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§1
We are concerned with a simple random walk S,,7n =0, on the lattice B
in 3-dimensional space X,

R = {xcE|x has integer coordinates x1, za, x3} .
The random walk starts at x€ E, so that
So==x; Sp=81+X,, n=1,
where X, are independent identically distributed random variables such that
P {X,=y}=1/6 for yeRwith |y|=1,VxeR,
P {Xy=y}=0 for yeRwith|y|+1,VxeR,

where P,{-} means P{-|Sp=«}.
If A is the subset of R
A= {xeR[xlzo, X9 = O}

(1.1)

it is known that the random walk is almost certain to hit 4, i.e.

P.{SpcA for some n>0}=1, Vxek.

We can therefore define a random variable, F(x, 4), whose value is the position
at which the first hit on 4 occurs. If F(x, 4) = (0,0, 3 + D,), D, measures
the displacement of the random walk parallel to A up to the time of the first hit.
Our object is the study of the random variables D, as | x|, the perpendicular
distance from x onto 4, tends to infinity.

We begin by calculating the characteristic function of D, (Theorem I) and
finding an asymptotic estimate for it, (Lemma 2.11). Whereas in the analogous
2-dimensional situation D,/| x| has a non-degenerate limiting distribution as
| 2| = oo, it follows from this estimate that in 3 dimensions D,/d (| =|) cannot
have such a limit, whatever norming function d(|«x|) is chosen (Theorem II).
A limiting distribution for log|D,|/log | x| is found, however, in Theorem I1I.

§2
Plainly we may assume that the starting point x of the random walk lies
in the 27 x2 plane, and it is convenient to denote it by (—a, —b,0), and D, by
Dyy. If Dgp has characteristic function gqp(0), then for all real 6

@.1) gar(0) = S 1k,

k=—o0
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where
b= P(Dgp=Fk)= P,{S,=(0,0,k) for some n =1,8,_,¢ 4 for 1 <r<n}.

It is easy to calculate @gp(0) in terms of the characteristic function ¢p(0) of
X, which, by (1.1) is given for 8 = (01, 63, 03) by

(2.2) (0= > P(Xn=1y)€é"? %=} (cos 0 + cos Oz + cos ),

¥R

the result being
Theorem 1. Provided that one of @, b is non-zero,

0) = Fap (N]goo(6) for 6 +0 (mod 27),
ad 1 for 0=0(mod 2mn),
where

3 e—Hax+0f)dadB
gab(e) = m}f\[.!; 3 — {cos o + cos B+ cos 6) °

3 da dp
900(9) = W.’;£ 3-—(COSO€+ GOSﬁ+COS 9) :

Proof of Theorem I. Write Po{Sy= (1,7, k)} = pj,, note that P {S, = (0,0,¢)} =
= Py and define g7, by
23)  @e=0, ¢f=P.{Sn=1(0,0,¢),Spr¢Afori <r<m}forn>=1.

Then plainly
pabc Qaba:
24)
pabc Z Z gabkpo()c —~k for n > 1.
r=1k=—co
Writing for all real § and real s with |s] <1

w(0) = z Dave o, i (0) = z Qape & s

= —00 c= — o0

Puyls, 9%2 L (8)s™, Qupls, 9)—ZQ (8} s,
n=0
it follows from (2.4) that
(25) Ptlb (Sz 0) = Qab (S: 0) POO (S> 6) .

Now

Pap(s,0) = Z { Z Plabe ewe}

n= = —00

= § eicﬂ{ i prcSn} E
0

e=—co 7=

the interchange of order of summation being justified for |s| < 1 by the absolute

convergence of the sum, since Z Pupe = 1. Recalling the definition (2.2) of

c= — 00
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@ (0), a straightforward argument shows that for |s| <1

nz Opgbc (2:/z 3 fff - Z(a(h b02+603) d91 d92 d03

If we now write

wﬂb(s 63) = (97;2 j‘J‘e 2(u61+bﬂz) d@l 6,

we have

(2.6) P (s,0) = zew@ - f%,,(s f3) e~ df3 .

e= — 00

For each s with ]3[ <1, wen(s, O3) is everywhere differentiable with respect to
03, so that DINT’s convergence theorem applies to (2.6) to yield

(27) Pab (S: 6) = Yabd (S: 0) .
From (2.7) and (2.5) we have an explicit expression for Qgs(s, 6). Moreover,

since z . =1,

c= — o0

(28) Qub s 6 z s% ZQZbcewe Z ewﬂ ZQabcsn

n=0 c=—o0 ¢=—00 Hu=

and as s11

Zq'lbcs )Pz%zbc— fab =1.

n="90

s
Since > fg, = P {particle starting at x hits A} = 1, we can let s increase to one
= — 00

in (2.8) and apply the theorem of dominated convergence to get

(2.9) lim Qgy (s, 6) = Ee“f’fub— Pan(0) .

st c= — o0

But if 03 + 0 (mod 27)

e— z(a91+b62)

ll?lflpab (8 93) 2n)2 j‘f d01 d@g

=gap(03)
so that, by virtue of (2.5), (2.7), and (2.9),

s () — {gab(e)/goo(e) if 0 =+0 (mod2mn),

(2.10) 1 if H=0 (mod2m).

