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1. Introduction

In recent years many deep properties of Markov chains have been investigated
by FeirLer [6], Doos [2], KEMENY and SNELL [9] and many others. Hitting
probabilities for sets, expected sojourn times for sets, recurrent and transient
behavior, and the classification of chains have all been studied intensively.
It has been shown that these questions are closely related to potential theoretic
congiderations. Although very general studies of potential theory have been
carried out for Markov chains and processes relatively little has been done for
non-Markovian chains or processes.

In this paper we investigate generalizations of certain potential theoretic
concepts which have somewhat the same relationship to non-Markovian chains
as do the corresponding concepts to Markov chains. In particular we consider
superharmonic functions, bounded harmonic functions and boundaries in order
to investigate some aspects of the tail field of a non-Markovian chain. Needless
to say the non-Markovian situation is more complex but many of the basic
structural properties are preserved.

2. Notation for Stochastie Chains

Let @ be a countable space and B the o-field of subsets of ¢. Let £2 designate
the space of paths with a discrete time parameter, that is, (2 is the set of mappings,
w(+), from Z+ to @ where Z+= {0, 1,2, ...}. Let 3 be the o-field generated by
sets of the form

{w:w(n)eB}, n=r, Be®,

and let J7-™ be the o-field generated by sets of the form
{w:wn)e B}, r=n=<=m and Be®.

The o-field J* = (1) I™> is known as the tail field.
n=1

A stochastic chain is a triple (2, 3%°°, P) where P is a probability measure
on the measure space (£2,3%%). The coordinate functions X,(w) = w(n) are
then a sequence of random variables on the space (2, 3J%*, P). According to
Doos [3, p.31] we may choose a version of the conditional probabilities
P(B|Y»rt?), BeJ+?+1Y, such that for each w, P(-| 3" ?)(w) is a probability
measure on §'FPHLY N>yl p L1,
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Moreover it can be shown that these probability measures may be chosen
to be consistent for different N and hence the measures may be extended to
,\C\sT+P+1,oo.

The probability measure y on (@, B) defined by
pw(zo) = P ({w: Xo(w) =u0})

is the initial distribution. We assume that the support of u is the whole space .

The shift operator 6 is a mapping from Q2 into itself defined by

(O w)(n) =w(n 4+ 1).

We assume that all subfields of 3% are completed with respect to P and let
3 be the sub-g-field of 3% of sets of P-measure zero.

Given a o-field & c 3% we designate by L, (J) the class of bounded real
valued functions measurable with respect to & and by 2., (J) the quotient space
Lo ()L (8 N J). 0 induces a mapping

0: Lo (30:%) = Lo (3°°7)
defined by

(0 ) (w) = f(6 w)

and a mapping

0: Qg (3%) > L, (37)
defined by

oL =101],

where [f] stands for the equivalence class of f. Note that the latter definition is
possible only if f=g a.e. implies that 0 f = 0 g a.e. Finally, there is a mapping

0,00

6:3%° -
defined by
64 =A

where 4'={w: 0 y4(w) = 1}. It is easy to verify that wefA if and only if
fwe A, that is,
O({w: Xpw)ed})={w: Xpn(w)ed}

and that § is a o-field isomorphism. Note that if f and g are measurable with
respect to I and A= {w:f(w) = g(w)}, then {w:f(Ow)=gOw)} = 64.

3. Invariant and Superinvariant Functions

In this section we introduce invariant functions, superinvariant functions
and potentials.

If f is a real-valued function measurable with respect to J%°, the k-potential
of f is defined by

Nefw)=2 f(0Fw), k=1,23,...,
i=0
whenever the sum is absolutely convergent a.e. If f(w) = y,(Xo(w)), 4 € Q,
then Nif(w), if it exists, is the number of values of » for which X, (w) lies in A.

A set 4 e 3% is k-negligible if |_) 0% A has measure zero, that is, if Ng (3. (w))
=0 a.e. i=0
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A real-valued function, f, is n-invariant if it is measurable with respect to
% and if {w:f(w) +f(67w)} is an n-negligible set. The class of n-invariant
functions is denoted by I” and the class of equivalence classes of I# is denoted
by [I7].

Proposition 3.1. If fe I, then fe In™m for every positive integer m.

Proof.

A= {: f(w) * f(Ormw)}
U fw: £(6mw) + (6D )},
i=0

Hence A c\Joind=4",

i=0
where 4= {w: f(w) = {(0” w)}. However by assumption A" is a set of measure
zero and gimn A’ c fimn Q" c A" for 1 =0, 1, 2, ..., and hence, A’ is a nm-negligible
set. Q.e.d.

This proposition implies that any function fe I? is measurable with respect
to 3" for every positive integer n. Thus functions in 17, p=1,2,3, ..., are
measurable with respect to the tail field J*. The sub-o-field of J* generated by
the functions in 1% is designated by J7*.

A real-valued function measurable with respect to J%* is n-superinvariant
if {w: f(w) <f(0" w)} is a n-negligible set. The class of n-superinvariant functions
is designated by I,. It is easy to verify that the n-potential of a non-negative
function, if it exists, is a n-superinvariant function.

In general if a set A€ J*N § and 64 c A, then A is a k-negligible set. In
a few places we need to assume that if 4eJ* N 3 then 04 € 8. A stochastic
chain which has this property is said to have a non-singular tail field.

We complete this section with a result that closely resembles the Riesz de-
composition theorem for ordinary superharmonic functions [2].

Proposition 3.2. If f is a k-superinvariant function bounded from below, then
it can be decomposed uniquely as

f=1"+Ngf*,
where §*° is a k-invariant function and f* =0. {° is actually the largest k-invariant
manorant of f.

Proof. If f is a k-superinvariant function, then an argument similar to that

used in Proposition 2.1 shows that

flw) 2 0% f(w) = 02 fw) =+

except for a k-negligible set. The limit, fo, of this monotone decreasing sequence
of functions is k-invariant. Then

fw) = f(w) — 6F f(w) + 6% f (w) — 2% f(w) + -

+ 078 f () — O VE () - 6D f a0
k3
= D, 0 (f{w) — 6F f (w)) -+ 6"+E f (w).
i=0

Hence letting n — oo,

() = > 0% (F(20) — OF f10)) + [ ()

=0
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except for a k-negligible set. Moreover f*(w) = f(w) — 6% f(w) =0 except for
a k-negligible set.

We next show that f* is the largest k-invariant minorant of f. In fact if
g is a k-invariant function and f =g, then

f—g=0
and therefore
0% (f—9)=0
which implies that
f*—g=0.

If f=f¢ 4 N f¥, ff =0, e I, is another decomposition of f we have
0% = 17+ 69 Ni .

