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Robust Estimation" A Condensed Partial Survey 

Frank R. Hampel 

Prefatory Note 

This paper was written to stimulate discussion; therefore the pointed style. It was designed to be 
self-contained and yet to minimize overlap with Huber's (1972) long and basic survey paper, which in 
particular covers the technical points in more detail. The issues raised are considered basic to reasonable 
applications of statistics; on the other hand, they suggest and stimulate much novel research in mathe- 
matical statistics and probability theory (such as about weak*-continuous functionals serving as 
robustified maximum likelihood estimators, or about Choquet-capacities describing and replacing 
sets of probability measures). It is hoped that the paper may help in clarifying some relations between 
rigorous stochastic models and the world outside of mathematics, and perhaps also in improving under- 
standing and cooperation between pure mathematicians and data analysts. 

1. Why Robust Estimation ? 

What do those "robust estimators" intend? Should we give up our familiar 
and simple models, such as our beautiful analysis of variance, our powerful 
regression, or our high-reaching covariance matrices in multivariate statistics? 
The answer is no; but it may well be advantageous to modify them slightly. In 
fact, good practical statisticians have done such modifications all along in an 
informal way; we now only start to have a theory about them. Some likely ad- 
vantages of such a formalization are a better intuitive insight into these modi- 
fications, improved applied methods (even routine methods, for some aspects), 
and the chance of having pure mathematicians contribute something to the prob- 
lem. Possible disadvantages may arise along the usual transformations of a theory 
when it is understood less and less by more and more people. Dogmatists who 
insisted on the use  q f  "optimal"  or "admissible" procedures as long as mathe- 
matical theories contained no other criteria, may now be going to insist on 
"optimal robust" or "admissible robust" estimation or testing. Those who 
habitually try to lie with statistics, rather than seek for truth, may claim even 
more degrees of freedom for their wicked doings. In passing, those who use 
statistics for sanctification rather than elucidation of uncertain facts (treating it 
as a replacement rather than aid for thinking) might wonder about the "monolithic, 
authoritarian structure" (cf. Tukey, 1962) they believe statistics to be. (Further- 
more, there are of course tremendous possibilities for publishing under the 
fashionable flag of robustness, both of very valuable and of less valuable results, 
keeping needy statisticians from perishing.) 

Now what are the reasons for using robust procedures? There are mainly 
two observations which combined give an answer. Often in statistics one is using 
a parametric model implying a very limited set of probability distributions thought 
possible, such as the common model of normally distributed errors, or that of 
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exponentially distributed observations. Classical (parametric) statistics derives 
results under the assumption that these models were strictly true. However, apart 
from some simple, discrete models perhaps, such models are never exactly true. 
We may try to distinguish three main reasons for the deviations: (i) rounding and 
grouping and other "local inaccuracies"; (ii) the occurrence of "gross errors" 
such as blunders in measuring, wrong decimal points, errors in copying, inad- 
vertent measurement of a member of a different population, or just "something 
went wrong"; (iii) the model may have been conceived only as an approximation 
anyway, e.g. by virtue of the central limit theorem. To point (ii) we may add the 
lack of fit of a simple piece of structure in a structured design, such as different 
behaviour of a single row in a two-way table. Even point (i), though usually least 
harmful, invalidates parts of statistical theory if taken seriously, e.g. the "super- 
efficiency" of estimators for a uniform distribution (Kempthorne, 1966), and it 
may cause slight inconveniences with estimators like the median. "Gross errors" 
may occur as clear "outliers" or as "hidden contamination" which usually cannot 
even be detected; their frequency depends of course greatly on the quality of the 
data, but some figures may be revealing. Paul Olmstead, cited by John Tukey 
(1962), maintains that engineering data typically involves about 10 ~ "wild shots". 
Cuthbert Daniel (1968), for various types of industrial data, considers frequencies 
from less than 1 ~o up to 10 ~o and 20 ~o as usual and cites, as rather exceptional, a 
set of about 3000 data points where he couldn't find anything wrong. As result of 
a spot check on medical data in a clinic, A.J. Porth reported 8-12 ~o gross errors 
(in the meeting on medical statistics in Oberwolfach of February 1972). For routine 
data in exact science, Freedman (1966) could individually identify gross errors in 
a special case (readings of seismograms by different stations) and came up with 5 ~o 
certain and an additional 2 ~o suspected gross errors. Altogether, 5-10~o wrong 
values in a data set seem to be the rule rather than the exception. But, as to (iii), 
even large high-quality samples in astronomy and geodesy, consisting of several 
thousand data points each, which should be the prime examples for the "normal 
law or error", are mildly but definitely leptocurtic (longer-tailed); there are a 
number of examples known, including the large ones in Romanowski and Green 
(1965) and the old ones by Bessel (1818). The same result (leptocurtic error dis- 
tributions) was obtained by Student (1927) by studying many small samples; 
compare also Box and Andersen (1955) p. 2, Tukey (1960) p. 458, Jeffreys (1961) 
Ch. 5.7, and Huber (1972). "Normality is a myth; there never was, and never will be, 
a normal distribution" (Geary, 1947, p. 241, cited by Tukey, 1962, p. 20). 

