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1. Introduction 

In  recent years many  deep properties of Marker  chains have been investigated 
by F~Lr,~R [6], D o e s  [2], KEarNY and SN]~LL [9] and many  others. I I i t t ing 
probabilities for sets, expected sojourn times for sets, recurrent and transient 
behavior, and the classification of chains have all been studied intensively. 
I t  has been shown tha t  these questions are closely related to potential theoretic 
considerations. Although very general studies of potential theory have been 
carried out for Marker  chains and processes relatively little has been done for 
non-Markovian chains or processes. 

In  this paper we investigate generalizations of certain potential theoretic 
concepts which have somewhat the same relationship to non-Markovian chains 
as do the corresponding concepts to Marker chains. In particular we consider 
supcrharmonic functions, bounded harmonic functions and boundaries in order 
to investigate some aspects of the tail field of a non-Markovian chain. Needless 
to say the non-Markovian situation is more complex but many of the basic 
structural properties are preserved. 

2. Notation for Stochastic Chains 

Let  Q be a countable space and !~ the (r-field of subsets of Q. Le t / 2  designate 
the space of paths with a discrete time parameter, that is,/2 is the set of mappings, 
w('), from Z + to Q where Z +- {0, l, 2 .... }. Let ~r,~ be the (r-field generated by 
sets of the form 

{w:w(n) eB}, n ~ r ,  BefS, 

and let ~r,m be the a-field generated by  sets of the form 

(w:w(n)~B}, r~_n~_m and B e ~ .  

The (r-field ~* ~ 5 ~n,~ is known as the tail ]ield. 
n= l  

A stochastic chain is a triple (/2, ~0, ~, p )  where P is a probabili ty measure 
on the measure space (/2, ~0,~). The coordinate functions Xn(w)= w(n) are 
then a sequence of random variables on the space (/2, ~0,~, p).  According to 
DooB [3, p. 31] we may  choose a version of the conditional probabilities 
P (B[ ~r,~.+ p), B e ~r+ ~+ 1,iv such tha t  for each w, P (- I ~r,r+ p) (w) is a probability 
measure on ~r+p+l,~, N ~ r  ~-p-~ l. 

* This research was supported in part by the Summer Research Institute of the Canadian 
Nfathematical Congress. 
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Moreover it can be shown t h a t  these probabil i ty measures m a y  be chosen 
to be consistent for different N and hence the measures m a y  be extended to 
~r-b P + l,rx~. 

The probabil i ty measure # on (Q, ~)  defined by  

#(xo) -= P ( { w :  Xo(w) = x0}) 

is the initial distribution. We assume tha t  the support  of # is the whole space Q. 
The shift operator 0 is a mapping  from t~ into itself defined by  

(0 w)(n) = w(n @ 1). 

We assume tha t  all subfields of ,~0, ~ are completed with respect to P and let 
be the sub-a-field of ~0,~ of sets of P-measure  zero. 
Given a a-field ,~ c ,~0,~ we designate by  L ~ ( ~ )  the class of bounded real 

valued functions measurable with respect to ,~ and by  g~o (-~) the quotient  space 
L~ (,~)/L~ (~ n ~). 0 induces a mapping 

0 : L~( ,~  ~ -+ L~( ,3  ~ 
defined by  

and a mapping 

defined by  

(o/)(w) =/(Ow) 

O: ~ o  (~0,~o) __> ~oo (~0,oo) 

0[l] = [off, 

where [/] stands for the equivalence class o f / .  Note  tha t  the lat ter  definition is 
possible only if ] = g a.e. implies t ha t  0 / = 0 g a.e. Finally,  there is a mapping 

0 : ,3 0, ~ - ~  ,~0,~ 

defined by  
OA = A '  

where A ' ~  {w: 0 gA(W) = 1}. I t  is easy to verify tha t  w e OA ff and only if 
0 w ~ A, t ha t  is, 

0 ({w: Xn(w) ~A}) = {w: Xn+l  (w) c A }  

and tha t  0 is a ~-field isomorphism. Note tha t  ff / and g are measurable with 
respect to ,~o,~o and A = {w: [(w) = g(w)}, then {w: 1(0 w) = g(O w)} = OA. 

3. Invariant and Superinvariant Functions 

In  this section we introduce invariant  functions, superinvariant  functions 
and potentials. 

I f  [ is a real-valued function measurable with respect to ,~0,oo, the k-potential 
of  [ is defined by 

oo  

i = 0  

whenever the sum is absolutely convergent  a.e. I f  ] (w)~  zA(Xo(w)), A ~ Q, 
then N1J(w), if it exists, is the number  of values of n for which Xn(w) lies in A. 

oo  

A set d ~ ~0, ~ is Gnegligible if ~ )  O~A has measure zero, t ha t  is, if Nk (Z~ (w)) 
- - 0  a.e. i=o 
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A real-valued function, /, is n-invariant if  it is measurable with respect to 
~0,~ and ff {w :/(w) :~/(Onw)} is an n-negligible set. The class of n-invariant  
functions is denoted by  I n and the class of equivalence classes of In  is denoted 
b y / I n / .  

Proposition 3 . 1 . 1 / / c  I n, then { c I nm /or every positive integer m. 
Proo/. 

~ ' =  { : / ( w ) .  l(0nmw)} 
m - - 1  

c U {w : l (0 inw) ,  l(0(~+l)n w)}. 
i = 0  

oo 

I-Ience A' c U Oin d : A " ,  
i = 0  

where A ~-- {w : /(w) ~:/(O n w)). However  by  assumption A" is a set of measure 
zero and OimnA'c OimnA"c A"  for i=O,  1, 2, . . . ,  and hence, A' is a nm-negligible 
set. Q.e.d. 

This proposition implies tha t  any function / e I~  is measurable with respect 
to ~n,o~ for every positive integer n. Thus functions in IP, p : 1, 2, 3 . . . .  , are 
measurable with respect to the taft field ~*. The sub-a-field of ~* generated by 
the functions in I u is designated by  ~n*. 

A real-valued function measurable with respect to ~o,~ is n-superinvariant 
if  (w: / (w)  </(O n _w)} is a n-negligible set. The class of n-superinvariant functions 
is designated by  I n. I t  is easy to verify tha t  the n-potentiM of a non-negative 
function, ff it exists, is a n-superinvariant function. 

In  general i f  a set A c ~*~ ~ and O~A c A ,  then A is a k-negligible set. In  
a few places we need to assume tha t  if  A c ~* n ~ then OA e ~. A stochastic 
chain which has this proper ty  is said to have a non-singular tail/ield. 

We complete this section with a result t ha t  closely resembles the Ricsz de- 
composition theorem for ordinary superharmonic functions [2]. 

Proposition 3.2. I /  ] is a k-superinvariant /unction bounded /tom below, then 
it can be decomposed uniquely as 

/=/~176 + ~v~/*, 

where/oo is a k-invariant /unction and 1" ~ O. /oo is actually the largest k-invariant 
minorant o/1. 

Proo]. I f  / is a k-superinvariant function, then an argument  similar to tha t  
used in Proposition 2.1 shows tha t  

/ (w) >= 0~ 1 (w) >= 02k / (w) >_--.. 

except for a k-negligible set. The limit,/co, of this monotone decreasing sequence 
of functions is k-invariant. Then 

l(w) = / ( w )  - O~l(w) + O~/(w) - 02~/(w) + . ' .  
§ On~l(w) - O(n+~)~/(w) + O(~+l)~/(w) 

= ~ Oi~ (1 (w) - O~ / (w)) + O(n+l)~ / (w). 
i = O  

Hence letting n --> co, 
r 

l(w) = ~ o~(l(w) - O~ l(w)) + /~176  
i = 0  
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except for a k-negligible set. Moreover / * ( w ) : / ( w ) -  O~[(w)~O excep~ for 
k-negligible set. 

We next  show that  F ~ is the largest k-invariant minorant  of [. In  fact ff 
g is a k-invariant function and / ~ g, then 

f - g > 0  
and therefore 

which implies tha t  
o ~  (! - g) >= 0 

]~--g~O.  

