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Summary. Let x(t) be a diffusion process satisfying a stochastic differential equation and 
let the observed process y(t) be related to x(t) by dy(t) = g(x(t)) + dw(t) where w(t) is a 
Brownian motion. The problem considered is that of finding the conditional probability of 
x(t) conditioned on the observed path y(s), 0 <~ s <~ t. Results on the gadon-Nikodym 
derivative of measures induced by diffusions processes are applied to derive equations which 
determine the required conditional probabilities. 

1. Introduction 

Let xt satisfy the stochastic differential equation dxt  = a ( x t ) d t + b ( x t ) d ( v t  
where wt is a Brownian motion, and let Yt be related to xt by dyt  = g (xt)dt  + dwt ,  
where wt is a Brownian motion independent of wt (conditions on a (x), b (x)and 
g (x) will be imposed in the next section). The xt  process can be considered as the 
motion of a noise-perturbed dynamical system and Yt as a noisy observation 
on x t .  This suggests the problem of determining the conditional probabili ty of x t ,  
conditioned on the observed path  ys,  0 ~ s ~_ t. This problem was considered 
by  STRATONOVICH [1], K v s ~ g  [2], BvcY [3], SgmYA~V [4] and others. 1 

Previous work on this problem concentrated mainly on finding equations 
satisfied by  p (u, y~), the conditional density of xt given the observed path  Ys, 
0 <-- s <~ t, (assuming it exists) and the derivations were formal. Recently K v s ~ N ] ~  
proved tha t  conditional expectations of functions of xt  satisfy (under certain 
restrictions) a stochastic equation [2]. 

Let  r (u, y~) be related to p (u, y~) by  

p (u, yto) = q) (u, yto). (~ q5 (u, yto) d u ) - l ,  
Ev 

the results of this paper deal with the unnormalized density ~b (u, yt). I t  turns out 
tha t  this leads to considerably simpler equations as compared to the equations 
for p(u, y~). The results of this paper are based on results of S~:OgOHOD and 
GI~SA~OV for the Radon-Nikodym derivaties of measures induced by  solutions 
of stochastic differential equations. Two stochastic equations for ~5 (u, y~) are 
derived. The first equation is derived in section 3 (theorem 1 and corollary 1). 

1 After this paper was written we learned of the work of R. E. IV[ORT]~=~SE~ (University 
of California, Berkeley, Elektronics Research Laboratory Report EgL-66-1, August 1966), 
and T. E. DvNCA~r (Stanford University, Center for Systems Research, Technical Report 
7001-4, May 1967), which contain results similar to some of the results of this paper. In 
particular, 1VIo~T~S~ derived, under some additional restrictions, the results of corollary I 
and DvNeA~ obtained, formally, the results of theorem 3. We wish to thank T. K).ILA~rE for 
calling our attention to these references. 
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The uniqueness of the solution to this equation is considered in section 4. The 
second equation is derived in section 5. The assumptions of theorem 3 (section 5) 
include some smoothness properties of the solution to equation (18). Conditions 
under which the solution has these properties are unknown at present. A similar 
remark applies to theorem 4 (section 5). I t  will be obvious from the proofs that  
it is possible to trade assumptions on the transition density of the xt process for 
assumptions on the solution to Eq. (18) [or Eq. (30)]. The results of section 5 
should therefore be considered to be of exploratory nature. 

2. Some General Relations 

Let (Q, d )  be a measurable space and /~0, #1, two equivalent probability 
measures on (f2, ~4). Let  

A (co) = ~ - ~  (co) 

be the Radon-Nikodym derivative of #1 with respect to r Let  X (co) be a random 
variable on (D, d )  and let the expectation of I X (x) I with respect to #1 be finite. 
Let ~ be a sub a-field of ~ and E(0)(E(1)) denote expectations and conditional 
expectation with respect to/~0 (#1). Then, a.s. #1 and/ to ,  ([5], section 24.4): 

E(1) (X (co) ] ~ )  = E(0)(X (o)) A (~o) l ~) 

Let  xt be the solution to the stochastic equation 

t t 

xt = xo + f a(xs) ds -t- f b(xs) d(vs (2) 
0 0 

t t 

yt = fg(xs) 8 + 
0 0 

where x and a (x) are vectors in the Euclidean r-space Er, b (x) is an r • r matrix, 
wt is the standard r-dimensional Brownian motion, g (w) is scalar valued and ws 
is a standard one dimensional Brownian motion, independent of the ws process. 
Let  h (x) stand for g (x) or any of the entries of a (x) and b (x), we assume that  
h (x) satisfies the Lipschitz condition 

x,y E . 