The other observation which in combination with the first one substantiates 
the need for robust procedures, is the fact that even slight and harmless-looking 
deviations from a strict parametric model may render classically "optimal" 
procedures rather inefficient and bad. The first basic reference here is Tukey's 
(1960) survey paper on earlier research at Princeton which had gone into a number 
of technical reports. A lot of empirical evidence is also contained in Andrews et al. 
(1972), where the arithmetic mean is only included marginally for reference pur- 
poses to show how bad it is. To simulate the effect of mild outliers, Tukey (1960) 
considered mixtures of the standard normal distribution ~b with small fractions 
e of contaminating normals with threefold scale (variance 9): F(x)= ( 1 -  5)~(x)+ 

�9 (x/3), with 0_< e < 0.1, say. With these realistic amounts, but too mild dispersions 
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of the contamination, the asymptotic efficiency of the mean goes already down to 
about 70 ~ for e = 0.1, the mean being worse than the median there, while other 
simple estimators, such as a 6 ~ trimmed or truncated mean (cf. next section), are 
more than about 95 ~ efficient over the whole range. The case for the variance is 
even worse. Tukey (1960) recalls the dispute between Fisher (1920) and Eddington 
(Stellar Movements, p. 147, and footnote in Fisher, 1920, p. 762) about the use of 
mean deviation and standard deviation as measures of dispersion, where Fisher 
stressed the fact that for strictly normal data the mean deviation is only 88 
efficient; however, in Tukey's model it suffices to take e=0.0018(!) (corrected 
value by Huber) to make the mean deviation asymptotically better than the stand- 
ard deviation. (And the mean deviation is not even qualitatively robust either; 
there are still better estimators.) This example shows clearly how dangerous and 
misleading mathematical theorems on optimality (or other such topics) may be, 
if they are applied to the real world outside of mathematics. 

If we try to approximate the error distributions of "ordinary" data without 
clear outliers more closely than by the normal distribution, we might consider the 
results by Jeffreys (1961) Ch. 5.7, Jeffreys concluded from his analysis of nine long 
series, that the errors of careful observations made under uniform circumstances 
might well be described by t-distributions with about 5 to 9 degrees of freedom 
(with the additional qualifications that nonuniform conditions, such as different 
observers, cause still longer-tailed distributions, and that the occurrence of less 
long-ta i led-more closely normal-dis t r ibut ions often seems to be coupled with 
marked correlations between the errors). But if we take, for the moment, t 5 to t 9 

as our error models and use the formulas given by Fisher (1922), we find for the 
asymptotic efficiency of the arithmetic mean values between 80 ~o and 93 ~,  and 
for the asymptotic efficiency of the standard deviation values between 40 ~s and 
83 ~ .  Such values (and even lower ones) are thus quite likely to hold true while 
the efficiency of both estimates is believed to be 100 ~ by the unsuspecting statis- 
tician. 

We should also remember that we never know the exact distribution of ordinary 
data; and even if we did, or as far as we do, there remain serious questions about 
how to handle the excess knowledge of details. After all, a statistical model has to 
be simple (where "simple", of course, has a relative meaning, depending on state 
and standards of the subject matter field); Ockham's razor is an essential tool for 
the progress of science. 

For mathematical statisticians, there are purely mathematical and aesthetical 
reasons to consider robust estimators. In functional analysis and its applications 
(e. g. in physics), functionals are often required to be continuous or even differen- 
tiable, in the same vein in which ordinary functions on the real line are usually 
required to be at least continuous (or piecewise continuous, in some applications). 
For decades, however, mathematical statisticians have been bravely struggling 
with functionals on the space of probability distributions, such as the arithmetic 
mean, which are nowhere continuous (fia any statistically reasonable topology, 
such as weak *-topology) and which are only defined on a dense subset (with 
dense complement) of the whole space. Apparently they did not even clearly 
recognize this situation which has caused them troubles in their proofs on more 
than one occasion. The theory of robust estimation (cf. Hampel, 1968) approxi- 
7* 
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mates these functionals by other functionals which are continuous and even 
differentiable, as far as desired. 

If we look briefly to some related fields, we can recognize parallel developments 
there. Robustness may be viewed as a set of stability requirements, analogous to 
stability of ordinary differential equations, for example. Only quite recently, 
numerical analysts have become dissatisfied with such possibilities as obtaining 
a negative variance with the familiar formula { ~  X 2 - ( ~  Xi)2/n}/(n - 1) and a 
correctly operating computer; so they started to investigate numerical stability. 
And in parts of prediction and control theory, engineers resorted to "sub-optimal 
solutions" after finding the "optimal" solutions offered to them inappropriate in 
practice (oral remark by Th. Gasser; cf. also Astr/Sm, 1970, p. 184). 

The question arises how statisticians could get along until now with such non- 
robust estimators as the arithmetic mean. There are several partial answers (cf. 
Hampel, 1968, p. 60 f.): small avoidable losses by the "inadmissible use of admissible 
estimators" will have gone entirely unnoticed, and (in hopefully not too few cases) 
large losses may have been prevented by the use of the median rather than the 
mean in view of plainly non-normal data, or by a transformation, or by the use 
of a formal rejection procedure, or, perhaps most frequently, by the habit of 
"throwing away" any strays before taking the mean. The latter procedure (better 
replaced by: "setting them aside and treating them separately") amounts to 
using an informal, vague rejection rule; and any halfways reasonable rejection 
procedure, even though usually not good, will at least prevent the worst (cf. 
Andrews et al., 1972, p. 243 f.). However, there is an increasing danger in that more 
and more data is automatically processed on the computer without being looked 
at by a competent statistician. 

Indeed, some users of least squares programs have recognized this danger. 
Feeling the urgent practical need to suppress unwanted outliers in their case, and 
being left in the lurch by statistics as they knew it, they robustified their program 
on their own, using intuition, trial and error, and came up with a remarkably 
good solution (see Merrill and Schweppe, 1971). 

Sometimes it is objected that results of mathematical statistics, like the Gauss- 
Markov theorem, yield the arithmetic mean as optimal even if nothing is known 
about normality. In such cases, the main fallacy lies in assuming that we always 
want to estimate the expected value of the observations, however wrong they be. 
(We rather often want to estimate roughly some value in the bulk of the data, 
or perhaps the expectation of a normal distribution close to the actual distribu- 
tion in a metric leading to the weak*-topology.) And even if we, for the Gauss- 
Markov theorem in least squares theory, impose symmetry and existence of 
moments on the distribution of errors (e.g. as in a lightly truncated Cauchy 
distribution), then linearity is far too severe a restriction, and unbiasedness is of 
doubtful value anyway. 