Nk [1, [1 ~ O,/~o e I k, is another decomposition of [ we have I f / - - - - / F +  * * 

Then letting i --> oo we obtain 

I F  (w) = l ~ (w) 

except for a It-negligible set and therefore the decomposition is unique. Q.e.d. 
This means tha t  the s tudy of superinvariant functions for stochastic chains 

can be broken down into the study of potentials and invariant functions. In  the 
remainder of this paper we wiU restrict our attention to the invariant  functions. 

4. Invariant Functions and Harmonic Functions 

In  this section we study certain subalgebras of the invariant functions. The 
functions in these subalgebras have some properties in common with the ordinary 
harmonic functions and are used in Section 6 to obtain a Feller boundary. 

In  section 5 it is noted tha t  in the case ofa  Markov chain {Xn} the set of harmonic 
functions is isomorphic to the set of invariant  functions. However, for a Markov 
chain the harmonic functions have another crucial property,  namely, ff / is a 
bounded harmonic function then /(Xn) is a martingale and hence converges 
a.e. as n -~ r In  general this is no longer true but  this idea will provide us with 
a natural  way of decomposing the algebra of invariant  functions. 

For  a given positive integer p let M(Qv) denote the set of bounded real 
valued functions on Qp. Let  ] ~ M(Qp) and consider the sequence of functions 
on f2 defined by  [n(W) -~ On~f(Xo(w) .... .  Xp-l(w)). I f  fn(w) converges a.e. to 

/(w), we write [ ,  J~(Qp). Then t-(w) is a p-invariant function. We denote the 

correspondence between functions [ e  31(Q~) and [ e Ip  by  ] - r  A function 
in the class 

is called a p-harmonic function. 
In  this paper  the y-harmonic functions, p = 1, 2, 3 . . . .  , play the role for 

stochastic chains which the bounded harmonic functions play for Markov chains. 
We introduce the following norms in M (Q~) and L~o (~0,~) ; 

[l[l[ = s u p  l/(x)l for ]eM(Qp), 
X E ~  

and 

II [ l l~  = inf{2 : I ]-(x)l g ~ a.e.}. 

Z, Wahrscheinlichkeitstheorie verw. Geb., ]~cl. 5 9 
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Two functions / and g in M(Qp) are equivalent, / -~  g, i f / ' + ' + 7  and g -~+ l .  

This relat ion is clearly an equivalence relat ion on ~I(Qp). I t  is clear t h a t / - - - - + ]  

induces an isomorphism between [2~(Qp)] and [I~P] where as usual [.] designates 
the set of  equivalence classes. In  order  to simplify nota t ion  we write /(w) for 

/ (Xo(w) . . . . .  Xp - l (w) )  when /aM(Qp) .  
Proposition 4.1_I~ is a vector lattice containing the constants. 

Proo]. I f  ] ~ ] and ~ is a real constant ,  then ~]----+ g]. Since 1 ~ 1 i t  follows 

tha t  I f  contains the constants.  Moreover Ip p is a vector  space since i f / 1  ~ ]~ 

ana l~ " ~  1~ then l~ + / 1 - ~ +  l ,  + ~. 
We adopt  the following nota t ion:  

h A/2 (x) = rain (11 (x),/2 (x)), 
l l  V/2 (x) = max  (11 (x), 12 (x)). 

Le t  us now show tha t  i f  h ----+ 71 and h " -~  72, then 11 A/2 "-~]~ A ]~. I f  for example 

]~(w) > ]~(w), then  for sufficiently large n, OnPf2(w)> On~/l(W) and hence 

0 n~ (11 A 12)(w) ---- 0n1911 (w) -+ f l  (w) = 1] (w) A h (w). 
Moreover if L (w) = [~(w), then it is obvions that 

0 n~ ( h  A/9=) (w) -+/~ (w) A 72 (w). 

A similar result  holds f o r / 1  V 12. Q.e.d. 
]Proposition 4.2. 

(i) I] 7@ 1~ and I] ~I = = K, then there is a ]unction / e 2~ ( Qp) such that II/ [l ---- K 

and ] . ~  ]: 
( i i)  i-f{llgll : g - ~ / }  ----K. 
Proo]. (i) I f / ( w )  < g and g-~-~/,  then  OnPg(w) -->/(w) and therefore for 

sufficiently large n, OnPg(w) < K. I t  follows tha t  (Onpg A K)(w) -+ [(w). More- 

over if OnPg (w) -+ K, t ha t  is, T(w) ---- K, then  clearly (Onpg A K) (w) --> K. Hence  

for all pa ths  w for wh ich / (w)  <= K, (OnPg A K) (w) --> ](w). Since the set of paths  

for  which /(w) > K has measure zero, g A g - ~  ]] Similarly g A g V --  K ----> 
which yields the result. 

(ii) Assume the contrary,  t ha t  is, g---->Twith [IgI[ - -  K --  s for some e > 0. 

Then  Onpg(w) --> ](w) ~ K -- s for all bu t  a null set of w which contradicts  the 

definition of  II Ill| Q.e.d. 
Proposition 4.3. /~  is an algebra o/]unctions. 

Proo/. Let  ]---~], g ,-.--> ] with I[ ]iI co _--< K and ]1 g]loo ----< K.  ]3y Proposi t ion 4.2 
we can assume tha t  I] g I[----< K and ]1 ] ][ G K. Given ~ > 0 there is an iV (w) (for all 

bu t  a null set of w) such tha t  for n >~N(w), [OnP[(w) -- l(w)[ < s  and I Onpg(w) -- 
- -  g(w) l < s. Then  for n _>_N(w), 

10~  ](~) g (w) - f(~) ~(w) l 
G / O n ' / ( w )  �9 O"~ g (w) -- On~ g (w) " /(w) 

+ o -  g (w) . f (~) - i(w) . ~ (w) l 

=< I 0 ~  g (w) I l 0n~ / (w) - ] (w) 1 + I [(w) l- I 0-~ g (~) - 5(w) l 
~ 2 K s .  
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Hence (0n~/ .  g) (w) -+ f(w)- ~ (w) except for a null set of w. Therefore / .  g ~ f .  ~. 
Q.e.d. 

Proposition 4.4. Let A be a subset o] Qp. Then Z~ E M ( Q~) i /and  only i / the set 

A ~= {w : (XrP(w) . . . .  , X(r+l)p-z(w)) ~ A i.o. (r) and e Q~ - -A  i.o. (r)} 

has measure zero. The notation i.o. (r) stands/or ,,in/initely o/ten in r". 
Prop]. On~ Za (w) converges if and only ff Onp w visits only one of the two 

sets A and Q p -  A infinitely often. Hence Onp Z~ (w) converges a.e. ff and only 
if A has measure zero. Q.e.d. 

Let  ~p be the class of sets A c Qp such that  Za e )/~r (Qp). The following result 
is immediate. 

Proposition 4.5. Let A ~ ~ .  Then Z~ ~ 0 i] and only i/ {w: (Xr~ (w) . . . .  , 
X(r+l)~-l(w)) cA ]or all su//iciently large r} has measure zero. 

The class of transient sets, ~ ,  is the class of sets A c Qp such that  Z~ ~ 0. 

Proposition 4.6. I / A  ~ ~ *  and Z~ E I~, then there is a set A ~ ~ such that 
Za ~ %~. 

Pro@ Since Z~ ~ Iv there is a function /~3~(Qp) such that  / " ~ Z a .  We 
will next  show that  if A = {x : ] (x) > e} for some 0 < s < 1, then %~ ~ %~. I f  
Onv/(w) --> O, then for sufficiently large n On~/(w) < e and therefore Onv Za (w) -+0. 
On the other hand if Onp/(w)-+ 1, then for sufficiently large n On~/(w)>e 
and then On~ Zz (w) -+ 1. Q.e.d. 

Proposition 4.7. I] Z~ ~ Z~ and Z~ ~ Z~,  then Z~r~z~ ~ Z~xn~" 

Prop]. This follows immediately from the proof of Proposition 4.3. 