Thus the behaviour of the characteristic functions @.»(f) is completely
determined by the behaviour of the functions gus(0), some of whose properties
are the content of:

Lemma 2.11. For oll (a, b) and 6 + 0 (mod 27x)
(2.12) 0 < gan(0) =goo(8) <+ 0.
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There exist constants k1 and ka independent of 6, a, b such that

(2.13)

gub(e)—%Ko(T|a1)|<k1 for  0<|0| = and (a,b) +(0,0),

< ks for  0<|0] ==,

218 |gon(®) — 2 log gy

where Ko s the Bessel coefficient of zero order amd imaginary argument and
r=(a®4-b2)%,
Corollary to Lemnma 2.11. For all (a, b) and all 6 =0 {(mod 2m)

(2.15) 0<gap(8) 1.
Proof of Lemma 2.11. If we write, for § + 0 (mod 2x),

Jab (9) — (2'?;)2 j‘j‘e—i(aa-l—bﬁ)J’e—t(S—cos0—cosoc—cosﬁ)dtdadﬁ
—n 0

the fact that
J‘Tj‘ ﬁ—t(%—cosﬂ—cosa—-cosﬂ)dtdadﬁ< 4+ o0

-7 0
allows us to interchange the order of integration to get,

(2.16) gab(e):3j‘e—t(3—cosﬁ).§1;j’e—iao:etcosrxdoc,z%J‘e—z‘bﬁeteosﬁdﬁdt’
0 ]

-~

— 3 [e=1B=0s0) [ (1) Ty (t) dt,
0

where [,(f) is the modified Bessel coefficient of order a, and the first assertion
follows.
Noting that g4;(60) is an even function of 6, take 0 << 6 <~ = and write

3 7 cosaacosh
gab(a)“ggi.”‘ SInulm+sln21ﬂ+Sln210 dadlg

__ 6 cosaccosb
= fof RO dodf + fap (0).

The inequalities
O/n <sinl6 =10,
0=(30)%—sin240=73(cosf — 1+ 162) <0448,
both hold in the range 0 =< 0 = z and lead to

1% at b fiLg
2.17) [av ()] < 5 jo T 521"@@ 2df <
If we now note that for r >0
(2.18) j-j- cosaacosbﬁd dﬁZKO(TlOl)

o - 2 0



150 R. A. DoNEY:

we see that (2.14) will follow from (2.17) if we can show that the error involved
in replacing the region of integration, (0 <« < 7,0 < § < @), by the region
(0 £ a,0 = f) is bounded for all 0 < § < & uniformly in ¢ and b. Since g4 (0)
is symmetric in @ and b and a2 + b2 > 0, we can take |a|=1 and apply the
second mean value theorem for double integrals [4, p. 572], to show that for each
R > 7 there exists 4 <, B>, Be{0,7) such that

(2.19) j-f cosaoccosbﬂd df=

4 B

PNy feosaada feosbBdp.
0

Now

1
216

A
j'eosaocdoc <2,

ﬂosbﬁdﬂlgn,

and as 1/(a2 -+ 82 4 02) is integrable in (7 <a, 0 =< f < x),

R
i cosao:cosbﬁd d
i e 19

exists. Using the fact [2, p. 7] that

@R 2

J°~° cos ax do 1 - e—a(p2+02)%
BEFonE

we can therefore let R — 4 oo in (2.19) to get

(2.20) inj-e a(ﬁ2+62)zcosbﬂ dp— j-fcosaoccosbﬁd L df| < ks
0

) FEroes @&+ B+ o2

where ks is a finite constant independent of 8, a, and b. Since, [2, p. 17],

P e—alBr+0%%cosbf 4 5
Of ——Wdﬂ*ffomel),

and

~df <+ o0,

j‘oe—w(ﬁzﬁ—ﬂz)%cosbﬁ <j°-°e_
5 (p2+0%)2 = B
(2.13) follows from (2.17) and (2.20)

It is easily seen that

3 da df
goo(0) = (2m)2 I{ 3 — cos — cosot — cos

< d:
Oj (L )51+ &2k

= 3k
T

‘where

=1/(1 4 sin2} )
and k2 4 k'2 = 1. Thus we have

@.21) g0 () =2 K1),
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K denoting the complete elliptic integral of the first kind. Now

sinf 0(2 + sin21 )3 7]

V=" ~7z2 » 00

and it is not difficult to see that |log 1/’ — log 1/6| is bounded for 0 <6 <.
Sinee it is known [3, p. 318] that | K (k) — log 1/k’| is bounded for all %, this is
sufficient to establish (2.14).