Another objection may be raised based on the wellknown "robustness" of 
the t-test (and of the analysis of variance, for that matter). As tests will not be 
discussed in this paper, it may suffice to remark that the t-test is only moderately 
robust (as long as the tails of the error distribution are not too long) with regard 
to its level, but not with regard to its power and the corresponding length of 
confidence intervals; furthermore, that robustness studies based on Edgeworth 
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expansions, closeness of higher moments and other similarly restricted alternatives, 
though of limited value if interpreted correctly (especially for "good" data), are 
missing the main effects of actual contamination. 

Some may find it surprising that nonparametric techniques basically have 
nothing to do with robust techniques in parametric models. Yet the former, while 
having a proper realm of application of their own, often also have good robustness 
properties and may then be used as robust techniques. Unfortunately, they don't 
seem to be very appropriate for complex designs, so that specifically robust 
methods still have to be developed anew. In some sense and in analogy with 
computers, robust statistics may be regarded as "third-generation statistics" 
after parametric statistics and nonparametric statistics (Tukey, 1970/71, Vol. I, 
Ch. 6 G). 

It should be stressed that there are situations where robust methods are not 
applicable (though much rarer than naive belief would have it): e.g. if the popula- 
tion members to be measured show large variability in the measured characteristic 
(apart from measurement error), and if, specifically, the expected value of this 
characteristic is to be estimated (in a nonparametric sense). An example may be a 
distribution of incomes, which is practically unbounded on one side. Apart from 
trying to establish a suitable parametric model (or at least a "smoothed" model, 
or truncating the distribution if permitted), there seems to be no remedy but to 
pay special attention and great care to the tails of the distribution and otherwise 
hope and pray. (Cf. also Bahadur and Savage, 1956.) 

As the main aim of robust estimation, we can consider building in safeguards 
against unsuspectedly large amounts of gross errors, putting a bound on the 
influence of hidden contamination and questionable outliers, isolating clear 
outliers for separate treatment (if desired), and still being nearly optimal at the 
strict parametric model. Robust estimation considers both small, barely detectable, 
and large, conspicuous contamination of the mode l -  as long as one still wants to 
retain it. The interest is concentrated on the behaviour of the bulk of the data, 
and on routine methods for determining it; but these methods may also be helpful 
in exposing more clearly the deviating behaviour of parts of the data. 

After treating the classical "random errors" of "equally good" observations 
(mainly due to small measurement errors or to inherent variability of the material) 
and, to some extent, controlling "systematic errors" (e. g. by randomization or 
trend-free designs), statistics finally starts to deal explicitly with "gross errors". 
At the same time, the "rigorous models" of classical statistical theory are being 
superseded by "approximate models". The conditions are favourable: the mathe- 
matical tools have further improved; and owing to the development of computers 
and Monte Carlo methods, statistics is now in part an e.xperimental science like 
experimental physics (as evidenced by the book of Andrews et al., 1972), 
much more so than in the days of Student (1908). But we are only at the beginning. 
We know a lot about point estimation of a single location parameter (especially, 
as most important, near the normal distribution), and we still discover more and 
more open questions there; we badly need more techniques for finding confidence 
intervals, to make more estimators practically usable; and we only dimly see the 
contours of a general theory of robustness in linear and locally linear designs, 
including robustness of design. Much more has to be done. 
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2. Some Examples of Robust Estimators 

Before briefly mentioning some robust estimators which are either well-known 
or otherwise of current interest, we may remember that large parts of classical 
statistics are not robust (to be more refined: in varying degree not robust). Non- 
robust (sensitive to small changes of the model) are, e. g.: the arithmetic mean and 
the method of least squares; standard deviation, mean deviation and range; 
covariance and correlation. Robust are: the same methods with sensible "looking 
at the data", setting aside outliers etc. Robust (under some restrictions which will 
not be mentioned) are also estimators combined with reasonable formal rejection 
procedures (cf. Anscombe, 1960; Ferguson, 1961; Grubbs, 1969; for the latter), 
and the estimators to follow. For more details cf. the literature (e. g. Andrews et al., 
1972; Huber, 1964; Huber, 1972; Hampel, 1972). 

The median ~ is well-known and in some sense the "most robust" estimator of 
location, tolerating up to one-half of the sample of totally wrong values and 
being least affected by single gross errors. The a-trimmed mean (0< ~<�89 deletes 
(roughly) ~ n observations on each side of the ordered sample before taking the 

1--Gt 

mean. It can be defined as the functional S F-l(t) dt/(1-2~), where F may be 

the empirical cumulative distribution function. It has a long history (cf. Anonym- 
ous, 1821; Stigler, 1973; and Eisenhart, 1971, about Mendeleev) and (together with 
its one-sided variant) is also naively and sensibly used by laymen very distant 
from professional statistics. It is sharply distinguished from rejection procedures, 
as it does already what "Winsorizing" was supposed to do. The ~-Winsorized 

mean S F-l(t)dt+~{F-l(~+O)+F-l(1-~-O)} (0<~<�89 "brings in" an ob- 
ct 

servations on each side to the first unaffected order statistic, but with some sur- 
prising side effects (cf. Hampel, 1968). A one-sided Winsorized mean (though 
not under this name) is well-known and commonly used in life-testing (cf. e.g. 
Feller, 1966, p.41, or Johnson and Leone, 1964, p. 160f.); here the pressure of 
early termination has brought about the involuntary use of a slightly inefficient, 
but pleasantly robust statistic. The estimator derived from the nonparametric 
Wilcoxon-(Mann-Whitney-)test, called Hodges-Lehmann-estimator, can be 
defined as the median of the means of all pairs of observations (with or without 
diagonal). Of special importance are Huber's M-estimators which should look 
rather familiar as slight generalization of maximum likelihood estimators. In 
general, they are given by a family of functions {~b0(x)}, with 0 in the parameter 
space and x in the sample space, and define the estimate 0 by the implicit relation 