Then letting 7 - oo we obtain
fi° () = f* (w)

except for a k-negligible set and therefore the decomposition is unique. Q.e.d.

This means that the study of superinvariant functions for stochastic chains
can be broken down into the study of potentials and invariant functions. In the
remainder of this paper we will restrict our attention to the invariant functions.

4. Invariant Funections and Harmonic Funetions

In this section we study certain subalgebras of the invariant functions. The
functions in these subalgebras have some properties in common with the ordinary
harmonic functions and are used in Section 6 to obtain a Feller boundary.

Insection 5 it is noted that in the case of a Markov chain { X, } the set of harmonic
functions is isomorphic to the set of invariant functions. However, for a Markov
chain the harmonic funections have another crucial property, namely, if f is a
bounded harmonic function then f(X,) is a martingale and hence converges
a.e. ag 7 — oo. In general this is no longer true but this idea will provide us with
a natural way of decomposing the algebra of invariant functions.

For a given positive integer p let M (Q?) denote the set of bounded real
valued functions on Q7. Let fe M (QP) and consider the sequence of functions
on  defined by fn( w) = anf(Xo( o Xp1(w)). If f,(w) converges a.e. to
f~ (w), we write fe M (@?). Then f(w) is a p-invariant function. We denote the
correspondence between functions ]‘e u (@7) and fe I? by f~ f A function
in the class

ID={f:felr,f~] fe M (@r)}, p=12.3,...,
is called a p-harmonic function.
In this paper the p-harmonic functions, p = 1,2, 3, ..., play the role for

stochastic chains which the bounded harmonic funetions play for Markov chains.
We introduce the following norms in M (Q?) and L, (3%*);

I/ l=su£lf(w)l for  feM(Qn),
and )
1flloo=inf{2:|f(w)| < Aa.e.).

Z, Wahrscheinlichkeitstheorie verw. Geb., Bd. 5 9
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Two functions f and g in M (QP) are equivalent, [ ~ ¢, if fw>j~ and gv»>]7.
This relation is clearly an equivalence relation on i (@?). It is clear that fvv>}“
induces an isomorphism between [112 (@P)] and [I7] where as usual [-] designates
the set of equivalence classes. In order to simplify notation we write f(w) for

f(Xo(w), ..., Xp_1(w)) when jfeM(@P).

Proposition 4.1. 17 is a vector lattice containing the constants.

Proof. If f~ f~ and o is a real constant, then o f ~~>« ]? Since 1~~>1 it follows
that I} contains the constants. Moreover I7 is a vector space since if fi~~> f1
and fa~>fz then f1+ fa~~>f1+ fo.

We adopt the following notation:

f1 A fa(2) = min (f1 (), f2 (%)),

f1V f2 (%) = max (fi(x), f2(2))
Let us now show that if f; ~ fl and fg ~> f~2 sthen f1 A fa~ f; A f~2 . If for example
f~2 (w) > f~1 (w), then for sufﬁ01ently large n, 0"1’ fa(w) > 0"Pf (w) and hence
072 (f1 A fo) (w) = 072 f1(w) ) = 1) = fi(w) A fa(w).
Moreover if f1 (w) = fa(w), then it is obv1ou§ that _

72 (f1 A\ fo) (w) — fr(w) A fz(w)
A similar result holds for f1 V fz Q.e.d.

Proposition 4.2.

i) If ]‘~e IZ and || f[(oo = K, then there is a function f € M(Ql’) such that ||| =K
and [~~~ ]‘~

(i) mf{ﬂgll g~ fi =K.

Proof. (i) If f (w) < K and g~ f then 6722g(w) - ]‘(w) and therefore for
sufficiently large n, 602g (w) < K. It follows that (872g A K)(w) — f . More-
over if 677g (w) — K, that is, f~(w) = K, then clearly (072g A K)(w) — K. Hence
for all paths w for which f~(w) <K, (6rrg A\ K)(w) — ]‘~ (w). Since the set of paths
for which f~ (w) > K has measure zero, g \ K~~> f~ Similarly g A KV — K v~—>f
which yields the result.

(i) Assume the contrary, that is, g~ f~with lg] = K — ¢ for some ¢ > 0.
Then 672g (w) — ]‘A'(w) < K — ¢ for all but a null set of w which contradicts the
definition of | f“oo Q.e.d.

Proposition 4.3. 15 is an algebra of functions.

Proof. Let f~>f, g~~>g with |f]. <K and |§]. =K. By Proposition 4.2
we can assume that |g] < K and ||f| =K. Given ¢>>0 there is an N (w) (for all
but a null set of w) such that for n = N (w), [ 672 f (w) — f(w) | <eand |fn2g(w) —
— g (w)| < &. Then for n =N (w),

672 (1) g () — (1) § w0)| )
=[0m2f(w) - 0779 (w) — 672 g (w)- f(w)
+ 0n29 (1) - f(w) — f(w) - § ()|
<6729 (w)|-| 072 f (w) — fw)| + | (w)| | 672g () — § (w)]|
=2Ke.
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~

Hence (072 § - g)(w) — f (w) - g (w) except for a null set of w. Therefore f - g~~~ f~ g.
Q.e.d.
Proposition 4.4. Let A be a subset of QP. Then y, € M (Q?) if and only if the sel

A={w (XPw), ..., Xpiyp-1(w)) edico (rand e Q? — Ad.0. (r)}

has measure zero. The notation ©.0. (1) stands for ,infinitely often in r.

Proof. 672 y,(w) converges if and only if 6% w visits only one of the two
sets A and QP — A infinitely often. Hence 672 y,(w) converges a.e. if and only
if 4 has measure zero. Q.e.d.

Let €5 be the class of sets A c @2 such that y, € M (Q). The following result
is immediate.

Proposition 4.5. Let A e@y. Then y,~0 if and only if {w: (Xyp(w), ...,
Xasnp-1(w)) €A for all sufficiently large r} has measure zero.

The class of transient sets, 3y, is the class of sets A ¢ @2 such that y,~-0.

Proposition 4.6. If A e 39% and ya €15, then there is a set A e €y such that
XA~ X4- R

Proof. Since y; € I there is a function fe M (Q?) such that f~-y5. We
will next show that if A ={xz:f(x)> ¢} for some 0 <<e< 1, then y,~>y;. If
672 f (w) — 0, then for sufficiently large n 622 f (w) < ¢ and therefore 672 y 4 (w)—0.
On the other hand if 672f(w) — 1, then for sufficiently large n 672f(w)>¢
and then 072 y,(w) — 1. Q.e.d.

Proposition 4.7. If x4, ~ x5, and 34, ~> ya,, then ¥4, A4, Y1 n7s-

Proof. This follows immediately from the proof of Proposition 4.3.