I~ote tha t  since I~ is algebra which contains the constants the set of z / such  
that  Z2 ~ I~ forms an algebra of subsets of ~p*. In  Proposition 4.11 we prove 
that  this algebra of subsets is actually a a-algebra if the stochastic chain is such 
that  all finite subsets of Q" belong to ~ .  A stochastic chain having the latter 
for some p must have it for all p and is called a transient chain. 

Proposition 4.8. I] the chain is transient and / ~  [, there is a sequence o] 

/unctions [~ ~ M(Qp) such that ]~ .-~-->f and such that Spt(/~)"~ ~ where Spt(]i) 
stands ]or the support o]/~. 

Prop]. This follows immediately since ff we define /~ ~ ] for all but  i given 

points in Spt (]) and = 0 at the i given points then/~ ~ f and Spt (/i) ~ ~. 

Proposition 4.9. I /A1  (~ ~ = ~o, g~,-~-  Z~ and Z~,-~--> Z~,  then ZA~-~'-"+ %~. 
In  other words A~ and A2 can be chosen so that A1 ~ A2 ~ ~. 

Prop]. This follows immediately since the, set of paths which visit both A~ 
and A 2 infinitely often must form a p-negligibie set. 

Proposition 4.10. Assume that the stochastic chain is transient and let ] be a 

/unction in I~ such that If(w)] ~ s or [(w) = 0 except /or a p-negligible set o/ 

path. Then ]or any ~7 > 0 there is an /~---> f such that the set (w : On~ w e S p t ( / )  
/or some n, Onp gspt(/)(w) - ~  1} has measure less than ~7, 

Pro@ An argument similar to that  used in Proposition 4.6 shows that  / 
can be chosen so that  either 1 / (x) I ~ s or / (x) = 0. But  then the set of paths 
which visit both Spt(/)  and { x : / ( x ) =  0} infinitely often has measure zero. 

9* 
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By Proposition 4.8 there is a sequence/~ ~ [such that  [1 = f, Spt ([i) = A~ c Spt ([) 
and such that  A~ ~,~ ~. Let  

B j  = {w : w visits Aj for some ] ~ J ,  ZA~(W) - ~  1}. 
But  

B j  ~ Bo~ = {w : w visits infinitely many Aj, XA~ (w) ~-~ 1 for any j} 

c ( w : w  visits Spt(/)  i.o., gsp~(1)(w) + 9  1}. 

Hence P(Bj )  "N 0 and therefore there is some J such that  P(Bj )  < 7. Then 

P({w :w visits A j ,  )~Aj(w) - ~  1}) < ~1 

SO t h a t / z  satisfies the requirement of the proposition. Q.e.d. 

Proposition 4.11. I] the stochastic chain is transient, then , ~ * - { A  :z] ~ ~p*, 
ZTJ ~I~} is a a-]ield. 

Pro@ I t  has already been shown that  ~ *  is an algebra of sets. Hence it 

~ *  i = 1, 2, 3, and A~ (~ A1 = ~ for i =~ ] then suffices to show ~hat if ~l ~ -~  . . . .  , 
o o  

*. 
i = 0  

By Propositions 4.6 and 4.10 there are sets Aie  Q~ such that  ZJ, ~ ZT~, and 
such that  

P ( { w : w  visits A~, X~(w) ~-~ 1}) < 2 -4. 

I t  will suffice to show if the zJ~ are chosen so that  the above applies, then 
o o  c o  

g~, ~ ~, g~,. I f  X~, (w) = 1, )/~j (w) --> 0 for i .  ] except for a p-negligible set 
i = 0  i = 0  
of w. Hence it  suffices to show that  if 

)/2j(w)-=0 for i4: j ,  then OnP~Z~j(w)-->O 
] . i  

except for a p-negligible set of paths. 
But  

{w : g~, (w) = 0 for ] .  i, OnP ~, )~, (w) -[+ 0} 
j . i  

-~- {w:w visits Aj i. o. (j), g~j (w) --> 0 for each j .  i} 

c lim sup A i, 
~--+ao 

where A1 is the event tha t  w visits A~ but  does not eventually remain in A~. 
But  by the choice of the sets A j,  

and therefore by the Borel Cantelli lemma, 

P({lim sup AI}) = 0. 

But  since 0P {lira sup A~} -~ lim sup A~, this implies tha t  it  is p-negligible. 

c ~  

Therefore ~,Z~(w)--> 1 if and only if Z~(w)--> 1 for some ] except for a 

p-negligible set of w. Q.e.d. 
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Corollary. I /  4 ~ ~ *  and As (~ ~.  = ~ /or i # ], then there are sets Aj in 
~ such that Ai ~ Aj ~- q~ /or i r } and such that Z~ " ~  Z~" 

Proo]. Let A', ~ A i -  ~ J d j  where the sets A~ have been chosen as in the 
j . i  

proof of the proposition. Then it follows easily from the proof of the proposition 
tha t  g~;- ~ ' ~  Z~," 

Proposition 4.12. I / t e  lp,  then [ i s  measurable with respect to the a-/ield ~ * .  
Prool. I t  suffices to show tha t  {w: ~w) > a} ~ ,~p* for any real number a. 

Let  rl  and r2 be any two real numbers such tha t  rl  < r2 and 

P ( {w : /(w) = rl } W {w : [(w) = r2} ) = O. 

We first prove tha t  .4 = {w: r l ~ / ( w  ) ~r2} e a p$. I f  1-..+I: let a = {x: r~_< 
</(x )  ~rp}.  Since {w: 0nP w e A i.o. (n) and OnP w e A e i.o. (n)} c {w : Onpl(w) ---> 
-->rl or r2} ~J {w: Onp/(w) does not converge} which has measure zero, g~ ~ g~ 

and hence A e ~v , .  
Given any real number  a there is a countable set of real number  rl, i = 0, :~ 1, 

2, . . . ,  such tha t  
ri < ri+l 

P (w :/(w) -~ r/) : 0 for each i, 
and such tha t  

- ~ o o  

{w: s > a} = U {w" r, __< i'(w) S r,+,}. 
i = - - o c ,  

Hence {w: [(w) > a} 6 ~ *  since each of the sets on the right hand side belongs 
to the a-field ~p*. Q.e.d. 

Finally we obtain the following result which completes the proof tha t  I~ 
is the set of bounded real functions on ~2 which are measurable with respect to 
Sp*, tha t  is, I ~ = L ~ ( ~ p * ) .  The equivalence classes [Ip] are therefore equal 
to ~ (,~*). 

Proposition 4.13. I /  the stochastic chain is transient and i/ T is a bounded real 
valued [unction measurable with respect to ~p*, then [6  1 p. 

Pro@ Given [ there is a monotone increasing sequence of simple functions 

/n e Ip such tha t  I] Tn - -  [11 r < n-l-  (Recall tha t  a simple function is a finite linear 
combination of indicator functions of sets.) By Propositions 4.6 and 4.9 there is 

a monotone increasing sequence of simple functions [n ~ M (QP) such tha t  [n ""-> in. 

I f  ] ---- lira ]n, then it is easy to verify tha t  / ~  f Q.e.d. 
n - - >  oo 

5. Three Examples of Stochastic Chains 

In  this section the set of invariant functions is studied for three particular 
types of stochastic chain. The first example provides us with a chain whose in- 
var iant  field is non-trivial but  whose only p-harmonic functions for any finite p 
are the constants. The second example is tha t  of Markov chains in which ease 
there is an isomorphism between the set of invariant  functions and the set of 
bounded harmonic functions. The last example is tha t  of a chain which satisfies 
the semi-group property in which ease we investigate invariant  functions which 
arise from ergo~lie averages of functions on the state space. 
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E x a m p l e  1. Let  Q = {0, 1, 2, . . . ,  9} and let (tO, ,3 "~ be defined as usual. 
The measure P is concentrated on two paths wi and we, P ({wl}) = P ({w~,}) = 1/2 
where wl and wg. are defined as follows. 

w i =  (1,2, 3, 

tha t  is, wi is given by  the digits 
decimal notation. 

W2 

. . . .  911,0,1,1,1,2,1,3,...) 
in the sequence of p o s ~ v e  integers written in 

= ( 2 , 1 , 4 , 3 , . . . )  

t ha t  is, w2 is given by  the digits in the sequence in which the nth  even integer 
is followed by  the nth odd integer written in decimal notation. 