~Po(x)F(dx)=O (together with side conditions if necessary). For estimates of 
location, ~o(X)=tk(x-O), and specifically ~(x)=x for [xl<=k, tp(x)=ksign(x) 
otherwise (0< k< ~ ;  e.g. k= 1.5) defines the prototype of the Huber-estimator 
H 1 (k) which puts a bound on the influence of any observation. It may be combined 
with any robust scale estimate in order to be also scale-invariant. The author 
proposed to let the defining ~p-function smoothly and gently go to zero in the tails, 
as in Ip,bc(X ) which is symmetric and linear from 0 to a, constant till b and linearly 
descending to zero till c from where on it stays zero (e.g. "25A" with a=2.5, 
b =4.5, and c = 9.5 multiples of the "median deviation", see below). This combines 
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the advantages of" Huberizing" and of rejecting outliers. (Of course, the computer 
program should also report the outliers separately.) There are many other estimates 
of location (hundreds of them have been tested recently), e.g. Tukey's skipping 
procedures (which reject observations according to their relative distance from 
the quartiles) and the "adaptive" estimators (which try to estimate the shape of the 
underlying distribution in one way or another). 

The interquartile range is a simple robust scale estimate, while the precise 
counterpart of the median is the slightly different "median deviation" reed (J x i -  2 [), 
with ~=med (xi) (cf. Hampel, 1968 (p. 83), 1972). It is the limiting case of Huber's 
scale estimators which have parabolas bounded from above and later also from 
below as defining ~,-functions. Other robust scale estimators are trimmed and 
Winsorized variances. 

Correlation may be estimated by the Spearman or Kendall rank correlation, 
or by the quadrant correlation (cf. e.g. Quenouille, 1959, or Sachs, 1972, p. 312f.) 
which in time series analysis is known as the result of "hard limiting" (cf. Thomas, 
1969, p. 298 ff.; Huber, 1972). Some other estimators are those obtained by "smooth 
limiting ". 

3. The Cushny and Peebles Data Revisited 
The data by Cushny and Peebles (1905) on the prolongation of sleep by two 

soporific drugs were used by Student (1908) as the first illustration of his famous 
test, were then cited by Fisher ((1925) 1970) and thenceforth copied in numerous 
books as example of (univariate) normally distributed data;the original bivariate 
sample is even one of two samples given and treated as multivariate normal in 
Anderson (1958). A glance at a simple scatter diagra m reveals that there is one 
point way off the pattern set by the rest, and two more are slightly suspect. But 
rarely are the differences analyzed in another way than with mean and t-test; e.g. 
Pfanzagl (1968, p. 131f.) uses only the sign test, and Tukey (1970/71, Vol. I, Ch. 6D, E) 
applies his skipping procedures, remarking cooly that we do expect fairly frequent 
stray values in data of this kind. 

For a brief first look, we neglect to go beyond the data, to the way they were 
generated; we ignore the medical and biochemical knowledge and other pertinent 
information needed for a thorough analysis; within the data, we disregard the 
bivariate structure, including choice of model and potential special meaning of 
zeros; we pass over the test against zero difference, where the results of t-test and 
sign test are very similar (the two-sided levels of significance reached are 0.3 % 
resp. 0.4 %); we only try to estimate the difference between the tvr drugs by various 
methods, including confidence intervals on the customary 95%-level where 
possible. 

The ordered sample (of differences) is 0.0; 0.8; 1.0; 1.2; 1.3; 1.3; 1.4; 1.8; 2.4; 
4.6. Some central values are: 

mean: 1.58 
10 % (10 %-trimmed mean): 1.40 
20 % (20 %-trimmed mean): 1.33 
H/L (Hodges-Lehmann-estimator): 1.32 
50 % (median): 1.30 
P15 (a variant ofHuber's H(1.5); see Andrews et al., 1972, 

also for other estimators): 1.38 
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trimean: 1.35 
(rejecting estimators :) 25 A: 1.29 
mean with 4.6 rejected: 1.24 
c = t = s-skipped trimean: 1.25 
c = t = s-skipped mean: 1.26 

(the latter ones having 4.6, 2.4, 0.0 rejected). We note that all estimators save the 
mean, even though of very different types, range from 1.24 to 1.40, leaving a clear 
gap up to 1.58. Even estimators which are highly correlated with the mean in the 
case of strictly normal samples, like 10%, P15, 25A and H/L (all being about 
95 % efficient), are now clearly separated from it. Those estimators which never 
reject an outlier, no matter how bad it is, range from 1.30 to 1.40, the median being 
most resistant and farthest away; the others, including the very efficient 25A, 
range from 1.24 to 1.29. If we wanted to select any single point estimate, we could 
take 1.29, which just happens to nearly coincide with the median. 

Confidence intervals can presently be constructed for mean and median (and 
other estimates derived from rank tests which, however, become better usable 
only for slightly larger sample sizes), and approximate ones (with a robustified 
t-test) for 10% and 20% (cf. Tukey and McLaughlin, 1963, and Huber, 1970b). 
They are (on the 95%-level): mean: [0.70, 2.46]; 10%: [0.85, 1.95]; 20%: [0.87, 
1.79] ; median: [0.8, 2.4]. We discover that the interval for 20 % is only about  half 
as long as that for the mean (derived from the t-test). Moreover, the interval for 
the median, derived from the sign test, often shunned because of its inefficiency, is 
still on both ends slightly narrower than that of the mean. In contemplating the 
length of the confidence intervals, we infer that (for most purposes) the point 
estimates should be rounded to full tenths (or at most half tenths), yielding 1.3 
(possibly 1.2 or 1.4); that the differences among the robust estimators are negligible; 
that the mean 1.6, however, is clearly somewhat worse, being by about  one 
estimated standard error or more away from the rest. 