Note that since I7 is algebra which contains the constants the set of A such
that y; € I7 forms an algebra of subsets of J7*. In Proposition 4.11 we prove
that this algebra of subsets is actually a o-algebra if the stochastic chain is such
that all finite subsets of QP belong to B,. A stochastic chain having the latter
for some p must have it for all p and is called a transient chain.

Proposition 4.8. If the chain is transient and fv»f: there is a sequence of
functions f; e i (@P) such that fi~~>f and suck that Spt(f;) \ ¢ where Spt(f;)
stands for the support of f;.

Proof. This follows immediately since if we define f;=7 for all but ¢ given
points in Spt(f) and =0 at the ¢ given points then f; ~~ j~ and Spt(f:) \ @.

Proposition 4.9. If Ay N A= @, y4,~> x5, and g4, %2, then g4, _4,~> Y7,-
In other words Ay and Az can be chosen so that A1 N A = ¢.

Proof. This follows immediately since the set of paths which visit both A4
and Ay infinitely often must form a p-negligible set.

Proposition 4.10. Assume that the stochastic chain is transient and let ;be a
function in I% such that [f(w)| = ¢ or f~ (w) = 0 except for a p-negligible set of
path. Then for any n > 0 there is an fv»>f~ such that the set {w: 0" w e Spt(f)
for some n, 672 yo i s (W) ++> 1} has measure less than 7.

Proof. An argument similar to that used in Proposition 4.6 shows that §
can be chosen so that either |f(x)] = ¢ or f(z) = 0. But then the set of paths
which visit both Spt(f) and {x:f(z) = 0} infinitely often has measure zero.

9*
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By Proposition 4.8 there is a sequence f; ~~> ]7 such that f1 ={, Spt.(f;) = A;cSpt({)
and such that 4; N\ ¢. Let
By = {w:w visits 4; for some j =J, y4,(w) 4> 1}.
But
By \ Bo = {w: w visits infinitely many A4;, 34, (w) 4+ 1 for any j}
C {w L w visits Spt(f) i.o., XSpt(f) (w) —}“} 1}.
Hence P(By)\ 0 and therefore there is some J such that P(By) < #. Then
P({w:wvisits A7, y4,(w) 4>1}) <175
so that f; satisfies the requirement of the proposition. Q.e.d.
Proposition 4.11. If the stochastic chain s transient, then 82*5{5 A e Jp*,
i€ 18} is a o-field.
Proof. 1t has already been shown that J5* is an algebra of sets. Hence it
suffices to show that if AZ edy*, i=1,2,3,...,and AZ N A] = @ for ¢ = j then

UAon‘p*

By Propositions 4.6 and 4.10 there are sets A; € QP such that y,4,~ yz and
such that :
P ({w: wvisits Az, 44, (w) 4> 1}) < 274
It will suffice to show if the A; are chosen so that the above applies, then

Z%Aﬁ’"’ZlAi If gz, (w) =1, y4,(w) = 0 for ¢ = j except for a p-negligible set
i1=0 i=0
of w. Hence it suffices to show that if

xa,(w)y=0 for <+j, then G"PZxAj(w) -0
j*e
except for a p-negligible set of paths.
But
{w:ys,w)=0 for j=i, 0”1’2 La,(0) 4> 0}
i*i
= {w:w visits A4;1.0.(j), y4,(w) — 0 for each j =1}
¢ lim sup 4;,
j—>o0
where A; is the event that w visits 4; but does not eventualiy remain in A;.
But by the choice of the sets 4;,
> P4 <o
A
and therefore by the Borel Cantelli lemma,
P({lim sup 4;})=0.
j—o00
But since 07 {lim sup 4;} = lim sup 4;, this implies that it is p-negligible.
j—>o0 j—o0

Therefore zZA ,w) — 1 if and only if y,,(w) 1 for some j except for a
=0

7 —
p-negligible set of w. Q.e.d.
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Corollary. If Aie j€X0* and A N 4; i =@ for i %7, then there are sets A; in
&y such that A; N A5 = <p for © %4 and such that y .~ xz,.

Proof. Let A;=A4; —\_) 4; where the sets 4; have been chosen as in the
proof of the proposition. ’ﬁwn it follows easily from the proof of the proposition
that g4 ~> 34,

Proposition 4.12. If j € I?, then fis measumble with respect to the o-field IL*.

Proof. Tt suffices to show that {w: f (w) > a} € J0* for any real number a.
Let 1 and r3 be any two real numbers such that ry < 79 and

P({w:f(w)—ﬁJ U {w: f Y=rg}) =0.
We first prove that A= {w:r gf(w Y Sraped0* I ]‘v»fj let A={x:r =<
=f(x) =rs}. Since {w: 072 w e A i.0. (n) and 672 w e A¢i.o. (n)} c {w: 672 f(w) —
—>ry or 7o} U {w: 672f(w) does not converge} which has measure zero, y,~> y 1
and hence 4 e Jh*.

Given any real number g there is a countable set of real number r;,7=0, 4-1,
42, ..., such that

N 7y <741
P(w:f(w)=r;) =0 for each 4,
and such that

~ Fo0 -
{w:fw)>a}=J{w:r =f(w) Srin}.
i =—o00
Hence {w: f~ (w) > a} e J5* since each of the sets on the right hand side belongs
to the o-field J0*. Q.ed.

Finally we obtain the following result which completes the proof that I
is the set of bounded real functions on £ which are measurable with respect to
J5*, that is, I =L, (30*). The equivalence classes [I5] are therefore equal
to Lo (B5¥).

Proposition 4.13. If the stochastic chain is transient and if f~ 18 a bounded real
valued function measurable with respect to I5*, then f~ eIb.

Proof. Given f there is a monotone increasing sequence of simple functions

fne I? such that | f~n — ] [0 < 771, (Recall that a simple function is a finite linear
combmatlon of indicator functions of sets.) By Proposmons 4.6 and 4.9 there is

a monotone increasing sequence of simple functions f, € M (@?) such that f,, ~~ fn
If f=1lim f,, then it is easy to verify that f~~ f. Q.e.d.

N—>00
5. Three Examples of Stochastic Chains

In this section the set of invariant functions is studied for three particular
types of stochastic chain. The first example provides us with a chain whose in-
variant field is non-trivial but whose only p-harmonic functions for any finite p
are the constants. The second example is that of Markov chains in which case
there is an isomorphism between the set of invariant functions and the set of
bounded harmonic functions. The last example is that of a chain which satisfies
the semi-group property in which case we investigate invariant functions which
arise from ergodic averages of functions on the state space.
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Examplel. Let @Q=1{0,1,2,...,9} and let (£2, 3%°°) be defined as usual.
The measure P is concentrated on two paths w; and we, P ({wi}) =P ({ws})=1/2
where wy and wg are defined as follows.

wi=(1,2,3,...,9,1,0,1,1,1,2,1,3,...)

that is, wy is given by the digits in the sequence of positive integers written in
decimal notation.
wp=1(2,1,4,3,...)

that is, we is given by the digits in the sequence in which the nth even integer
is followed by the nth odd integer written in decimal notation.