Since for On~l(Xo(w), ..., X~(w)) to converge a.e. [ must  be a constant, 
I~  contains only the constants. However  if  for i = l, 2, 

/ / (w) =- 1 i f  (X~(w) ,  X n + l ( w )  . . . .  ) = (Xm(*v/), X m + l ( w d  . . . .  ) 
for some m and n 

= 0 otherwise 

then [~, i = 1 ,  2, are 1-invariant. Moreover since f~(wj)=~i, {w: fl(W)=[2(w)} 
is a 1-negligible set and therefore I i is non-trivial. This provides us with an example 
of a stochastic chain with non-trivial invariant  field but  whose p-harmonic 
functions are the constants for each p. 

Note that as it stands this chain has a singular tail field. However it can be 
changed into a chain with non-singular tail field by modifying P so as to give 
positive probability to O n w~, i = l, 2, for every positive integer n. 

Example 2. Consider a stochastic chain (to, ~ 0,~176 P) for which Q is count- 
able. The chain is said to have stationary transitions ff 

OP(BI,~m,n)= P(OB],~m+i,n+i), n>=m, B~,~n+i,r 

The chain is said to be a Marlcov chain o] order N if P(B] ~o,n) is measurable 
with respect to ,~(n-~0v0,n for any B e ,~+1.~.  A Marker  chain of order zero 
is simply called a Markov chain. I t  is well known tha t  a Marke r  chain of order N 

is defined by  a "transit ion mat r ix"  /3 on Qer (See the discussion of transition 
functions in example 3.) 

Proposition 5.1. For a Marker  chain of order N, 
(i) 1~ = I iv and 

(fi) [I~] is isomorphic to H~V= {/:[~M(Q~), f i / = / } ,  tha t  is, there is a 
one to one linear, order preserving mapping of [I~v] onto H N. (BSACKWELL [1].) 

Moreover the mapping from [I~] to H ~v is given by  

/ (x0, . . . ,  x x - i )  = E (y[ X0 . . . . .  X N - 1  = xN-1)  

and the inverse of this mapping is given by  ] ---+ ]. 
Proo[. This result is essentially Theorem 2 of BLACKWELL [1]. 

E x a m p l e  3. F E L L ~  [7] and ROSE~-]3LiTT and SL]~PIAN [12] have given 
examples of non-Markovian chains with the semi-group property,  tha t  is, chains 
which satisfy the Chapman-Kolmogorov equation. In  this section we study a 
generalization of this class of stochastic chain. 
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Consider a stochastic chain (~2, ~o,~, p )  with s ta t ionary  transitions. Le t  the  

transi t ion functions 1 5 ( . .  ) be defined by  

# ( x ~  . . . .  , ~ n - r l x n - r - 1  . . . . .  ~ - r - ~ )  

~" P ( X n  = Xn . . . .  , X n - r  = X n - r  ] Z n - r - 1  = X n - r - 1 ,  . . . ,  X n - r - p  ~- X n - r - p ) .  

Note tha t  the expression on the r ight hand  side of this equat ion stands for the 
conditional probabi l i ty  with respect to ~ n - r - p , n - r - ]  evaluated on the 
~ n - r - p ,  n-r - i .measurable  set 

{w : X n - r - 1  (w) = Xn-r-1 . . . . .  X n - r - r  (w) = x n - ~ - r } .  
We also set 

t t~ ( X o , . . . ,  x~)  ~-- P ( X o  -~ xo . . . . .  X ~  ~- xp)  

= ,  (xo) # (~l l xo) # (~2 [ ~ ,  xo) . . . # (x~ i x~-~ . . . . .  ~o). 

Since it has been assumed t h a t  the chain has s ta t ionary  transitions, it follows tha t  

# ( x n  l xn-1  . . . . .  x~-r)  = S x 0 . . .  z. . . . . .  # ( x ~  I ~n-1  . . . . .  ~0) x 

X [~n-r-1  (Xo . . . . .  X n - r - 1 ) .  

The stochastic chain is said to be n - m u l t i p l i c a t i v e  if 

P (X(k+l )n  --~ X ( k + l ) n , . . . ,  X k n + l  ~-  X k n + l ] X n  ~ Xn . . . . .  X 1  = Xl) 

= E~+~...  Z ~  P(x(~+i)n, �9 �9 x ~ + i  ( xkn, . . . ,  x~-i)~+l) �9 �9 �9 

#(xp., ...,x.+~]~. . . . . .  , xO.  (5.1) 

This condition is equivalent  to saying tha t  the stochastic chain viewed as a chain 
on the state space Qn has the semi-group proper ty  or, alternately, satisfies the 
Chapman-Kolmogorov  equation. 

I n  general 

P (X(~+i)n --~ x(~+i)n, . . . ,  X ~ n + i  = X ~ n + i l X n  ----- Xn ,  . . . ,  X i  ~-- xi) 

---- Z x ~ , . . .  r x , + i  F (x(/~+l)n [ x (k+ l )n -1  . . . . .  Xl) X 

X F(X{/c+l)n-2 [X(k§ . . . .  , X l ) . . .  #(Xn+l I Xn . . . .  Xl ) .  

Hence the condition for n-mult ipl icat ivi ty in terms of  t h e / ~  is given by  

Z ~  ...  Z~§ x(~+i)n-i . . . . .  x ~ + i [ x ~ , . . . ,  x(~-i)~+i) .. .  
^ 

P (x2n, . . . ,  Xn+i t xn  . . . .  , xi) 

= Sx~ , ( . . .  Sx~+i F (X(/c+l)n ] X(/c+l)n-1 . . . . .  Xl) .. �9 

A function ] e M ( Q p )  is said to be p-regular, p ~ 1, 2, 3 . . . . .  for the stochastic 
chain if 

] (x0 . . . .  , xp-i)  ---- Z ~ . . .  Xx~_~ / (xp . . . . .  xpp-i) P (xep-1  . . . . .  xp  I x p - i  . . . . .  x o ) .  

The class of  p-regular functions is designated by  ~p .  
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Proposition 5.2. I] the stochastic chain is m-multiplicative and ] ~ am, then 
the conditional expectation E ( f ( X p m  . . . . .  X(p+l)m-1)l,~~ is equal to 
1 (Xo (w) . . . .  , Xm-1  (w)). 

Proof. I f  Xo (w) = xo . . . . .  X m - 1  (w) = Xm, then 

~ 0  2~(/(X~m,.. .  , X(p+l)m_l)]~ ,m)(w) 

= ~ . . .  Z~,~+,)~_~ f(x~m . . . . .  x(p+l)m-1) x 
A 

X P (x(p+l)m-1 . . . .  , Xpm]Xpm-i . . . . .  x(p-1)m) ... 
A 

P (X2m-i . . . . .  Xm ] Xm-i . . . . .  xo) 

by the m-multiplicative property (5.1). By using the defining property of ~}~m 
it follows that  

E ( { (X~m . . . .  , X(,+i)m-i)  I "% m) (w) = f (x0, . . . ,  xm-i). Q.e.d. 

Proposition 5.3. I f  the stochastic chain is m-multiplicative, then there is a 
linear nutpping /tom [im] into am. 

Proo/. Let f e  1~. Then there is some [ e ~ ( Q m )  such that  ! - - ~  !~ that  is, 

Onm! --->[a.e. a s  n - ~  c<). B u t  if  n >  2, 

E (E (0 nm !] ~m, 2m-i) ] ~0, m-i) = E (0 nm ]] ~0, m) 

by the m-multiplicative property. Letting n --~ c~ and using the bounded con- 
vergence theorem we obtain 

E ( E ( / I  ~m, 2m-1) ] ~o,m-1) = E ( / i  ~o,m). 

In other words if  ] ' ( x o , . . . , X m - 1 ) ~ E ( ~ X o = x o , . . . , X m - l = X m - 1 ) ,  then [' 
satisfies the equation 

f ' ( x o , . . . ,  Xm-1) = ~ / ' ( X m  . . . . .  x2 m-i) P ( x 2 m - Z , . . . ,  Xm]Xm-1 . . . . .  Xo). 