4. Historical Notes; The "Princeton Robustness Year" 1970171 

After Gauss (1821) had introduced the normal distribution to suit the arith- 
metic mean (of "equally accurate" observations, to be sure) and had (since about 
1800) developed his statistical theories mainly under the criterion of mathematical 
simplicity and elegance, little progress was made towards robustifying the classical 
models for about  a century and a half. There were, of course, analyses with only 
partial or no regard to the theory of least squares; some first rejection procedures 
for outliers were introduced (Peirce, 1852; Chauvenet, 1863; for current references 
cf. Anscombe, 1960; Ferguson, 1961; Grubbs, 1969); and it was soon discovered 
that even samples of purely "good"  observations tend to be indeed approximately 
normal, but also clearly longer-tailed. But apparently only a few noted statisticians, 
such as Newcomb (1886), Student (1927) and Jeffreys (1932, 1939) took the latter 
fact serious, and tried to do something about  it. (For the beginnings of robust 
testing, of. e.g. Pearson, 1931; Box, 1953; Box and Andersen, 1955.) 

Perhaps some words should be said about  the place of Fisher, in particular 
since his emphasis on strict model optimality, though very valuable for theory, 
has entailed rather untenable and illogical attitudes towards practice (by mathe- 
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maticians) and within practice. Fisher (1922, p. 355 and before) had pointed out 
that the method of moments (in particular mean and standard deviation) is more 
than 80 ~ efficient only in a small region of Pearson curves; and he was the only 
statistician queried by Tukey (1960) to anticipate large effects in the latter's 
contamination model. He mentioned the possible use of the sample kurtosis for 
deciding whether to use the standard deviation or the mean deviation (Fisher, 
1920, p. 770) and envisaged the future possibility of something like adaptive 
estimation (Fisher, 1936, p.250). He sometimes carefully checked parametric 
models in real applications (cf. e.g. Fisher, Thornton and Mackenzie, 1922); 
he provided tests for departures from normality (Fisher, 1930) and applied them 
(with somewhat fragmentary comments) to real data (Fisher, (1925) 1970, p. 52f.). 
Two crucial references seem to be Fisher (1922) p. 314 and p. 322f. After stressing 
its existence, Fisher (loc. cit. p. 314) explicitly ignored the "question of specifica- 
tion" (of a parametric model) in his discussion, leaving it to the "practical statis- 
tician ". Later (loc. cit. p. 322 f.) he made short remarks about rejection of outliers, 
nonnormal distributions in reality, the importance of collecting large samples 
for determining (better: estimating) the true error curves, and assured observers 
of no criticism if (in view of nonnormal data) they used other estimators than the 
mean. He did not suggest any alternative model to be used, but (loc. cit. p. 314) he 
did expect progress in the area of specification, quite likely in connection with a 
change of viewpoint, and quite possibly faster than any progress has come (cf. 
Tukey, 1960, p. 472 f.). 

It seems surprising that (Neo-)Bayesians have not contributed more to robust- 
ness or even the problem of outliers (for some different types of work done, see 
e.g. de Finetti, 1961 ; Box and Tiao, 1962; Gebhardt, 1966). They have made some 
valid theoretical points, and undoubtedly much work will have escaped this 
author; but some parts of their work are apt to leave the unfortunate impression 
of formal derivation of complicated integrals under unwarranted assumptions 
(which are then often left unsolved), or of the substitution of simple models by 
equally strict but more complicated ones. The surprise stems from the fact that 
there are indeed many questions in applying statistics which reasonable practical 
statisticians would think most suitable for formalization by a Bayesian or similar 
theory, but somehow they don't seem to find the attention they deserve by 
Bayesians. A simple example may be given by the statement: "I expect about 10 
gross errors, which could be anywhere, in this sort of data." 

The short history of robust estimation starts with the investigations of Tukey 
and his co-workers about the non-robustness of some classical estimates and the 
robustness of some simple substitutes for them (cf. Tukey, 1960). The first theoreti- 
cal breakthrough came when Huber (1964) considered a rather full class of 
neighbouring alternatives which dwells on the crucial junction between being 
already sufficiently general and being still elegantly manageable. In a second basic 
approach, Huber (1965, 1968 a) derived robust confidence intervals from robust 
tests, for which he is working out a general theory (cf. Huber and Strassen, 1973). 
There are other papers containing memorable ideas, e.g. by Anscombe (1960), 
Tukey (1962), Anscombe and Tukey (1963), Hodges (1967), Tukey (1970/71) (this 
selection is of course subjective and incomplete). The author (Hampel, 1968) 
studied the various stability aspects of robustness: the qualitative local behaviour, 



96 E R. Hampel 

the "breakdown" aspect and the theory of infinitesimal properties (cf. also Hampel, 
1971, 1972). So far, most successful studies consider only point estimation of a 
single parameter, as a necessary but transient first step; comparatively little is 
known yet about interval estimation (cf. Tukey and McLaughlin, 1963, and 
Huber, 1970b) and about estimation in more general designs (where Huber, 
1968b, 1970a, appears to have pointed the way for linear designs); but work is 
going on. A recent survey (with additional references) is given by Huber (1972). 

On the more empirical side, there was a number of computer studies of the 
finite sample behaviour of various robust estimators for different underlying error 
distributions, using either numerical integration or Monte Carlo methods. A 
particularly large study was conducted at Princeton in 1971 (Andrews et al., 1972). 
It was an outgrowth of a year-long research seminar about robustness by Bickel, 
Huber, Tukey and the author which at first delineated various methods of attack 
for robust regression, but then concentrated on finding a common and communi- 
cable basis with regard to the simplest but fundamental case of robust estimation, 
that of estimating a single location parameter. Proposals were made and collected 
from the literature and from a number of statisticians, and finally about 70 esti- 
mators yielded their Monte Carlo variances and percentage points under about 
20 different sampling distributions (mostly for sample size n=20, but in some 
situations also for n= 5, 10, and 40). Several interesting side studies, such as of 
finite-sample "influence" or "sensitivity curves" and of "breakdown" bounds, 
helped in rounding the picture. The detailed results are too numerous to be 
reviewed here (cf. Andrews et al., 1972); they are in good agreement with theory 
(as far as existent) and supply the necessary quantitative details. Some results are 
that estimators which in effect "bring in" outlying observations closer to the bulk 
of the sample, such as Huber-estimators, trimmed means and the Hodges-Leh- 
mann-estimator, are doing quite well, but still lose unnecessarily much efficiency 
compared with descending M-estimators which eventually "throw out" (reject) 
very distant values completely if such distant outliers may be present. This type 
of M-estimator lets the influence of outliers go to zero smoothly with the distance; 
it allows for a region of doubt, so to speak, and therefore avoids the unpleasant 
jumpy features of classical "hard" rejection procedures, which treat observations 
as "completely good" up to a certain distance, and as "completely bad" (to be 
thrown out)just beyond. 