§3

An obvious question to ask about the random variables Dy is whether or
not there exists a norming function d (r) (where r2 =02 4 b2 = | x||2 in the notation
of § 1) such that Dyp/d(r) has a non-degenerate limiting distribution as r— 4 oo.
According to the continuity theorem for characteristic functions (see e.g. [5, p. 54])
Day[d(r) has a limiting distribution if and only if @ap,(6/d(r)) converges for each
6 to a function which is continuous at § = 0. This fact, together with the results
of Lemma 2.11 leads to

Theorem 1. If the sequence of random variables Dgp|d (r) converges in distribution
as r—>+- oo, then its limit is degenerate and has distribution function Gqo(y) given by

1, y=0,
%@:%y
, ¥ <<0.
Proof of Theorem II. Suppose that o(f) = lim Qo (0/d(r)) exists for all

P~>--oc
real 6, assume, with no loss of generality, that d(r) is positive for all 7 and note
that ¢(0) = 1. If lim inf d(r) << + oo it is easy to check that 0(0) = 0 for all

P>+ 00
6 + 0, so that o(0) is discontinuous at 0. If lim d(r) = + oo it follows from
(2.13) and (2.14) that for all § >0 r>eo

0(0) = lim { K (r 0/d (r))/logd (r)}.
r—>+c0
In order that o(f) be non zero for 6 >0, it is therefore necessary that
lim {d(r)/r} = 4 co. But in that case, since Ko(z) ~ logz~1 as z — 0, we have,

T~ oo

for all 6 > 0,
0(6) = lim {log (d (r)/r 0)/logd ()} = lim {1 —logrflogd(r)} =1y,

F—>+o0 *—>+o00
where y € (0, 1), and is independent of §. When y < 1, ¢(6) is again discontinuous
at 0; when p =1, 0(f)=1. Since this is the characteristic function of Gy (y),
the theorem is established.
In particular, when d (r) = r8 this argument shows that

{0 for >0 and 0<f <1,

(3.1) lim gap (6/rF) = 1—1/f for 6>0 and f>1.

7>+ 00
This suggests that the distribution of Dgp is too spread out to lie completely
within the interval (—rf, r8) for large values of r however large 8 is. Moreover,
if Lf}y= P {| Dqy| <6} and we write N, for (r#] 4, where [rf] denotes the integral
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part of 78,
1 k24
fop= e »{0) cosk6db
]klz<r/gb ]k1§<:rﬁ 27 —fn%b(

17 sin N, 0
(32) = gomb(m il

~g_” sin (N, 6/r6)

T of Qrﬁsin(()/m

According to (3.1) the integrand in (3.2) tends, as r— + oo, for each §>0 to 0 or

1=f sin acoordmgasﬂ<1 or f>1.

)
Since | —Si%z do = —;— 7, the obvious conjecture is
. 1-1/8 g>1,
3.3 lim P{{Dgp| < rb} =
(3.3) tim P{| Day| <19} { eIy

which is equivalent to
Theorem I1L. If the random variables D,, are defined by

’ log lDabl when Dab +0 )
Dab:
0 when Dgp=0
then
. , 1-1/p if g>1,
im P{D_/1 =
,affoo{ wllogr < B} { o if p=1.

Since the characteristic function of D, is not readily accessible, the usual
methods of proving such a theorem do not apply. A straightforward, but laborious
argument is therefore used to establish Theorem IIT, via (3.3), in the next section.

§4
We will assume throughout this section that ¢ = b = 0; we can do this
without loss of generality, since @ap(f) = @an(f), where A = max(|a|, |b]),
B =min(|a|, |b]). Two preliminary lemmas are required.
Lemma 4.1. A function O(r) ewists such that, when r—1logr < 0 < =,

0<@ap(0) <d(r), and d&(r)logr—0 as r— - oo.

Proof. The relation [1, p. 207],

JLpoomneds s jymiz— (-1} for z>1

2n Z — COS o
—

gives

gao(0) =2 [ — 1)~ {5 — (2 — 1)}}acosbBdp for §+0(mod2m),
0
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where 17 =3 — cos § — cos 0, so that

g (6) = 2 M —1)"tdB-sup {n — (n2 — 1)}}e

0sBsn
= go0(0) {2 — cos 6 — ((2 — cos )2 — 1)i}a,
Since @ =1r > 0, it follows that
Sup  @ap (0) = {2 — 008 — (2 — 008 0)2 — DL apeg, = (1)

rllogrs@=n
and 6(r) ~ 7 % as 1 = 1 co.
Lemma 4.2, If the fotal variation of @up(6) in the tnierval (r—f,r1logr) is
VE,, then
lim sap V4, <2logp for B>1.