Since for 072f(Xg(w), ..., Xp(w)) to converge a.e. | must be a constant,
I contains only the constants. However if for i=1, 2,

,fi (w) =1 if (Xn(w), Xn+1(w), .. ) = (Xm (’LI)Z), Xm+1 (wz), . )
for some m and n

=0 otherwise

then f;, i=1, 2, are l-invariant. Moreover since f;(w;) = dy, {w: f1(w) = f2{w)}
is a 1-negligible set and therefore I is non-trivial. This provides us with an example
of a stochastic chain with non-trivial invariant field but whose p-harmonic
functions are the constants for each p.

Note that as it stands this chain has a singular tail field. However it can be
changed into a chain with non-singular tail field by modifying P so as to give
positive probability to 07 w;, 1=1, 2, for every positive integer z.

Example 2. Consider a stochastic chain (2, 39>, P) for which @ is count-
able. The chain is said to have stationary transitions if

0P(B|%m,n):P(eBli}mﬁ—l,m—l), n=m, BeJn+l.e,

The chain is said to be a Markov chain of order N if P(B|J%7) is measurable
with respect to I®@=MVOn for any Be "1, A Markov chain of order zero
is simply called a Markov chain. 1t is well known that a Markov chain of order N
is defined by a “transition matrix” Pon QY. (See the discussion of transition
functions in example 3.)

Proposition 5.1. For a Markov chain of order &,

(i) I¥=1I¥ and

(i) [I¥] is isomorphic to HY = {f:fe M(QY), Pf= {1, that is, there is a
one to one linear, order preserving mapping of [I¥] onto HY. (BLackwrrL [1].)

Moreover the mapping from [I§] to HY is given by

flzo, - &n-1) :E(ﬂX07--->XN—~1=xN—1)

and the inverse of this mapping is given by fv»f

Proof. This result is essentially Theorem 2 of BrLacrkwELL [7].

Example 3. FELLER [7] and RosexBLATT and SrePIAN [I2] have given
examples of non-Markovian chains with the semi-group property, that is, chains
which satisfy the Chapman-Kolmogorov equation. In this section we study a
generalization of this class of stochastic chain.
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Consider a stochastic chain (2, 3%, P) with stationary transitions. Let the
trapsition functions P( - - ) be defined by
Pxy,..., xn—rl Tp—r—15 v v> Tn—r—p)
=P Xn==24,....,Xpr= xn~r| Xpr1=Tp—r-1,.--, Xp—r—p = Tp—r—p)-

Note that the expression on the right hand side of this equation stands for the
conditional probability with respect to Jn—r-2.72-r-1 evaluated on the
ye—r-p n—r—Lomeasurable set

{w X1 (W) = Xp—r—15 -5 Xn—r—p (w) = xn—r—p}-
We also set

Mp(xO: ---;xp) = P(X()=x0, .. _X:n:xp)
= 1 (xo) P xll’Uo)P (22| %1, 2o) .- mp[xp Ls..es2g).
Since it has been assumed that the chain has stationary transitions, it follows that
P(xnlxn—l, e Tpeg) =2 2y P(xnlxn_l, e, ®g) X
X n—r—=1(20, « vy Bpep—1)-

The stochastic chain is said to be n-multiplicative if

P(Xgrtyn = X@+tyns - » Xnr1 = Tpni1| Xp = xg, ..., X1 = 1)
= Exn+1 xkn P(w(k+1)n> ey xkn+1[xkn, ey w(kﬂl)n.(.l) [N
P($2na ---;xn+llxn: AR 171). (5]‘)

This condition is equivalent to saying that the stochastic chain viewed as a chain
on the state space Q® has the semi-group property or, alternately, satisfies the
Chapman-Kolmogorov equation.

In general

P(X (g11yn = @15 -+ » Xpns1 = Txnt1| Xp = 2n, ..., X1 = 1)
=2 ZleP(x(IH—l)n|x(k+1)n—1, ce, T1) X
e P(x(lc+1)n—z [2@s1yn-3, .- 21) ... P(@na1|%n, ... 21).

Hence the condition for n-multiplicativity in terms of the Pis given by

Lirin -+ T PRkt 1yn > CUAD n—15 -+ o> Tnt1 | Thons - > o=y n1) - - -
P(xgn, ...,xnﬂlxn, ...,.%‘1)
- Exkn me_l P (x(kﬂ)n l T(k+1)n—1s ¢ vy xl) S
P xn+1]xn, ...,xl).

A function f € M (Q?) is said to be p-regular, p = 1,2, 3, ..., for the stochastic
chain if

f(x(),.. xp_l)_ Ty * szp_lf(xp,...,xgp_l)P(xgpkl,...,xp[xp_l,...,xg).

The class of p-regular functions is designated by Ry,.
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Proposition 5.2, If the stochastic chain is m-multiplicative and fe Ry, then
the conditional expectation E(f(Xpm, ..., Xprym-1)| &™) (w) is equal to
f(Xo(w), ..., X (w)).

Proof. If Xo(w)=wp,..., Xm—1(w) =2y, then

E(f(Xpm; -+, X prnym-1) | 3 ™) (w)
= Zﬁpm vor St T @pms s Tpym—1) X
X P(x(ﬁ+]_)m__1, ces Tpm | Xpm1s > Tp—ym) - -
ﬁ(xgm_]_, oo T | @15 .., %0)

by the m-multiplicative property (5.1). By using the defining property of R,
it follows that

E(f(Xpms - Xprnym-1) | Sor ™) (w) = f (0, ..., Zm-1). Q.e.d.

Proposition 5.3. If the stochastic chain is m-multiplicative, then there is a
linear mapping from [I] into Ry, .

Proof. Let f~e I7. Then there is some fe M (@m) such that f~~ f: that is,
Hnmf—>f~a.e. as n ~> oo, But if n > 2,

E(E( gnmﬂ%m 2m—1 I 30, m—1) (enm”%O,m)

by the m-multiplicative property. Letting # — oo and using the bounded con-
vergence theorem we obtain

B(f| 3m2m=1)| 30, m-1) — ]7[ 0. m),
In other words if f(zo,...,Tm-1)=E ]“Xo—xo, iy Xip—1=2m-1), then f'
satisfies the equation
f’(x(b e xm-l) = Z]U(xm: (AR x2m~1) ﬁ(me—b ey xm]xm—h LR x()).