A comparison of the practice of applying a (hard) rejection procedure and 
taking the mean of the remaining observations with other robust estimators under 
equal conditions seemed desirable. Now Tukey continued the Monte Carlo 
studies in detail with more and more sets of 75 estimators each under a few situa- 
tions, and one of these sets, filled with suggestions by Bickel, Huber and the author, 
eventually contained also several classical rules for the rejection of outliers. The 
first results were not unexpected: if the "contamination" by "gross errors" was 
rather distant and clearly separated from the rest of the sample, these "hard" 
rejection rules did about as well as the best other robust estimators, namely 
smoothly rejecting (descending) M-estimators; but when the underlying distribu- 
tion carried just somewhat more mass in the "flanks" than the normal distribution, 
making t h e -  artificial- distinction between "good" and "bad" observations 
much more difficult, then hard rejection rules were considerably inferior to many 



Robust Estimation: A Condensed Partial Survey 97 

other robust estimators. They also showed great differences among themselves; 
as a very tentative and preliminary result, rejection rules based on the 4th moment, 
on the maximum studentized residual and perhaps also on the Shapiro-Wilk-test 
appear to be relatively good, while some others may fail rather badly. Still, the 
fact remains that reasonable formal rejection procedures, though usually not 
very good, can often at least prevent the worst; they and, even more so, judicious 
subjective rejection procedures may already be far superior to formal application 
of classically optimal nonrobust methods. 

5. Some Concepts in Robustness Theories 

This short chapter can only give some hints about the meaning of some con- 
cepts; details can be found in the literature. We also repeat the warning that theory, 
any theory, can at most provide guidance, but not the answer in real life; hence 
also robustness theories should not be taken literally in applications. 

The gross-error-model (Huber, 1964) is described by F(x)= (1 -5) ~(x)+ e H(x) 
(0 < e < 1) where �9 is (e. g.) the standard normal cumulative and H is either sym- 
metric (for mathematical convenience) or completely arbitrary. (By shift, etc., this 
produces a sort of neighbourhood of the parametric model.) The interpretation is 
that an observation is "good" with probability 1 - 5, but may be anything with the 
small probability 5. For fixed 5, there is (usually) a least favourable distribution 
among this set, which is hardest to estimate; and its maximum likelihood estimator 
has an even smaller asymptotic variance for all other distributions allowed 
(saddelpoint property). In the case of the Normal, the least favourable distribution 
is normal in the middle and exponential in the tails, and its maximum likelihood 
estimator is the Huber-estimator (with k depending on 5). 

Confidence intervals can be derived from censored likelihood ratio tests 
(Huber 1965, 1968a) which put bounds from above and below on the likelihood 
ratio. Exact finite sample solutions for the Normal case are again the Huber- 
estimators. For the asymptotic evaluation of the bounds, cf. Huber-Carol (1970). 
For the relation to capacities, which had been introduced into statistics by Strassen 
(1964), ef. Huber (1968a, 1969), Huber and Strassen (1973). 

Qualitative robustness (small change of the behaviour with small change of 
the model) can essentially be described by continuity of the estimator with respect 
to the Prohorov metric. The Prohorov distance takes care of a small fraction of 
arbitrary gross errors, of small rounding and grouping effects, and of the type of 
deviations occurring in the central limit theorem. There are close relations to the 
"total-variation-model" and the gross-error-model (cf. Hampel, 1968, p. 41ff.). 

The breakdown point is a weak and simple, but important global measure of 
robustness. It tells us the fraction of gross errors needed until the estimator 
becomes completely unreliable and totally disastrous. (E.g. for the a-trimmed 
mean, it is equal to a; more than an free outliers on one side can enforce any 
value of the estimate whatsoever.) While usually a breakdown point �89 is desirable 
and also possible, estimators with breakdown points near zero are obviously too 
risky, except for very good data. 

The richest information can be gained by considering infinitesimal changes 
and extrapolating them back to finite samples. The central tool is the influence 
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curve IC of an estimator (functional) T at a distribution F, defined on the sample 
space by ICT, F(X)=lim~,o[T{(1--5)F+e3,}--T(F)]/~, where 3~ is the point 
mass 1 in x (Hampel, 1968). Roughly speaking, it measures the change of the 
estimate caused by an additional observation in x. There are close ties to derivatives 
of functionals (such as in yon Mises, 1947), to the jackknife and to frequently 
occurring expressions in mathematical statistics; in particular, the IC of a maximum 
likelihood estimator resp. of an M-estimator is nothing but a certain multiple 
of the log likelihood derivative resp. the defining 0-function. Thus it is possible to 
see at a glance local robustness properties of maximum likelihood (and other) 
estimators, and to construct new estimators with predetermined properties (as 
successfully done in Andrews et al., 1972). A maximum likelihood estimator 
may be robustified in the following ways (in decreasing order of importance): by 
putting a bound on LICI ("gross-error-sensitivity"), by putting a bound on the 
absolute value of the slope ("  local-shift-sensitivity"), by setting the I C -  0 outside 
a certain point ("rejection point"), by going down to zero (in the location case) 
on a certain hyperbolic tangent (determining the "change-of-variance-sensitivity"), 
and by putting (in the same case) a (stricter) bound from below on the slope 
(determining the "change-of-bias-sensitivity"). This means roughly: limited effect 
of any fixed amount of unknown contamination; limited effect of "wiggling" 
(rounding, grouping etc.); no effect of clear outliers; and a certain stability of 
asymptotic variance and bias. Under such side conditions, the estimator should 
still estimate the correct quantity /f the model were t rue -mean ing  T(Fo)-O 
(" Fisher-consistency")- and be as efficient as possible under the strict model. 
In this framework, there remains no question of "what to estimate' ,  no "question 
of bias" (cf. Hampel, 1968, p. 84f.); we estimate a quantity which coincides with 
the parameter (e. g. the expectation) if the model is true and which changes very 
little if the model is not quite true (and which breaks down as late as possible). 
By robustifying an estimator, we may exchange an arbitrarily small loss in ef- 
ficiency against a tremendous gain in quantitative robustness properties. The 
optimality problem of maximizing the efficiency under a given bound on the gross- 
error-sensitivity (" optimal Huberizing") is basically solved and leads again to the 
Huber-estimators in the Normal case. - Among the first uses of the influence 
curve was the surprising clarification of the effects of rejecting, trimming, Winsor- 
izing and Huberizing. The IC provided also a simple four-parameter summary 
of the mass of data in Andrews et al. (1972; cf. p. 248 ff.). More uses (e. g. in multi- 
variate statistics) may be anticipated. 