F—>4 0

Proof. For 6 +0 (mod 2x)

— 3sinf "‘ cosa o cosbfdadp
(2m)2 f (8 — cosat — cos B -~ cos 6)2 ’

gab (6 =

so for 8€0,7) ] 9,5(0)] < —go(f). In this range we also have, from (2.12),
0 < gan(0) = go0(0), and therefore
’ 1 ’ ’ _— 29’ (0)
|9 (0)] = EXC) [900(0) g (0) — 900 (0) 9. ()] = ﬁ)— .
Thus

r1llogr

V= I | #a(0)] 40 =< 210g {goo (r~F)/g00 (r—1log r)}

and the lemma follows from (2.14).
Proof of Theorem I11. Take > 1 and consider, in the notation of §3,

1 7 sin N, 6
4.3) Lgb=;0§ ®ap (0) sin%fa dg.

Now sinN,0/sin} 6 for 6 € (0, &) is less in absolute value than /6. Therefore,
by Lemma 4.1

we) L { o an(6) ST "de < 6(r)log ©

r—llogr
Since | Ny —r8| <1 for all r,
|sin (N, 0/rf) — sin 6] = 2| cos §(Ny/rf 4 1) §sin L (N,/rf — 1) 0]
=2sin(0/2r8) for 6e(0,n),

and in this range we also have

—)0 ag 7 —> - oo.

log

1 1 8
0= srism@erm — 0 = 18/ -
=14+«
r-llogr T“logr
sml\ 6 -5 sin (N, 0/r8)
= 8
OJ' Pan(0) = di=r ! Pap (6/r8) i (6/21%) de

Z, Wahrscheinlichkeitstheorie verw. Geb., Bd. 5 11
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and if we write

sin (N, 6/rf)  sin0 sin (N 0/rf) — sin 8 in @ 1 1
sin(8278) — 0 3résm(g2re) TS {Zrﬁsin(9/2rl3) - F}

the above estimates show that

F—>+ o0 0

r~1logr r*logr
(4.5) Em { J pan (0) 21 sml‘ 4 d0—2f<pab (0/rB) S‘g" dO}:O.

Now take any R > 1 and recall that 0 < pap(8) = 1 for all 6 (Corollary to
Lemma 2.11) and that lim @g,(8/rf) is 1 — 1/8 for 8> 1 and 0 > 0 [(3.1)].

r—>+00

Then, by the theorem of dominated convergence,

lim f(;oab(ﬂ/rﬁ S1n0 de“(l“l/ﬂ)f sin 6 as,

r—>+o0 0
and since
 sin6 1
d6 = -,
Jhtao=]
(4.6) lim  lim {f pan (0/r5) s‘“"de-— (1—1/ﬂ)}=0
R-—>+4oo y—>+ o0
Since
B .
flap|<2/a for VE>4>0,
A

it follows from the second mean value theorem for functions of bounded variation,
[4, p. 570], that for each R and all large enough r

%log

[ g O1rt) 22 20| <2/ R {gan(Rjrd) + Viy}
R

so that, by Lemma 4.1,

r%log s

| pan(0r8) S del =0.
I 0

4.7) lim lim sup

R—>4o0 r—>+oo

It follows from (4.6) and (4.7) that

r%logr

Jga(0r) 0040~ 2 m(1—1/p)

(4.8) lim lim sup

R-—>+o0 r—>+o0

Since the left hand side of (4.8) is independent of R, (4.8) implies

(4.9) lim Njogéa,, (0)r8) Si‘g 9 30— _;_ n(l—1/B).

r—>+o0 0O
This, together with (4.4) and (4.5), says that lim L8, =1 —1/8 so that (3.3)

#—-+o00
holds for g > 1.
However, if $<1 and >0, 0=Lf <L}, whence 0 =< lim inf LA <

7r~++400
< lim sup L, < /(1 + &) for every & > 0, so that lim L, =0, (3.3) holds for
F—>—+ 00 F—>+ 0

B =1, and Theorem IIT is established.
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§5

An alternative approach to this problem is to investigate the fime at which
the random walk first hits the axis, and then make deductions about the position
of the first hit. This programme has been carried out by RibLER-Rows [6], and
he shows that Theorem ITI actually holds for a wide class of 3-dimensional
random walks.

I am grateful to Professor G. E. H. REvrER, who brought this problem to
my attention and gave me much helpful advice. My thanks are also due to the
Department of Scientific and Industrial Research for their financial support.
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