Finally it is clear that the mapping f~ — f" is linear and also order preserving.
Q.e.d.
To gain a little more insight into the role of Ry, for m-multiplicative chains
we now show that E (- | 3% m-1) maps a subset of I™ which contains I;; onto $iy,.
A stochastic chain is said to have the m-ergodic average property if for every

feM (Ql’) hm N—lz]‘ (fmnw) exists a.e. If the limit exists it must belong to

Im_ If the stochastlc chaln has the m-ergodic average property, let

Jm={f:felm, f—th—lef (6mnaw), fe M (QP)}.

It is easy to verify that
IrcdycI™
Proposition 5.4. If the stochastic chain has the m-ergodic average property,
then B (-| 3% m-1) maps Jy, onto Ry,
Proof. If feR,,, then

lim N- 12f(6mnw)—>]‘ a.e.

N—oo n=0
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and f~ e J™ . Moreover using the m-multiplicative property it is easy to verify that
E(ﬂon 20, s X1 = Tm—1) = [ (%05 -5 1)

which implies that the mapping is onto.
It remains to show that E (-] 3% m-1) maps every function in Jy, into Ry.
If f € M (Q™) then by the m-ergodic average property

N—1 -
lim N‘lz f(@mnw) 7 a.e.

N-—>o00 n=>0

and feJ™. But

E(E (ﬂ §ms 2m-1) | 30, m~1)

= lim E (E (N_lNilf (emn w) l ms 2m~1) l 30, m—l)
N—co n=

and

N—
E(E(N-1 zlf (6 )| ms 21y | 0. m—1)
n=0
= EWJ}_ZlﬂW w)| Y0 m1) - N1 B (B (f(w) | 2m-1) |0 m-1)
n=1

by the m-multiplicative property. Letting N — co it follows that
E(E(f] gm 2m-1)| 30 m-1) =E(f~] S0, m-1y,

Hence if f'(wo, ..., #m-1) = B (f| Xo==0, .., Xm-1 =2m—1), then {' € Rp. Q.e.d.

6. The Feller Boundaries

In this section a Feller boundary is constructed for ID which plays a role
similar to the role played by the Markov chain Feller boundary for the ordinary
bounded harmonic functions. Throughout the section it is assumed that the
stochastic chain is transient. The method used to construct the Feller boundary
is similar to that used by FrrrEr [6] for Markov chains, the difference lying in
the fact that we prove the necessary statements by using the properties of I%
rather than the ordinary harmonic functions. The Feller boundary for Markov
chains has also been studied by KexpaLL [10] and FELDMAN [5].

Before beginning the actual construction let us describe what is to be done.
A set I'y is found and the disjoint set union @2 U I'y is topologized in such a
way that every function in M (@P) can be extended to a continuous function on
QP I'p. Moreover two functions § and ¢ in M (@?) have the same boundary
values if and only if f~~f and g~ f for some f~e I7. Finally the discrete part
of the boundary is studied and an integral representation for functions in 1%
is obtained in terms of the discrete boundary. An excellent reference for the
material on Boolean algebras which is used in this section is Harmos [8].

Let Sy be the set of non-negative extreme elements of the unit sphere in
[15]. These can be identified with elements in the measure algebra of J5*, that
is, an element in S, can be identified with the equivalence clags of an indicator
function of a set in JP*. If ¢ is the equivalence class of the function which is
identically 1, then Sp is a complete Boolean algebra with unit element ¢ under
the operations A, /. Moreover it is easy to show that there is a lattice isomorphism
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Cp/8p — Sp. In the case of Markov chains this fact was pointed out by KEN-
DALL [10].

Recall that a subset 4 of S, is an ideal if

i) 0eA4,

(ii) s1€4 and sped implies that s1 V sec4,

(iii) s1€4 and sze S, implies that s; A sz €4.

The ideal is maximal if the only ideal containing A as a proper subset is Sp.

Following FELLER [6], I is defined to be the Stone space of Sy, that is,
I’ is the set of maximal ideals topologized by taking sets of the form

{velp:sé¢y}, se8p,

as a subbasis for the open sets. It is well known that [}, is an extremely dis-
connected compact Hausdorff space, [§].

Proposition 6.1. If seS, let
D(s,y)=1 if yely and secy
=0 i yelp and séy.

Then for each se 8y, @(s,) is a continuous function on I,. Moreover ®(-,*)
can be extended uniquely to a mapping if IS onto C(I'y), the set of continuous real-
valued functions on Iy, which is a linear lattice isomorphism and which is also
norm preserving when C(Iy) is furnished with the supremum norm.

Proof. This follows immediately since linear combinations of step functions
are dense in C(f}) and linear combinations of elements of S, are dense in [}
in the essential supremum norm. Q.e.d.

We introduce a topology on [ U @2 as follows. A set A c I}, U @7 is open
if to each maximal ideal y € A there is a set A € €, such that [y,] ¢y, 4 c 4,
and such that 4 contains every maximal ideal f§ such that [y,.] € 8. (We write y
for [y5] in places where it is clear what is meant.)

Alternately we can introduce the topology by letting /7, and @? have their
original topologies and topologizing their union so that

2y —>yely asn—>oo

if and only if for any y, € Jlf(QZ’) such that @ (y,4, y) = 1, x4 € A for sufficiently
large .

We use the first definition in the sequel; the fact that the two formulations
are equivalent follows from Propositions 6.3 and 6.4.

Notational Remark: The notation yj denotes the indicator function of

aset de %*, whereas y, stands for the function in I induced by the indicator
function of a set 4e@p.

Lemma 6.1. For any mazximal ideal y and Ae S5* either w5 or yz. must belong
to y.

7/'Proof. See Harmos [§].

Lemma 6.2. If y is a mazimal ideal and x4, 4, € v, then Ja,na, &7

Proof. Since y is maximal, yi €y and yicy by Lemma 6.1. If A1 and

~

As are the sets of J* which correspond to A; and Az, then yiz,5€y and
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hence yii,~i, € y. But by Proposition 4.7, 5,4, > ¥i,~4, and therefore the
result follows. Q.e.d.

Proposition 6.2. I3, U Q? is a Hausdorff space and QP is a dense subset.