Finally it  is clear tha t  the mapping [ - +  f' is linear and also order preserving. 
Q.e.d. 

To gain a little more insight into the role of am for m-multiplicative chains 
we now show that  E (. ] ~0, m-l) maps a subset of I m which contains 1~ onto !Rm. 

A stochastic chain is said to have the m-ergodic average property if for every 
N - - 1  

!eM(QP) ,  l i m N - Z ~ / ( O m ~ w )  exists a.e. I f  the limit exists it  must belong to 
2V--> oo n = 0  

Im. I f  the stochastic chain has the m-ergodic average property, let 
N - - 1  

J~  ---- {[: ]~e I m  [ =  lim N-1 ~/(Omnw),  [eM(Qp)} .  
.57---> oo ' n , = O  

I t  is easy to verify tha t  
I~  c Jm c I . 

Proposition 5.4. I] the stochastic chain has the m-ergodic average property, 
then E( .  1~ ~ maps J~  onto ~Rm. 

Proof. I f  f ~ am,  then 
2V--1 

lira N-1 Z / (0~ ~ w) -+ [ a.e. 
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and ] ~  J~ .  Moreover using the m-multiplieative property it is easy to verify that  

E([J X0 = x0, . . . ,  Xm-~ = xm-1) = / ( x 0  . . . .  , x~-l)  

which implies tha t  the mapping is onto. 
I t  remains to show that  E (. I~ 0, m-l) maps every function in J~  into ~m. 

If  ] ~ M(Q m) then by the m-ergodic average property 
N--1 

lim N-~ x f(0m~ ~ ) + 7  a.e. 
~hr---> co n ~ 0 

jq~ and ] e J,~. But  

N--1 
= ~m E (E (N-~ ~ ! ( 0 ~  w) 1 ,~,  ~-~) I ~o, ~-~) 

IV--+ co n ~ 0  
and 

2q--1 
E (E (N-~ ~, ] (Omnw) ] ~m,2m-~) ] ~o,m -~) 

n ~ O  
.57--1 

= E(~V - 1 ~ 1 (  0mTt w)  l ~ ~  2f_ ~]V-1 ~ ( E ( / ( w )  l ~ m , 2 m - 1 ) [ ~ 0 ,  m - ] )  

by the m-multiplicative property. Letting N -+ co it follows that  

E (~ (/1 ~ ,  ~ -1 )  I ~~ ~-1) -- E ( ~  ~0, ~-~). 

Hence if 1'(~0 . . . .  , ~ _ ~ ) - - E ( [  IX0=x0  . . . .  , X ~ _ ~ = x , , _ ~ ) ,  ~hen ] ' + ~ , . .  Q.e.d. 

6. The Feller Boundaries 

In this section a Feller boundary is constructed for I~ which plays a role 
similar to the role played by the Marker  chain Feller boundary for the ordinary 
bounded harmonic functions. Throughout the section it is assumed that  the 
stochastic chain is transient. The method used to construct the Feller boundary 
is similar to tha t  used by F]~LL]~R [6] for Marker  chains, the difference lying in 
the fact tha t  we prove the necessary statements by using the properties of 1~ 
rather than the ordinary harmonic functions. The Feller boundary for Marker  
chains has also been studied by KEXDALL [10] and F]~LDMA~ [5]. 

Before beginning the actual construction let us describe what is to be done. 
A set Fp is found and the disjoint set union Qp w Fp is topologized in such a 

way that  every function in J I (Q, )  can be extended to a continuous function on 

Q p w F p .  Moreover two functions [ and g in M(Qp) have the same boundary 

values if and only if ]~--+ l a n d  g ~ ] f o r  some ]-~ I~. Finally the discrete part  
of the boundary is studied and an integral representation for functions in I~ 
is obtained in terms of the discrete boundary. An excellent reference for the 
material on Boolean algebras which is used in this section is I-IALMOS [8]. 

Let  S~ be the set of non-negative extreme elements of the unit sphere in 
[I~]. These can be identified with elements in the measure algebra of ~ * ,  tha t  
is, an element in Sp can be identified with the equivalence class of an indicator 
function of a set in ~ * .  I f  e is the equivalence class of the function which is 
identically 1, then S~ is a complete Boolean algebra with unit element e under 
the operations A, V. Moreover it is easy to show that  there is a lattice isomorphism 
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~p/Sp --~ Sp. In  the case of Markov chains this fact was pointed out by  KE~- 
DXLL [10]. 

Recall tha t  a subset A of Sp is an ideal if  

(i) OeA, 

(fi) Sl EA and s zaA  implies tha t  sl V s2~A, 

(iii) sl ~A and s2 a s p  implies tha t  sl A s2 EA. 

The ideal is maximal if  the only ideal containing A as a proper subset is Sp. 
Following FEL~E~ [6], Yp is defined to be the Stone space of Sv, tha t  is, 

2"~ is the set of maximal ideals topologized by  taking sets of the form 

{va~p :s~v}, sash, 
as a subbasis for the open sets. I t  is well known tha t  / ~  is an extremely dis- 
connected compact I-Iausdorff space, [8]. 

Proposition 6.1. I / s  a sp  let 

~ b ( s , y ) = l  i/ y e F p  and s a y  

= 0  i/ ) , eFp and s ~ y .  

Then ]or each s ~ Sp, •(s,.) is a continuous /unction on Fp. Moreover 4 ( . , . )  
can be extended uniquely to a mapping i / I ~  onto C (I~p), the set o/ continuous real- 
valued /unctions on I~p, which is a linear lattice isomorphism and which is also 
norm preserving when C(I'v) is/urnished with the supremum norm. 

Proo]. This follows immediately since linear combinations of step functions 
are dense in C(Fp) and linear combinations of elements of Sp are dense in Iv  p 
in the essential supremum norm. Q.e.d. 

We introduce a topology on / 'p w Qp as follows. A set A c I'p u Qp is open 
if to each maximal  ideal ~ ~ A there is a set LJ a ~p such tha t  [Z~] ~ y, zl c A,  
and such tha t  A contains every maximal  ideal fl such that  [ ~  J a ft. (We write Z~ 
for [Zh] in places where it  is clear what  is meant.) 

Alternately we can introduce the topology by  letting Fp and Qp have their 
original topologies and topologizing their union so tha t  

x ~ r e F  p a s  n - +  ~ 

if  and only if  for any Zd a M(Qv) such tha t  r  y) ~ 1, xn E A for sufficiently 
large n. 

We use the first definition in the sequel; the fact tha t  the two formulations 
are eqnivalent follows from Propositions 6.3 and 6.4. 

N o t a t i o n a l  R e m a r k :  The notation Z~ denotes the indicator function of 

a set z / a  ~v ~*, whereas Zz stands for the function in I w induced by  the indicator 
function of a set z] ~ ~p. 

Lemma 6.1. t'or any maximal ideal y and ~ a ~ *  either Z~ or ;!~o must belong 
to y. 

Proo/. See HALLOS [8J. 

Lamina 6.2. I1 y is a maximal ideal and Z~ ,  Z~ ~ y, then "Z~n~ r Y. 

Proo]. Since ~ is maximal,  ) ~  ~ y and Z-~ ~ ~ by  Lemma 6.1. I f  zl~ and 

~2 are the sets of ~ *  which correspond to ~]1 and 32, then Z ~ i  ~ 7 and 
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hence %~lnG ~ 7. But  by  Proposition 4.7, %~1nA2"+ Z ~ n G  and therefore the 
result follows. Q.e.d. 

Proposition 6.2. f '~ w Qp is a Hausdor]] space and Q~ is a dense subset. 
Proof. We first verify tha t  Fp ~J Qp is a topological space. By the definition 

of an open set it follows tha t  the union of open sets is open. Hence it remains to 
show tha t  ff 01 and 02 are open sets then 01 n 02 is open. Since every subset 
of Qp is open there is nothing to prove if 01 (~ 02 c Q~. I f  y e 01 n 02 n J'p 
let Ai, i ~ 1, 2, be the sets contained in 0i ,  i ~ 1, 2, such tha t  ~ d ~  Y. Then 
by  Lemma6 .2  Z ~ n & ~ Y  and thus in particular ~ n & : ~ 0 ;  in addition 
A1 (~ A2 c 01 n 02. Moreover if  7o is a maximal ideal such tha t  ~(A~nd~)o ~ y0, 
then Z~i ~ y0 and ~s~ ~ y0 so tha t  70 e 01 n 02. Hence 01 n 02 satisfies the 
definition of an open set. 

