof which avoids the use of these 
generalised stochastic processes, Let  (Xn) be the Markov chain starting from 
an arbitrary initial state i, and consider a particular component of Yn, say 
Yn, I" Neither of these processes are stationary, but  nevertheless the covariance 
function of Yn, j is positive-definite. (A function / (m, n) of two variables is positive- 
definite if  ~ / ( m ,  n) zm 5n ~ 0 for all finite sets of complex numbers Zn.) The 
proof consists in observing tha t  E I~Zn Y n , l l 2 ~ 0 ;  furthermore except in the 
trivial case when Yn,l is uniquely determined by  Yn-l,~ there is strict positive- 
definiteness. 

We therefore know tha t  
~(.mA n) q)(i.m-- nl) 

is positive-definite (as a function of m and n), where m/~ n = rain (m, n). Multi- 
plying by  m, and summing over i, it follows tha t  p~$.~-~,l) is (strictly) positive- 
definite, and consequently by  the theorem of Herglotz it has a Fourier re- 
presentation. With a little complication we can also deal with rjk~(n) for ] * k. 

There is also another method (due to J.  F. C. KI~GMA~) which is only valid 
for recurrent chains, but  which has the advantage tha t  it could be applied to 
certain non-Markovian (non-stationary) processes. 

We have just seen tha t  
p(..mA n) v(I.m-nl) 

]? ~- 2? 
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is positive-definite. Similarly so is 
p(mA n+p) q~(.l:~-nl) 

t 

for any p ~ 0. On summing these from p = 1 to p = t, dividing by ~ p ~ ) ,  
1 

and then allowing t to tend to c~, it follows since the process is recurrent tha t  

is positive-definite. 
Returning now to the general problem of obtaining Fourier representations 

for various quantities, we conclude by showing that  certain non-stationary 
processes satisfying different hypotheses give rise to results of this type. 

Suppose that  P [ X m  ---- Xn] is a function of n -- m only; this would be the 
case for example if {Xn} has stationary increments. Then it is possible to show 
that 

P [Xm = X~]  = ~ e ~(n- ~)0 d~  (0) 0 

where # (0) is a bounded monotone function. This again can be proved by using 
the process (Yn} defined earlier, since 

i 
is clearly positive-definite (strictly positive-definite unless X n  is completely 
determined by Xn-1 ,  Xu -2  . . . .  ). For a slightly different proof we define the 
"generalised covariance" of Yn as 

~ E ( Y m ,  j Y n , j ) ,  
] 

so that  { Yn} is a "generalised" second-order stationary stochastic process, and 
the result follows by Theorem I of [7]. 

3. Stationary Sequences oi Random Operators between tfilbert Spaces 

The next  section will be concerned with processes with stationary increments 
taking values in a locally compact topological group (including of course as a 
special case real-valued processes). The method we use to t reat  such processes 
is to apply the theory of generalised second-order stationary stochastic processes 
developed in [7] to the group representations, and we have for clarity and possible 
future applications separated that  part of ~he theory which applies to more general 
operators in Hilbert space into this section. The ideas and terminology of [7] 
will be used freely. 

Let  H1 and H2 be two separable Hi[bert spaces; the separability is not 
altogether necessary, but  allows us to avoid certain measurability difficulties. 

Let  ~ ( H i ,  H2) be the (Banach) space of bounded linear operators from 
H1 to H2. I f  A e ~ (Hi,  H2), define the adjoint of A, A*, by 

( A x ,  y) ~- ( x , A * y )  x e H i ,  y e H 2 .  

Then A * e  !~(H2, Hi). (Note that  the two inner products in the preceding 
equation are defined on different spaces.) 
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We shall show tha t  ~3(H1, H2) can be made an LVH-space (see [6], and 
w 2 of [7]). To do this we must  define a strongly admissible space Z, and a suitable 
map from the Cartesian product  of ~ (H1, H2) with itself to Z. We therefore 
define Z to be ~ ( H I ) ~  ~ (H1, HI)  with the weak topology and write for the 
vector inner-product of A, B ~ ~ (H1, H2) 

[A, B] = B * A .  

The fact tha t  this space Z is strongly admissible was observed at  the end of [6]. 
The generalised random variables which will form the subject of the following 

discussion take their values in ~ (HI,  H2). We ~herefore define a (generalised) 
random variable to be a function X from some fixed probabili ty space to ~ (HI,  H2) 
which is weakly measurable: i.e. for each x ~ H I ,  y ~ H2, (X x, y) is a scalar 
measurable function (an ordinary random variable). 

We shall show next  tha t  Assumptions 1 to 4 of w 3 of [7] hold in the present 
context, and it  will then be possible to apply the theory described there. I t  will 
be observed tha t  the situation t reated here is merely a natural  generalisation 
of tha t  t reated in w 4 of [7], where the random variables were p • q matrices. 