6. Open Problems and Recent Developments 

As there are many more things which we don't know (but can already vaguely 
point to) than things we do know, we can only briefly touch upon some likely 
or important areas of future research; keeping in mind that weights and even the 
questions themselves may drastically change within a short time. 

There are many open questions even with a single parameter. An outstanding 
problem is Studentizing (confidence intervals; finite-sample distributions), in 
particular of M-estimators. (Formulas for asymptotic variances are known, and 
their values can be estimated, but the problem lies with small samples.) A small 
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point to be discussed is the selection of a sequence of different functionals for 
different sample sizes. A topic which has received much recent attention are 
"adaptive" estimators which try to estimate the true underlying distribution in 
order to become "asymptotically everywhere efficient". They seem to be more 
nonparametric than robust in spirit, though some "mild" form of adaptivity has 
already proved useful in Andrews et al. (1972). There are still open regularity 
conditions and missing theorems about Fr6chet-derivatives, optimal robusti- 
fications and similar points. A special topic is sufficiency; in one sense or other 
the robust estimators are "nearly as" sufficient for the parametric model as the 
classical ones, but a satisfactory quantitative interpretation (which one, and why ?), 
together with theorems about minimal loss of sufficiency under robustness re- 
strictions, are still waiting to be written down. Robustification of Bayes estimators 
(or even the full aposteriori distribution) might consist of two parts: the "classical" 
one with regard to the model and a new one with respect to the apriori distribution. 
One approach for the latter problem (before the question was posed) is already 
given by the theory of"restricted Bayes solutions" (Hodges and Lehmann, 1952; 
cf. also Lehmann, 1959, p. 14), but its suitability remains to be checked. Those for 
whom the separation of the problem is too simple or not "Bayesian" enough may 
put a robust apriori distribution on a full Prohorov neighbourhood of the whole 
parametric model and solve for the estimator. 

The problem of estimating a single variance is largely solved, although for 
practical use some constants and tables have to be worked out or expanded (cf. 
also Johnson and Leone, 1964, p. 172f.). A number of possibilities are known for 
estimating covariance and correlation matrices, as used in multivariate statistics 
and time series analysis, but their properties have to be studied in more detail 
and compared; the final choice will vary with the purpose. A general question is: 
should outliers only be "brought in" ("Huberized") or even "thrown out" 
(rejected)? (And do we want "smooth" or "hard" rejecting?) Another feature of 
interest is whether there exists a random transformation of the data such that the 
(vectorvalued) estimate is a simple bijective function of the classical estimate of 
the transformed sample (as in Huber's "proposal 2"); and if so, whether this 
transformation can be achieved in each coordinate separately. Obviously, a scalar 
factor as bijective function ensures positive semidefiniteness of the covariance 
matrix. (Perhaps a random "weight" function for the size of the observations- 
usually 1 / n - c o u l d  also be used.) Along these lines, the author (Ztirich robustness 
seminar, summer 1972) suggested the following affine invariant procedure: given 
a 0-function as used for location estimators, find a matrix A such that with y = A -1 x 
and z=0([[y][ ) "Y/[lYI[ the covariance matrix of the z i is a fixed multiple of the 
identity matrix; then AA r is the estimated covariance matrix of the x i. The 
solution (existence ? uniqueness ?) hopefully can be found iteratively (convergence ?), 
by transforming the z i to spherical symmetry (as outlined by Gnanadesikan and 
Kettenring, 1972) and starting, e.g., with median deviations and raw quadrant 
correlations. The 0-function may be bounded monotone ("bringing in" outliers) 
or returning smoothly to zero (rejecting outliers); the quantitative form may 
depend on the dimension. A similar method, which is a hard rejection procedure, 
has already been tried out in some cases by Gnanadesikan and Kettenring (1972). 
Huber (Ziirich robustness seminar, summer 1972) suggested and studied another 
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approach which is not affine invariant but on the other hand still simpler; namely 
to transform each coordinate separately and to use the correlations of the trans- 
formed variables. It contains smooth and hard limiting as special cases. There 
are surprisingly close ties to the theory for a location parameter. 

The first step in robustifying the linear model may be taken by Huberizing the 
residuals (cf. Huber, 1968 b, 1970a, 1972, 1973 a); other approaches (cf. e.g. Bickel, 
1971) may be asymptotically equivalent. Historically and practically, the first 
step was hard rejecting (cf. Anscombe, 1960, Daniel, 1960, Kruskal et al., 1960). 
The second step, combining the initial alternatives, would be smooth rejecting 
(Hampel, Princeton robustness seminar; cf. also Anscombe, 1967). But then there 
comes a novel feature. The total influence (of an observation on the fitted model) 
is determined not only by the size of the residual, but also by the "influence of 
position (in the factor space)" (in a multiplicative way), and the question arises 
whether and when (and how, in practice) to Huberize or even to reject certain 
positions, as a possible third and fourth step. An extreme example would be simple 
linear regression with one x~ far away from the rest (e. g. astronomical observations, 
a single one from antiquity). This x~ may be known to be physically impossible 
(so that one would reject it), or it may be the most important point in factor space 
(so that one has to keep and tentatively trust it), or it may be more or less doubtful 
(so that one can restrict the influence of position to an arbitrary degree, shifting 
the emphasis of the fit towards the densely occupied part of the factor space 
in the frequent case where the model is only approximative). It should be noted 
that merely restricting the influence of residuals, without regard to position, 
would not suffice. Eventually such considerations may also lead to a quantitative 
theory about "robustness of design" (Hampel, Princeton robustness seminar, 
1970; cf. also Huber, 1973b). 