The separation axiom is immediate for two distinct points of Qv. Moreover 
if y ~/ '~  and x e Qp, then y has a neighborhood not containing x by  Proposition 4.8. 
Hence it suffices to prove the separation axiom for two distinct points yl and 
y2 of ff~. Since yl  and y~, are two distinct maximal ideals there is a set A e ~p 
such tha t  ~. ~ yl and Z,j r )J2. Moreover no maximal ideal contains both ~,j and 
Za~ Let 

and 

Then 01 and O~ are disjoint open sets such tha t  y l  e 01 and y~ e Oz. 
The fact tha t  Q~ is dense follows immediately since by  definition every 

neighborhood of a point i n / ' ~  contains a point of Qp. Q.e.d. 

Proposition6.3. Let ZA e M(Q~).  I] x n - + y o  as n - ~  co and x n e  QP, then 

and 

(ii) ZA(X-)~O q ;~e70. 
Proof. Assume tha t  x~ --> yo as n -+ c~ and tha t  Z~ ~ yo. Consider the open 

set 0-~A u {y : y ~ / ~ ,  ~Ao ~ 7}. By Lemma 6.1 Z ~ e  yo and hence 70 e 0. In  
addition %A (X) : 1 for all x ~ Qp (~ 0 and therefore %A (Xn) -~ I as xn --> y0. 

Replacing A by A c a similar argument yields (ii). Q.e.d. 

Proposition 6.4. I f  f is any /unc t ion  in d~(Qp) such that ]'-"+~Z~, then ] has 
the same boundary values as ZA. 

Proof. Assume tha t  xn--> V0 and Z~ ~ y0. Then 

for sufficiently large n (c. f. Proof  of Proposition 4.7). Therefore lim f (Xn) -~ 1. 
A similar argument holds ff Za ~ 70. Q.e-d. ~,~-~7o 

Proposition 6.5. I i f e M ( Qp), then / has continuous boundary values on 1"~. 
N 

Proof. I f  f---+ t e I~ v, then there is a simple function ~ ~l Z~ such tha t  
N i = l  

]1 ]~-- ~ :r ;/~, 1!~ < e and such that  the zJ~ are disjoint. Then by  Proposition 4.2, 
i = l  
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2V 
/ and ZA, may  be chosen so tha t  / ~ ], Zm " ~  ZA, and ] l / - -  ~ ~i Z~, ]1 < e. Since 

i = 1  
](y) is then the uniform limit of continuous functions, it is continuous. Q.e.d. 

Corollary. Two/unct ions ] and g in dkI (Qp) have the same boundary values i/ 

and only il 7 and 7/or some 
Pro@ The first half of the s ta tement  follows from the proof of the Proposition 

and Proposition 6.4. To prove the second half  let [ ~ / ,  g ~ ~ and / - -  g > 0 

on a set z] of positive measure. There is some point y ~/*p such tha t  Z5 ~ Y. 
But  then it  is easy to verify tha t  / (y) 4= g (~). Q.e.d. 

There does not appear to be any direct way to relate the b o u n d a r i e s / ~  for 
different values of p. t~owever under certain assumptions it is possible to relate 
the different discrete boundaries of Feller which we now introduce. 

An clement s ~ Sp is said to be minimal if s' G s implies tha t  either s' = 0 
or s' = s. An element s ~ Sp is said to be continuous if  there is not minimal element 
s' such tha t  s'  ~ s. 

Proposition 6.6. S~ contains at most countably many minimal elements. 
Pro@ I f  sl and s2 are distinct minimal elements they correspond to ZS~ and 

Z&, A1, A2 s ~pP*, such tha t  Z~ " Z~ = 0 a.e. Moreover if  ZS~ corresponds to 

a non-zero element of S v, z~l must  have positive measure. But  there are at  most  
countably many  disjoint sets of positive measure. Q.e.d. 

We denote the elements of S~ by  y l ,  ~z . . . . .  By  the corollary to Proposi- 
tion 4.11 it is possible to find At ~ g v  such tha t  the A~ are mutual ly disjoint and 
Zz, ~ "  ZS, where yl is the equivalence class of gS~. 

The discrete ]?eller boundary F~ is the set of minimal elements of S~. 
Qp t.) 1"~ is topologized so tha t  A c Q~ ~) _F~ is open ff for each 7n ~ A c~ I'~ 
there is a set z] c A  (3 Qp such tha t  Z~ ""-> Z~,. 

Proposition 6.7. Qp w _P~ is a Hausdor/] space and the relative topologies on 
both Qp and F~ are the discrete topologies. 

Pro@ The union of open sets is open by  the definition of open set. I / Z z ' " +  Z~, 
and Z ~ " ' ~  Z~, then ZJ' ,~"  ~ ZS,. Hence the intersection of finitely many  open 
sets is open. The fact tha t  two distinct points yn and 7m have distinct neighborhoods 
follows immediately from the above comment  tha t  the A~ can be chosen to be 
mutual ly  disjoint. The fact tha t  the relative topologies on Qp and / '~  are the 
discrete topologies follows immediately from the definition of the topology. 
Q.e.d. 

Proposition 6.8. Q~ w/ '~  c Q~ w/1,~. 
Pro@ I f  y / a F ~  we define a maximal  ideal 7 = { s : s e S p , s A y l = 0 } "  

Then 7l ~ )~ but no other maximal ideal contains Z57. Hence a point ~ ~ ]'p can 
be associated with each y~ ~ / ' ~ .  Moreover zJt ~ yi is open in both Qp k3 ] 'p 
and Qp ~9 ]f'~. Q.e.d. 

Proposition 6.9. 2'he /unction / -- -- C~n ZS~ belongs to the unit ball in (I~) + 

i/ and only i/ 0 ~ ~ <= 1. I[ in addition / ~ [, then [ (x) -+ an as x --> yn. 
I / S p  contains no continuous elements, then every non-negative/unction in the 

unit ball in (I~)+ has this/orm. 
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Proof. I f  0 ~ an ~ 1, then it is clear tha t  ]-is in the unit ball in (I~) +. I f  Xr--+ yn, 
then Xr must  lie in A for any A such tha t  X~ v ~  X]. for sufficiently large r. Hence 

f (Xr) --> ~n. Then ff f is a non-negative function in the unit ball in I~ having 

this form it is clear 0 ~ ~ ~ 1. Finally if / is a non-negative function in the unit 

ball in I~,  [ - ~ / a n d  ] (yn) : an, then 

must  either be zero or correspond to a continuous element of Sp. Q.e.d. 

Corollary. I f  Sp contains no continuous elements, then with probability 1 all 
paths converge to some yn. 

o o  

Proof. This follows immediately since in this case 1 = ~ Z~,- 

For the purposes of comparing the boundaries Y~ for different values of p 
it is convenient to introduce a slightly different topology on Q~ w / ~ .  Let  An 
be a set in E~ which corresponds to 7n and assume as above tha t  the An are 
mutual ly disjoint. Note tha t  it is possible to choose the An which correspond 
to points o f / ~ m ,  m = 1, 2, 3 . . . . .  so tha t  each such A ,  is contained in one of 
the corresponding sets f o r / ~ .  That  is, if  we denote by J ~  the sets o f ~  correspond- 
ing to the points in Y~, then the A~ can be chosen so tha t  _~A pm c (A~)m~ ~ m  
for some r. In  the following section we assume tha t  the p = 1, 2, 3, . . . ,  have 
been so chosen. 

Given a set J n corresponding to a point o f / ~  there is a subsequenee/J  n ~ T 
such tha t  Z,~, ~ Z~, for each i. In  fact i J  n can be chosen to be A n with i given 
points deleted. 