Proof. We first verify that I3, U @2 is a topological space. By the definition
of an open set it follows that the union of open sets is open. Hence it remains to
show that if O; and Oy are open sets then Oy N Oy is open. Since every subset
of @7 is open there is nothing to prove if 01 N O c Q2. If ye 01 N 0N T
let 4;, ¢ =1, 2, be the sets contained in Oy, ¢ = 1, 2, such that y,, ¢ . Then
by Lemma 6.2 74 ~4,¢y and thus in particular 34 ~4, #0; in addition
A1 AacOy 0O, Moreover if 9o is a maximal ideal such that ¥4, 4,0 € Y0,
then y4 eyo and XA§ €yo 80 that po€ 01 N Oy. Hence O1 N Oy satisfies the
definition of an open set.

The separation axiom is immediate for two distinet points of Q7. Moreover
if y e I'p and x € Q?, then y has a neighborhood not containing by Proposition 4.8.
Hence it suffices to prove the separation axiom for two distinct points y1 and
y2 of I'. Since y; and yy are two distinet maximal ideals there is a set 4 €@,
such that ¥, ¢ y1 and y, ¢ 2. Moreover no maximal ideal contains both ¥, and
Y. Let

Ov=4deufy:yelp, acy},
and
Os=AU{y:yely, }:Aeey}.

Then 01 and O3 are disjoint open sets such that y; € O1 and ys € Os.
The fact that @7 is dense follows immediately since by definition every
neighborhood of a point in [ contains a point of Q2. Q.e.d.

Proposition 6.3. Let y, € M(QP). If 2y >y as n—> oo and w, e QP, then

() LalXn) 1 if gadvo
and -

(i) galen) =0 if Fae€ypo.

Proof. Assume that z, — yp as n — oo and that ;' 4 & vo. Consider the open
set 0=4 U {y:yely, ys. ¢y} By Lemma 6.1 4 €yo and hence yo€0. Tn
addition y,(z) = 1 for all x€ QP N0 and therefore y,(xy) — 1 as Ty —> 0.

Replacing A by A°¢ a similar argument ylelds (). Q.ed.

Proposition 6.4. If f is any function in M (Q) such that f~~>%4, then f has
the same boundary values as y,.

Proof. Assume that x, — yo and y, ¢ 0. Then
ne{w:fla)>1—ctU{y:yell,, yrey}

for sufficiently large % (c.f. Proof of Proposition 4.7). Therefore lim flxg) = 1.
A similar argument holds if 7 ey,. Q.e.d. Tar o

Proposition 6.5. If erlZ’ (QP), then f has continuous boundary values on I'p.
N

Proof. If fv»]:e IP, then there is a simple function zoci 22, such that

Hf — z o % leo << & and such that the Az are disjoint. Then by Proposition 4.2,
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~ N
f and y,, may be chosen so that f~~>f, y,,~> xj, and |f — > a; g4, < &. Since
i=1

f(y) is then the uniform limit of continuous functions, it is continuous. Q.e.d.
Corollary. Two functions f and g in M (Q@?) have the same boundary values if

and only if f~~f and gv~—>f for some fe 17.
Proof. The first half of the statement follows from the > proof of the Proposmon

and Proposmon 6.4. To prove the second half let fw>f g~~~g and f —g>0

on a set A of positive measure. There is some point y € I such that y; & y.
But then it is easy to verify that f(y) +¢(y). Q.e.d.

There does not appear to be any direct way to relate the boundaries I3, for
different values of p. However under certain assumptions it is possible to relate
the different discrete boundaries of Feller which we now introduce.

An element s € 8, is said to be minimal if s’ < s implies that either s'= 0
or s’ = s. An element s € 8, is said to be confinuous if there is not minimal element
s’ such that s’ < s.

Proposition 6.6. S, contains at most countably many minimal elements.

Proof. If s1 and sp are distinet minimal elements they correspond to 3, and
Xz A1, A2 € J0*, such that yy, + yj,= 0 a.e. Moreover if yj corresponds to
a non-zero element of Sy, A; must have positive measure. But there are at most
countably many disjoint sets of positive measure. Q.e.d.

We denote the elements of §p by y1, y2,.... By the corollary to Proposi-
tion 4.11 it is possible to find A; € €} such that the A; are mutually disjoint and
X4, ~~> ¥4, where y; is the equivalence class of y7..

The discrete Feller boundary I'j is the set of minimal elements of §.
Qr U I'} is topologized so that A c Qv U I'y is open if for each y,e 4 N1}
there is a set 4 c4 N @2 such that y,~ xz..

Proposition 6.7. @2 U 1'% is a Hausdorff space and the relative fopologies on
both QP and I'§ are the discrete topologies.

Proof. The union of open sets is open by the definition of open set. If y~~> 12,
and y-~~> x5, then y 4 4~~~ 57, Hence the intersection of finitely many open
sets is open. The fact that two distinet points 7, and y, have distinct neighborhoods
follows immediately from the above comment that the A4; can be chosen to be
mutually disjoint. The fact that the relative topologies on QP and I'§ are the
discrete topologies follows immediately from the definition of the topology.
Q.ed.

Proposition 6.8. Q2 U Ec@ru [,.

Proof. If y;€I' we define a maximal ideal y = {s:5e8p,s Ay; = 0}.
Then y; ¢ y but no other maximal ideal contains yze. Hence a point y € Iy can
be associated with each ;e I'y. Moreover 4; U y; is open in both @7 U Ip
and QruU Iy, Q.ed.

Proposition 6.9. The function ;:Z du Y4, belongs to the wnit ball in (I0)*

n=1
of and only if 0 < oy =< 1. If in addition f~~>f, then f(x) — on as x — yy.
1} Sp contains no continuous elements, then every non-negative function in the
unit ball on (I5)* has this form.
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Proof. If 0 = ay, = 1, then it is clear that fis in the unit ball in (I5)*. If wp—yq,
then z, must lie in A for any 4 such that y,~— v, for sufficiently large r. Hence
f(xr) = opn. Then if { is a non-negative function in the unit ball in I ? having
this form it is clear 0 < « < 1. Finally if f~ is a non-negative function in the unit
ball in IZ, f ~~> f and f(ya) = ota, then

f— Z Lo Xdn
n=1
must either be zero or correspond to a continuous element of §,. Q.e.d.

Corollary. If 8, contains no continuous elements, then with probability 1 oll
paths converge to some 4.

Proof. This follows immediately since in this case 1 = z Y-

n=1

For the purposes of comparing the boundaries I'Z for different values of p
it is convenient to introduce a slightly different topology on @2 U I'4. Let A,
be a set in €, which corresponds to y, and assume as above that the A, are
mutually disjoint. Note that it is possible to choose the A, which correspond
to points of I'5™, m =1, 2, 3, ..., so that each such 4, is contained in one of
the corresponding sets for 1. That is, if we denote by A2 the sets of €, correspond-
ing to the points in [y, then the A% can be chosen so that A2™ c (A2)me Cpp
for some r. In the following section we assume that the p =1,2,3, ..., have
been so chosen.