Assumption I is trivially true. The induced random variables appearing in 
Assumption 2 are easily shown to be weakly measurable, and it is therefore 
sufficient to define the expectation of (a subclass of the) weakly measurable 
random variables. Let  W be one: then if for each x, y~H1E(Wx,  y) is well- 
defined and its modulus is bounded above by K] x I1Y] for some finite positive 
constant K we define E W by  

(EWx, y) = E(Wx, y) 

I t  follows at  once tha t  Assumptions 2 and 3 are satisfied. The proof tha tAssump-  
tion 4 is satisfied here can be carried out, using the Riesz-Fischer theorem, hi 
a way similar to the proof of the completeness of the sequence space 12. 

I t  is also possible to describe the null random variables. By  virtue of the 
separability, it is easy to see tha t  E[X, X] = E[X*X] = 0 ff and only if X = 0  
with probabili ty one. 

Now tha t  we have verified tha t  the assumptions are valid, the results may  
be applied. I f  for example {Xn : - -  oo < n < co} is a generalised second-order 
s ta t ionary process, i.e. if E[Xn, Xm] ~ E X ~ X n  is a function of n -  m only, 
Xn and the covariance-function both have Fourier representations, and ergodic 
theorems are valid. 

4. A Property o~ Processes with Stationary Increments 

We shall prove the following theorem, concerning random variables which 
take their values in a separable locally compact  topological group G. 

By  a random variable we mean, of course, a function from some probabil i ty 
space to G, which is measurable with respect to the Borel sets of G, and the 
probabil i ty distribution of a random variable X is the measure fix defined on 
the Borel sets of G by  

#x(A) -= P[X~A].  
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A sequence of distributions #n converges vaguely to a measure ~ on G ff 

S f (g) ~ (dg) -~ S/(g) ~ (@) 

for all continuous scalar-valued functions f, which vanish outside a compact 
set, and the sequence converges weakly to ~ if this relationship is valid for all 
bounded continuous functions !. In  the latter case ~ also is a probabili ty distribu- 
tion. Vague and weak convergence coincide if G is compact. (See G R ] ~ ) ~ 9 ~  [3], 
especially w 2.1, for these concepts.) 

Theorem 2. Let {Xn  : n ~ 1} be a stochastic process taking values in G with 
the property that the distribution o / X ~  1 X n  depends only on n --  m. Then 

1 
-~ (#xl  § #x~ §  § # x , )  

converges vaguely to some measure ~ as n -+ oo; there is weak convergence to a pro- 
bability distribution i! G is compact. 

I ~ e m a r k s :  (i) The hypothesis of the theorem is actually weaker than  tha t  
of stat ionary increments. 

(fi) Because of the symmetry  between left and right products in the group, 
the result would also be true if the distribution of X n  X ~  1 depends only on n - -  m. 

(iii) The theorem contains an earlier result due to GRE~A~n~ ([3], Theorem 3.0), 
except of course for the evaluation of the limit. 

(iv) There are similarities between the present theorem and Theorem 6 of [7]. 

(v) Both s tatement  and proof of the theorem are simpler in the case when 
G is the real line. Then vague convergence of distributions is equivalent to con- 
vergence of distribution functions at  continuity points of the limit, and the 
convergence is weak ff the limit is an honest distribution function. The proof 
merely involves consideration of the random variables exp {i 0 Xn} for fixed 
but  arbi trary 0, which under the stated hypothesis obviously forms an ordinary 
second-order stat ionary process: the result then fo]lows easily. Consideration 
of this example also suggests tha t  in stating the result of the theorem we have 
not exhausted all the information tha t  this approach can give. 

Proo!. There exists a complete set of irreducible representations of G as 
uni tary operators in Hilbert  space. Let  U (g) (g e G) be a particular representation, 
of this complete set, acting in the tI i lbert  space H:  because of the separability 
of G, H is also separable, lkTow as a function of g, U (g) is weakly continuous, and 
it follows tha t  U (Xn) is a weakly measurable function on the probabili ty space 
for each n, so tha t  it is a generalised random variable of the type considered in 
the last section. Furthermore 

E [ V (Xn), U (Xm)] = E V (Xm)* V (Xn) = E U (X~ 1) U (Xn) = E U (X~ 1 Xn) 

using the properties of the representation, and by  hypothesis this is a function of 
n - - m  only, so tha t  the sequence { U (Xn)} is (generalised) second-order stationary. 

I t  follows from the one-sided parameter  set version of Theorem 3 of [7] tha t  

~ {u(x~) + u(x2) + ... + u(x~)} 

Z. Wahrscheinlichkeitstheorie verw. Geb,, Bd. 5 13 
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second-order converges to some l imit  as n-->oo, and  on taking  expectat ions i t  
follows tha t  

-~ (E U (X1) + E V (X~) +. . .  + E U (Xn)} 

converges weakly. 
Now E U (Xr) as a funct ion  of the representa t ion U is lus t  what  has been 

called the Four ier  t ransform of the d is t r ibut ion  of Xr, in  [3] w 5.2 and  [5], and  we 
have therefore jus t  proved tha t  the Four ier  t ransforms of the measures 

/b 

converge weakly as n --> oo. F r o m  Theorem 1 of [5] the final result  follows. 
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