The modified topology on Qp w Y~ is defined as follows. A set A c Q~ w / ~  
is open if to each yn a / ~  there is some i such tha t  iAn c A. This topology is 
a weaker topology than the former. To prevent confusion we denote by  (Q~ w / ~ ) *  
the space with the modified topology. 

Proposition 6.10. (Qp w Y~)* is a Hausdor]] space with a countable base of 
open sets. 

Proof. The proof of the first par t  follows in the same way as the proof of 
Proposition 6.7. The fact tha t  there is a countable base of open sets follows 
immediately from the definition. Q.e.d. 

Note tha t  since the modified topology is weaker than the original topology, 
the corollary to Proposition 6.9 remains true for the modified topology. 

7. Relations between the I~ and the Limit Boundary 

In  the previous sections the I~ are studied for a fixed integer p. In  this section 
the relations between the I w for different p are investigated. 

The functions in the intersection I~ n I n, designated by  I~, are the bounded 
real-valued functions measurable with respect to the a-field ~n* rh ~ * .  

Proposition 7.1. I f  the stochastic chain has non-singular tail field then the 
linear, order preserving mapping 

f -->1 + O~f +. . .  + O(n-~)mf 
maps I nm onto I m. 
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Proof. Since the stochastic chain has non-singular tail field every taft event 
of measure zero is p-negligible for every p. But  

o ~ ( / +  o ~ / +  ... + o(~-:),~/) 

= Oral+ o2m/+... + o~,~1 

==/-~Omf ~-'"-~O(n-1)m/ a . e .  

and therefore the mapping takes any  function in Inm into a function in Im. 
I f  / e I %  then / e Inm and hence the mapping is onto. Q.e.d. 

Recall tha t  [IP] and f inn ] are vector lattices. A mapping of one vector lattice 
into another  is called a homomorphism if  i t  is linear and lattice preserving. The 
kernel of a homomorphism is the set of elements mapped into 0. The homo- 
morphism is called a monomorphism if  the only element in the kernel is 0. An 
isomorphism is a monomorphism which is onto. 

Proposition 7.2. There is a monomorphism from [I~] into f inal /or  n = 1,2, 3 . . . . .  

Proof. Let  ] ~ ~p and / ~ ]. Then 

g --~ n - 1  ( / ( x O  . . . .  , xp-1) + " "  + / (x(n-1)p . . . .  , xnp-1)) (7.1) 

belongs to En~ and g ~ I. Hence ]e l~n and therefore 1~ is mapped into I ~  
by  (7.1). I t  is easy to verify tha t  this mapping is a monomorphism. Q.e.d. 

This allows us to gain a little insight into what  is going on. For example 
if A e ~1, then A X A e ~2. On the other hand there can be a subset B c A such 
tha t  ( A -  B ) X  B and B X ( A -  B) both belong to ~ without having B e ~1. 

o e o o o o o o o t o e o o o o o o o o o o o o o e o o t o  

Fig.  1 

e e e e . o .  

7 . e . . o . .  

7 o e . o o . e  

Let  n~ be the subsequence of natural  
numbers given by  the product of the 
first i numbers in the sequence given by  
the diagram (Fig. 1) in which each row 
is the sequence of prime numbers. Then 
we have 

P 

in which the arrows represent monomorphisms. I t  is easy to verify the following 
proposition. 

Proposition 7.3. For any m >=p there is a monomorphism I ~  ---> IPn,~ for some i. 
We now describe the direct limit 

To form the direct limit consider the disjoint set union of the l~,p and define 
the direct limit as the set of equivalence classes under the following equivalence 
relation. I f  n~ < hi, / ~ IPn~p and g ~ IP nip, then / and g are in the same equivalence 
class ( /}  if  / is mapped into g by  the monomorphism from InP,p to I~jp. The set 
of equivalence classes is made into a vector lattice by  letting 

( / )  + (g) = ( / +  ~), 

{~/> = ~{[} for a real constant ~, 

{1) A {g} = { I  Ag)  
where both / and g are taken to be representatives of { / )  and @} in the same I~,~. 
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The following proposition suggests tha t  we can think of I~ as the set of 
finite dimensional p-invariant  functions. 

Proposition 7.4. Let ~p* be the (~-sub/ield o / ~ *  generated by the (~-]ields ~P n ~  , 

i ~ l, 2, 3 . . . . .  Then we can imbed fP in 1~ so that 

The inclusions can be proper inclusions. 

Pro@ I f / e  I~,p, then ] e  L ~ ( ~ * ) .  I t  is easy to verify tha t  the mapping 

which maps ( /}  into / e  L~o (~P*) is independent of the choice of the representative 

up to sets of measure zero. Finally it is clear tha t  the mapping (]} -~ ] ~ L ~  (~P*) 

is a monomorphism from Ip  into L ~  ( ~ * ) .  Hence we can identify [~ with the 
image of this monomorphism. 

The second inclusion follows immediately since ~P* is a a-subfield of ~p. 
Q.e.d. 

The fact tha t  the first inclusion can be proper is due to the fact that  IP need 
not be closed under the operation of taking limits. 

In  the remainder of this section it is assumed tha t  none of the Sp contains 
any continuous elements. 

Proposition 7.5. F~ n is a splitting o/~U~. 
Proo/. Let  y~ i = 1 , 2 , 3 ,  be the points i n / ' P a n d  v- . . . .  , 7 i  , i = 1 , 2 , 3  . . . . .  

be the points in/ ,~n. For convenience we use the notation y~ for either the point 
in / '~  or the corresponding minimal function in Sp. Then by  Proposition 7.2 
y~ e Sn~. I f  y~ is not minimal in Sup, then either 7~n A Y~ = yvn or y]n A V~ = 0 
for each ] = 1, 2, 3 . . . . .  Then we can associate with each y~n the unique 7~ 
such tha t  ~ n  v /~ yi = y~n and write this as y~n ~ y~. Conversely we can consider 
the point y~ to be split into the set {r~n: 7~ n ~ y~}. Since ~ A y~ = 0 for i * k 
it follows tha t  these classes are disjoint. Q.e.d. 

Proposition 7.6. Consider the mapping 

: (Q~ t..., I 'F )*  o~to (Qp w F~)* 

de/ined by 
~0 (Wl,  . . . ,  W(n_l )p+  1 . . . . .  W ~ o n )  = (Wl ,  . . . ,  Wp) 

]or points in Q~n 
(~n) = ~ where ~ F " ~  ~ 

for points in I ~  n. Then ~ is continuous. 

Prool. I t  suffices to show that if Xr-+ y~n as r -> r and y~n ~... y~, then 
(Xr) --> ~ as r -+ oo. But this follows immediately from the definitions of the 

topologies on (Qpn t)/'~n)* and (Q~ k)/'w Q.e.d. 

I f  n/ is the subsequence of natural  numbers constructed above then Pro- 
position 7.6 implies tha t  

(QP w / ~ ) *  ~-  (Q2P w F~ p)* ~ - - . .  (Qn~ u r n ~ ,  ~ _ . . .  

is an inverse system of topological spaces in which the arrows represent continuous 
mappings. Let  (Q~O w / ~ ) *  designate the inverse limit of this inverse system. 
The inverse limit is defined as follows. Consider the set of all sequences {x~} such 
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tha t  x~ ~ (Q~*v u/ '~*~)* and such tha t  for each i, ~ (x~+l) = x,. The inverse limit 
is the topological space formed by  topologizing this set of sequences by  taking 
as a base for the neighborhoods the sets of the form ~ a  (A), A open in (Q~*V o/'~*~)*. 
90~ represents the projection of a sequence onto its ith component. 

Note tha t  the relative topology on Q~ is the product topology and tha t  
(Q~ u / ' ~ ) *  is Hausdorff. Note also tha t  i t  is possible to identify Q~ with t9 
so tha t  there is induced a measure on Q~. 

A point w ~ Q~o is said to adhere to the point 7 E / ' ~  if  for every neighborhood 
N)~ of 7 in (Qr u F ~ ) *  there is a positive integer M such tha t  for every i ~ M 
On'w ~Ny.  In  this ease On~w is said to converge to )~. Since (Q~k) F ~ ) *  is Haus- 
dorff, a given point w ~ Q~ can adhere to at  most  one point i n / ' ~ .  