Given a set A, corresponding to a point of 1% there is a subsequence (A, N @
such that x4~ x5, for each ¢. In fact ;4, can be chosen to be 4, with ¢ given
points deleted.

The modified topology on @7 U I} is defined as follows. A set A c QP L I'}
is open if to each y, € I there is some ¢ such that ;4, c 4. This topology is
a weaker topology than the former. To prevent confusion we denote by (@2 L I'})*
the space with the modified topology.

Proposition 6.10. (@7 U I'%)* is a Hausdorff space with a countable base of
open sets.

Proof. The proof of the first part follows in the same way as the proof of
Proposition 6.7. The fact that there is a countable base of open sets follows
immediately from the definition. Q.e.d.

Note that since the modified topology is weaker than the original topology,
the corollary to Proposition 6.9 remains true for the modified topology.

7. Relations between the IS and the Limit Boundary
In the previous sections the IZ are studied for a fixed integer p. In this section
the relations between the I% for different p are investigated.
The functions in the intersection 15 N I7, designated by I, are the bounded
real-valued functions measurable with respect to the o-field J7* N JL*.
Proposition 7.1.  If the stochastic chain has non-singular tasl field then the
linear, order preserving mapping

f_.>f+0mj+...+()(n—1)mf

maps Imm onio I™m,
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Proof. Since the stochastic chain has non-singular tail field every tail event
of measure zero is p-negligible for every p. But

Om(f+Omf+ -+ fn-Dm )
zgmf_]_ 92mf+...+0nmf
=f+Omfd . - G-Dmf a.e.
and therefore the mapping takes any function in I#7 into a function in I,
If fe Im, then fe I"m and hence the mapping is onto. Q.e.d.

Recall that [15] and [I5,] are vector lattices. A mapping of one vector lattice
into another is called a homomorphism if it is linear and lattice preserving. The
kernel of a homomorphism is the set of elements mapped into 0. The homo-
morphism is called a monomorphism if the only element in the kernel is 0. An
isomorphism is a monomorphism which is onto.

Proposition 7.2, There is a monomorphism from [I}]into [ I, forn =1,2,3,....

Proof. Let feGp and f~~>f. Then

g = n_l(f(x(): AR xp—l) + Tt +f(x(n—1)ps vy xnp—l)) (7‘1)

belongs to €,y and g~f. Hence f~ € 1%, and therefore I} is mapped into 1%,
by (7.1). It is easy to verify that this mapping is a monomorphism. Q.e.d.

This allows us to gain a little insight into what is going on. For example
if 4 €8, then 4 X4 € 8y. On the other hand there can be a subset B c A such
that (4 — B) X B and B X (A — B) both belong to & without having B e €;.

Let n; be the subsequence of natural

7 /) numbers given by the product of the
! / ¢ | s 7******* frst i numbers in the sequence given by
7 2 3 5 7 seseeee the diagram (Fig. 1) in which each row

/ / is the sequence of prime numbers. Then
7 2 3 5 7 eeescee

< we have
Fig. 1 Ig—>I32°p—>1£’p—>17f2p—>~--——>I,€m,..

in which the arrows represent monomorphisms. It is easy to verify the following
proposition.
Proposition 7.3. For any m = p there is a monomorphism I3, — I% , for some 1.
We now describe the direct limit

S
Ir=lim I%,,.

To form the direct limit consider the disjoint set union of the I% , and define
the direct limit as the set of equivalence classes under the following equivalence
relation. If n; <n;, f € I%,, and g € I} ,, then f and g are in the same equivalence
class {f> if f is mapped into g by the monomorphism from I}, to I% ,. The set
of equivalence classes is made into a vector lattice by letting

D +Lgp =<f+ 9,
{a > = a{f> for areal constant a,

DN =L AD

where both f and g are taken to be representatives of {f» and {g> in the same I7 .
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The following proposition suggests that we can think of 17 as the set of
finite dimensional p-invariant functions.

Proposition 7.4. Let 3% be the a;subfield of J* generaled by the o-fields J5,,,
1=1,2,3,.... Then we can imbed I? tn I? so that
IrcrL,, (i“;p*) cIo.
The inclusions~ca,n be proper z'nclusiozbs.
Proof. If fe I? ., then fe L. (IP*). It is easy to verify that the mapping

ﬂipi N
which maps {f) into f € L, (37*) is independent of the choice of the representative
up to sets of measure zero. Finally it is clear that the mapping {f> — fe L, (37%)

is a monomorphism from I» into Lw(i”;l’*). Hence we can identify P with the
image of this monomorphism.

The second inclusion follows immediately since §2* is a o-subfield of J2.
Q.e.d.

The fact that the first inclusion can be proper is due to the fact that I? need
not be closed under the operation of taking limits.

In the remainder of this section it is assumed that none of the S, contains
any continuous elements.

Proposition 7.5. I'5" is a splitting of I'5.

Proof. Let 7, ¢=1,2,3,..., be the points in I and y?", i =1,2,3, ...,
be the points in I'". For convenience we use the notation y? for either the point
in I'% or the corresponding minimal function in S,. Then by Proposition 7.2
vY € Sup. I y7 is not minimal in 8y, then either 47" A 4% =97 or 97" A y? =0
for each j =1,2,3,.... Then we can associate with each y?" the unique 7
such that y¥" A 9¥ =y%" and write this as pI" ~>+%. Conversely we can consider
the point y7 to be split into the set {p¥": »I" ~> »?}. Since p? Apf =0 for i + %
it follows that these classes are disjoint. Q.e.d.

Proposition 7.6. Consider the mapping

@1 QU I 25 (P I
defined by
QWL vy Wn—1)pt1s-<rs Wpn) = (Wi, ..., Wp)
for points in QPr
PO =i where yI" >y}
for points in I'Y*. Then @ is continuous.

Proof. 1t suffices to show that if @, — 7" as r — co and y7" ~> 7, then
@ (xr) = 9} as r — co. But this follows immediately from the definitions of the
topologies on (Q" U I'#)* and (@Q* U I'%)*. Q.e.d.

If n; is the subsequence of natural numbers constructed above then Pro-
position 7.6 implies that

(QP U Io)* (QZPU ]*'310)*4_ S (QUP U [Py E
is an inverse system of topological spaces in which the arrows represent continuous

mappings. Let (Q U I'3)* designate the ¢nverse limit of this inverse system.
The inverse limit is defined as follows. Consider the set of all sequences {x;} such
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that »; € (@"? U I'3?)* and such that for each ¢, ¢ (xi11) = x;. The inverse limit
is the topological space formed by topologizing this set of sequences by taking
as a base for the neighborhoods the sets of the form ¢;* (4), 4 open in (@™? U I'4?)*,
s represents the projection of a sequence onto its ith component.