There are still many open problems in time series analysis. Of minor importance 
may be x2-related estimation in contigency tables and similar designs, which is 
already qualitatively robust; but sometimes it may still be desirable to cut out or 
down the influence of a few single cells. Another, quite different type of topic is 
possibly that of bias in complex designs, in particular bias caused by overfitting 
(of many parameters) and bias caused by ill-fitting approximate models (leading 
to new aspects with regard to "optimal" designs, see Huber, 1973 b). But all these 
questions are still more or less within conventional framework. Some very im- 
portant questions of data analysis are still on a deeper level. One is basically 
pattern recognition (in the presence of random errors); in particular, fitting of a 
suitable model to the data (rather than the other way around) and identification 
of simple substructures of a structure which behave like outliers (Daniel, 1968). 
(Here belong also breakdown aspects with regard to substructures.) Another one 
are the "semi-systematic fluctuations" of certain time series (cf. Student, 1927; 
Jeffreys, 1961, Ch. 5.6; Mandelbrot and Wallis, 1968; cf. also Daniel and Wood, 
1971, p. 59); there may be similar slow trends in space, and both may be related 
to the "semi-systematic inhomogeneity" of the target population or "reference 
set" (cf. also de Finetti, 1964, p. 115 f.) and the question of the range of validity (and 
attainable accuracy) of a statistical model. A third, somewhat related, broad area 
which seems to underly many uses of data analysis (perhaps even more so in the 
future) is that of smoothing (including "resistant" smoothing, as discussed by 
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Tukey, Princeton robustness seminar, 1971). Our theories are still a long way away 
from the "high art of data analysis", as exemplified by the book of Daniel and 
Wood (1971). We do well to remember this; we do well to remember that statistical 
theories, at best, provide a partial aid by clarifying specific aspects of the situation 
at hand (and that, in our case, even robust routine methods do not obviate the 
need for careful thinking if more than a routine answer is wanted); we do well 
to remember how little we always know. 

7. Some Summarizing Theses 

1. (a) Robust methods, in one form or another (and be it a glance at the data), 
are necessary; those who still don't use them are either careless or ignorant. (b) 
On the other hand, some robust methods, even if very vague, subjective and in- 
efficient, were always applied by good practical statisticians; this use, long frowned 
upon by dogmatists, is now also justified by theory. 

2. (a) The theorems of mathematical statistics, sharpened by logic and cor- 
respondingly narrow-pointed, can and should provide guidance and illumination 
of special aspects; if taken superficially for unwarranted deductions in real life, 
they can be totally misleading. (b) In practice, it is much more important to prevent 
the worst in every conceivable aspect, including those not covered by any current 
theory, than to optimize in one or a few directions, completely ignoring everything 
else. 

3. (a) Those who don't trust their statistical intuition, or who worry even 
about small losses of efficiency, say, from 5 % to 50%(!), may use good robust 
estimators as far as currently known; they may remember that these estimators 
help to control and expose contamination, not to interpret it. (b) Those who try to 
devise systematically new robust methods may be warned of doing so without the 
utmost aid by robustness theory presently attainable; there were and are too many 
fallacies and traps for naive intuition. 

4. (a) The statistical theory of robust estimation gives us in many cases already 
a good intuitive insight into what we can do, and how we can do it; in particular, 
we can understand old methods more deeply and can develop greatly improved 
new ones. (b) The practical approach is to act as if the parametric model would 
hold, but with methods which are hardly affected by small perturbations of the 
model and which are still safe under large contamination; the results may be used 
for routine purposes if this makes sense, or they may be analyzed further. (c) The 
mathematical theory of robust estimation, slowly coming into existence, can 
provide many new problems to work on and a surprising new outlook at many 
old results of mathematical statistics; and perhaps some topics will become more 
elegant, with the aid of some increasingly used tools of functional analysis and 
other parts of pure mathematics. 

5. (a) Statistical practice, much more than practice of other fields, may contain 
a large share of incompetent, nonsensical and greatly inadequate work which 
goes unnoticed; and even if the consequences of a blunder become apparent, it 
may still be ascribed to some error of first or second kind. (b) Statistics, much more 
than other fields, is also liable to misuse up to outright fraud which it may even 
be very hard to expose; attempts to confine the misuse by prescribing a limited 
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c a n o n i c a l  set o f  p r o c e d u r e s  for all  c i r cu ms t a nces  have  the  side-effect o f  le t t ing 
stat is t ics  a l toge the r  a p p e a r  u n r e a s o n a b l e  a n d  foolish.  (c) W h i l e  misuse  a n d  in-  
c o m p e t e n t  use  seemingly  c a n n o t  be  e l imina ted ,  it m a y  still be  of  va lue  to  discuss 
m o r e  f r equen t ly  a n d  o p e n l y  example s  a n d  h ighe r  s t a n d a r d s  of  g o o d  d a t a  ana lys i s  
(as o p p o s e d  to those  of  pu re  ma themat i c s ) .  Stat is t ics  a n d  c o m m o n  sense shou ld  
be  compa t ib l e ,  after all. (d) T h e  h i s to ry  of  r o b u s t  e s t i m a t i o n  m a y  p rov ide  a n o t h e r  
incen t ive  to discuss  these  ques t ions .  
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