Proposition 7.7. The set o/points in Qr which do not adhere to points in 1 ~  
corresponds to a set o/points in ~ o/P.measure zero. 

Pro@ Since the topological space (Q~ u / ' ~ ) *  has a countable base of open 
sets, i t  suffices to show tha t  the set of paths which leaves a given open set in- 
finitely often has measure zero. In  fact, i t  suffices to prove this for a set of the 

/ ' ~ *  But  ~his follows from the corollary to form ~0~(A), A open in (Qn~V ~j ~ a  + �9 
Proposition 6.9. Q.e.d. 

Since almost every path,  w, adheres to the b o u n d a r y / ~ ,  we may  associate 
this boundary point y(w) to the pa th  and we write w(c~)=)z(w).  I f  w does not 
adhere to the boundary, we write w(c~)~- ~0 where e0 is a new point which we 
adjoin to (Q~ u / ' ~ ) * .  

Let  ~* be the subfield of ~* generated by  the subfields ~ * .  In  the remainder 
of this section we investigate the relation between the functions on / ~ '  and 

the functions on [2 which are measurable with respect to 3" .  
Consider the a-field, ~ ,  of subsets of I ~  generated by  the open sets. I t  is 

clear tha t  P induces a measure on the discrete measure s p a c e s / ~ .  But  (F~ ,  !~ ~176 
is also the inverse limit of the discrete measure spaces. Therefore there is induced 

F ~ an inverse limit probabil i ty measure P ~  on ( d , ~3~176 �9 (See M ~ u  [11].) Let  
~3P be the subfield of ~3 ~ generated by  the inverse images of sets i n / ~ .  

Proposition 7.8. The vector lattices ~r162 and ~ ( ~ )  are isomorphic. 
Pro@ We define a vector-valued measure F on ( / ~ ,  ~ )  as follows. I f  

2 = ~9-1(yP) ,  then F ( A ) =  [ZS~Jeg~(~*) .  As above this measure can be 
extended to a vector-valued measure on (F~ ,  ~3~~ Moreover the measure is 

bounded since the measure of any set lies in the unit  ball in g ~  (~*). (Refer to 
Dv~oRI)  and Sc~wan~z [4] for a discussion of integration with respect to a 
vector-valued measure.) In  addition F is absolutely continuous with respect 
to the measure p~o. 

Let  / be a bounded real-valued measurable function o n / ' ~ .  Then 

.F (I) =- .[ I (woo) F (dw~) (7.2) 

belongs to 9 ~  (~*). Moreover if / and g do not belong to the same equivalence 
class in 9~  (9~) ,  then F(/)  and F(g) do not belong to the same equivalence class 

in g ~  (,~*). I t  is easy to verify tha t  F is linear and order preserving. Hence _~ 

is a monomorphism from s  (~r to s  (~*). 
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Let ]~  I~ for some p. By Proposition 6.9 T induces a continuous function 
on I ~  and thus in turn it induces a continuous function o n / ' ~ ,  say /(woo). (This 

means that  there is a monomorphism from IP into C ( / ~ )  for each p.) In addition, 
/ ( w ) = / ( w ~ ( w ) )  a.e. 

Let /~ be a representative o f / E  ~oo(~*). Then the martingale convergence 
theorem applied to the subfields ~n~, of ~* implies that  there exists a sequence 

of functions {/~} such that  ~ a I ~  and such that  ] = l i m ~  a.e. Since fi(w) 
i - -+  oo 

=/i(wc~(w)) a.e., /i converges a.e: to a measurable function [ on F ~ .  Moreover 
by the bounded convergence theorem for vector-valued measures [4, p. 328] 
and Proposition 6.9. 

[/~(w)] = ~/(w~) F(dw~) .  

Thus every clement in ~ (~*) has an integral representation of the form 7.2 
^ 

and therefore ~oo (!~ ~) is isomorphic to ~r (~*). Q.e.d. 

Proposition 7.9. I /  / E I~ /or some p, then 

lim On~[(w) = / ( w ~ ( w ) )  a.e. 
~--> oo 

Pro@ By the definition of I~ and the sequence n~, One/=/for  all sufficiently 

large i. Since [(w)~/(woo (w)) a.e., the result follows immediately. Q.e.d. 

Proposition 7.10. Assume that the stochastic chain has non-singular tail /ield 

and that ] ~Loo (~*) is such that 

[ =  ~m [~ ~I1 "11 ~ with h- + z~,." 
i - -+ oo 

Then lim 0~1 (w) = / (w~ (w)) a.e. 

Pro@ Since the taft field is non-singular, on~h-+ 0 nJ ]" in I1" Iioo for each 
~" ~ 1, 2, 3 . . . . .  Given s > 0 there is a positive integer i0 such that  for i ~ i0, 

[I/--/~ [] ~ < e. But then for i ~ i0, 

But  there is a positive integer jo such that  for ] > ]o, 1] ~ -- onJ/~ ][ ~ < e and 

therefore if j >~ jo, II f - -  O~'/-]i < as. Q.e.d. 

Corollary. Let / be a continuous /unction on 1"~ which is the uni/orm limit o/ 
a sequence o/ /unctions h with /l measurable with respect to !~ n~. Then there is a 

/unction [eLoo(~*)  such that / (w ~(w ) )= l imOn~] (w)a . e .  In  other words one 
i --+ oo 

can solve the ,,Dirichlet problem"/or the boundary/unction/. 
Pro@ The proof follows immediately from Propositions 7.8 and 7.10. 

Propositions 7.8, 7.9 and 7.10 suggest that  the b o u n d a r y / ' ~  plays somewhat 

the same role for the set of functions Loo (~*) as does the boundary / '~ for the 

Z.  W a h r s c h e i n l i c h k e i ~ s t h e o r i e  v e r w .  G e b . ,  ~ d .  5 ] 0  
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set of  funct ions  I ~ .  On the  o ther  h a n d  there  are  some differences; for example  

Propos i t ion  7.10 need no t  hold  for  al l  funct ions  in L ~ ( ~ * ) .  W e  comple te  th is  
sec t ion b y  discussing two r a the r  s imple  examples .  

E x a m p l e  1. Consider  a s imple M a r k e r  chain  which is t rans ien t .  Then using 

Propos i t ion  5.1 i t  can be shown t h a t  I ~  is i somorphic  to  { / :  / e M(QP), tip/-~/} 
and  t h a t / ' 1  is the  o r d i n a r y  Fe l le r  bounda ry .  I n  pa r t i cu l a r  i f  the  M a r k e r  chain 
is a r a n d o m  walk,  t hen  i t  is well  known  t h a t  the  cons tan t  funct ion  is a min imal  
ha rmonic  funct ion,  t h a t  is the  only  bounded  ha rmonic  funct ion  is the  cons tan t  
funct ion.  I n  th is  case the  o r d i n a r y  Fel le r  b o u n d a r y  consists of  a single point .  
This corresponds to  the  fac t  t h a t  the  r a n d o m  walks  h~ve t r iv ia l  i n v a r i a n t  field. 
I f  the  r a n d o m  walk  is an  n-d imens iona l  s imple r a n d o m  walk,  n ~ 3, t hen  T'~ 
consists of  one po in t  i f  p is odd  and  two poin ts  i f  p is even. Then  F ~  consists of  
two poin ts  which cor respond to the  events  t h a t  the  r a n d o m  walk  remains  on the  
even la t t i ce  po in t s  a t  even t imes  and  the  odd la t t i ce  po in ts  a t  odd t imes.  

E x a m p l e  2. Consider  the  s tochas t ic  chain  on the  posi t ive  in tegers  wi th  
de te rmin is t i c  t r ans i t ions  g iven  b y  Xn+l(w)-~Xn(w)+ 1. Then  / ' ~  conta ins  
p po in ts  y~, . . . ,  y~_x corresponding to  A~ = {m: m = i rood p}, i - -  0 . . . .  , p - -  1. 
Then  _F~ ~ is the  set  of  all  sequences {a~} such t h a t  at ~ {1, . . . ,  n~} and  

a~+l m o d  n~ -~ a~. 
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