Note that the relative topology on @* is the product topology and that
(@ U I'?)* is Hausdorff. Note also that it is possible to identify @ with £
so that there is induced a measure on @>.

A point w e @ is said to adhere to the point y e I'}° if for every neighborhood
Ny of y in (@ U I'?)* there is a positive integer M such that for every ¢ =M
6% w € Ny. In this case 0™ w is said to converge to y. Since (@ U ['3)* is Haus-
dorff, a given point w € @ can adhere to at most one point in I"5.

Proposition 7.7. The set of points in Q@ which do not adhere to points in 'Y
corresponds to a set of points in Q of P-measure zero.

Proof. Since the topological space (@ U I'7)* has a countable base of open
sets, it suffices to show that the set of paths which leaves a given open set in-
finitely often has measure zero. In fact, it suffices to prove this for a set of the
form g;'(4), 4 open in (@"P U I'%?)*. But this follows from the corollary to
Proposition 6.9. Q.e.d.

Since almost every path, w, adheres to the boundary I'y°, we may associate
this boundary point y (w) to the path and we write w(o0) =y (w). If w does not
adhere to the boundary, we write w(oco)= oy where «p is a new point which we
adjoin to (Q% U I'P)*.

Let §* be the subfield of J* generated by the subfields 3%*. In the remainder
of this section we investigate the relation between the functions on I'y and
the functions on {2 which are measurable with respect to &+,

Consider the o-field, B>, of subsets of I'® generated by the open sets. It is
clear that P induces a measure on the discrete measure spaces '3, But (', $*)
is also the inverse limit of the discrete measure spaces. Therefore there is induced
an inverse limit probability measure P> on (I'y, B*). (See MevEr [11].) Let
B2 be the subfield of B> generated by the inverse images of sets in I'%.

Proposition 7.8. The vector laitices Sw(\&s*) and L., (B=) are isomorphic.

Proof. We define a vector-valued measure F on (I'Y, B*) as follows. If
4 = ¢1(35), then F(4) = [yir] € Lo (A%*). As above this measure can be
extended to a vector-valued measure on (I3, B°°). Moreover the measure is
bounded since the measure of any set lies in the unit ball in &, (%*). (Refer to
Duxrorp and ScEwartz [4] for a discussion of integration with respect to a
vector-valued measure.) In addition # is absolutely continuous with respect
to the measure P°°.

Let f be a bounded real-valued measurable function on I'y. Then

F(f)=[1weo) F(dwe) (7.2)

belongs to Sm(§*). Moreover if f and ¢ do not belong to the same equivalence
class in 8. (B>), then F(f) and F(g) do not belong to the same equivalence class

in Sw(§*). It is easy to verify that F is linear and order preserving. Hence F#'
is a monomorphism from €., (%) to L, (I*).
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Let f~ e IL for some p. By Proposition 6.9 j~ induces a continuous function
on I} and thus in turn it induces a continuous function on I'Y, say f(w..). (This
means that there is a monomorphism from I into ¢ (I'¢) for each p.) In addition,
f(10) = f (oo 1)) -0 K

Let f be a representative of fe m*) Then the martingale convergence
theorem applied to the subfields 3 Spe* of I implies that there exists a sequence

of functions { fl} such that f@ I”% and such that f_hm fZ a.e. Since fz( w)

7—>00

= fi(Wo (w)) a.e., f; converges a.e. to a measurable function f on I'y. Moreover
by the bounded convergence theorem for vector-valued measures [4, p. 328]
and Proposition 6.9.

w)] = [ (W) F(dws).

Thus every element in Em(%*) has an integral representation of the form 7.2
and therefore &, (B>) is isomorphic to L. (3*). Q.e.d.

Proposition 7.9. If fe IY for some p, then

lim G”ff(w) = f (Weo (W)) a.e.

Proof. By the definition of I5 and the sequence n;, 6™ f"~ = f~ for all sufficiently
large ¢. Since f(w)=f(w. (w)) a.e., the result follows immediately. Q.e.d.

Proposition 7.10. Assume that the stochastic chain has non-singular tail field
and that fe Lo, (%) 4s such that

V:.ﬁmfunﬂ'ﬂm with f:-efﬁf.

i— 00
Then lim 0™ f (w) = f (e (w)) .e.
—>00
Proof. Since the tail field is non-singular, 6™ f; — 6% in |-}, for each
§=1,2,3,.... Given ¢ > 0 there is a positive integer ¢y such that for ¢ = g,

| f— leloo< s. But then for ¢ = 1,

1= 0" Floo = | = Filloo+ 1 i = 0 illoo+ | 6% (i — )]oo
<26+ |fi — 0"]i] o

But there is a positive integer jp such that for j =74y, “ﬁ — o™ ]‘~¢HM< e and
therefore if j = jo, | f — 07 f]| < 3e. Q.e.d.

Corollary. Let f be a continuous function on I'3 which is the untform limit of
a sequence of ]‘unctwns fi with f; measurable with respect to B, Then there is a
function feL (o ) such that f(w.,(w)) = lim Bmf(w) a.e. In other words one

i—>00

can solve the ,,Dirichlet problem’ for the boundary function f.
Proof. The proof follows immediately from Propositions 7.8 and 7.10.
Propositions 7.8, 7.9 and 7.10 suggest that the boundary I'$ plays somewhat
the same role for the set of functions Lw(g*) as does the boundary I') for the
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set of functions I%. On the other hand there are some differences; for example

Proposition 7.10 need not hold for all functions in L, (%*). We complete this
section by discussing two rather simple examples.
Example 1. Consider a simple Markov chain which is transient. Then using

Proposition 5.1 it can be shown that I is isomorphic to {f: f € M (@?), Prj= f}
and that Iy is the ordinary Feller boundary. In particular if the Markov chain
is a random walk, then it is well known that the constant function is a minimal
harmonic function, that is the only bounded harmonic function is the constant
function. In this case the ordinary Feller boundary consists of a single point.
This corresponds to the fact that the random walks have trivial invariant field.
If the random walk is an »-dimensional simple random walk, » =3, then 1%
consists of one point if p is odd and two points if p is even. Then I consists of
two points which correspond to the events that the random walk remains on the
even lattice points at even times and the odd lattice points at odd times.

Example 2. Consider the stochastic chain on the positive integers with
deterministic transitions given by Xy41(w)==X,(w)+1. Then I% contains
p points 3§, ..., 95, corresponding to A% = {m:m=1imod p}, i=0,...,p—1.
Then I'Y is the set of all sequences {a;} such that a; e {1, ..., n;} and

a1 mod n; = a;.
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