The initial condition for the xt process, x0, will be assumed to be a random variable 
independent of the wt, wt processes. Let/~1 be the measure induced on the space 
of Er+l valued continuous functions on [0, T] by Eq. (2), and let/~0 be the measure 
induced on the same space by:  

t t 

xt = xo + fa(xs)ds -~ fb(xs)d(zs 
0 0 

t 

= ] dw . (3) 
0 

I t  is known that  under these conditions, #1 and/~o are equivalent measures and 

1 6 "  
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the l~adon-Nikodym derivative of #1 with respect to /to is given a. s. by ([6], 
Ch. 4, section 4; [7]): 

dm tx T .T, Exp - - ~  g2(xs)ds+ Sg(xs)dys (4) A (x~, y~) = ~ , 0 , ~ o j =  
0 

where x~ (y0 ~) stands for the path xs (Ys), 0 ~ 8 ~ T. Since/~1 and/t0 are equivalent, 
any a.s. property with respect to one measure is also a.s. with respect to the other 
measure. From here on all equalities between conditional expectations and con- 
ditional probabilities are to be understood in the a.s. sense, even when this is not 
stated explicitly. Also, all the a-fields considered will be assumed to be complete 
with respect to the involved measures (the Lebesgue measure on Er and [0, T], 
and/to). 

Let 2Y (xt, y~)) denote the sub a-field induced by the family of random variables 
xt, Yo, 0 ~-- 0 ~-- s (similarly, we will use ~ ( x s ,  xt, y~)), ~(y~)) etc.). Let ](x) be a 
reM valued, bounded Borel function of x (x e Er ;) then, by (1) and the smoothing 
property for conditional expectations we have: 

E (1) ( / ( x t ) l~  (Yto) ) ~ E{0)(E(0)(A (Z ~o, y~ ) [ g (xt, y~ ) ) / (xt} l g (y*o) } 
E~o> {E(0)(A (x~o, y~o) l~(xt,  y~)) ] 2(y~)} (5) 

Let A(u, y~) be the value of some version of E(0)(A (x~, yg)[ ~ (xt, yto)) at xt = u 
and the path y~. Let 

P (u, t) = Prob {xt ~ u} ,  u e Er (6) 

(where xt ~= u means that  each component of xt satisfies the inequality with 
respect to the corresponding component of u). Since, under/ to,  2Y (y~) and 2Y (x~) 
are independent, it follows by Fubini's theorem that:  

E(o){E(o)(A(xto, yto)l~(xt,Y~o))/(xt)l~(yto) } = .~/(u),4(u, Yto)P(du, t) (7) 
E~ 

and 

E(1) (/(xt)I ~ (Yto)) ~" = ; A(~, Y~) ?(d~, t) (S) 
Br 

Since /(x) was arbitrary, a version of the conditional probability of the random 
variable xt conditioned on yt, with respect t o / t l  is given by:  

fi(u, yl) P(au, t) 
F 

Prob {xt e F[  2(y~)} = ~ 2{u, yD P(du, t) (9) 
E, 

where F is any Betel set in Er. Furthermore, the conditional probability obtained 
by (9) is a conditional probability distribution ofxt relative to ~ (y~) ([8], Ch. I, w 9). 

In particular, if P (u, t) is absolutely continuous with respect to the Lebesgue 
measure and P(du, t ) =  p(u, t)du then a version of Prob{xt ~ FI2(y~)  } is also 
absolutely continuous with respect to the Lebesgue measure and the density 
satisfies: 

p (u, t 12 (yt)) _~ A{u, y~) p (_u,_t) (10) 
S ~(u, yl) p (u, t) ~ " 

Er 
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In  view of Eqs. (9) and (10), the problem of finding the conditional probability 
of xt conditioned on yt 0 (with respect to the measure induced by Eq. (2)) has been 
transformed to the problem of finding E(o)(A (xto, yto)]2(xt, yto) ) where the con- 
ditional expectation is with respect to the measure induced by (3) and A (x~, yt) 
is given by (4). The numerators of (9) and (10) will be called the unnormalized con- 
ditional probability and density, respectively. Equations for expectations of 
multiplieative fnnetionals of Markov processes, including expectations of the form 
E (A (x~, y~)] ~ (xt)) (and E(0) (A (x t, yt)] 2 (xt, yto)) with Yt differentiable) were 
derived by Kac, Fortet  and others [9]. These results, though not applicable to the 
present case, motivated Che results of sections 3 and 5. 

3. An Integral Equation for the Unnormalized Conditional Probability 

Theorem 1. For the (xt, yt) process defined by Eq. (2), P (xt ~ / ' ]  ~(y~)) satis/ies 
Eq. (9) and A(u, yto) satis/ies a.s. the equation 

t 

A (u, yto) = 1 + .[ ~ g (z) ./l(z, y~) P (dz, s; u, t) dy~ , (11) 
0 Er 

where P (dz, s; u, t) is the conditional distribution: 

P(F,  s; u, t) = Prob {Xs ~F[xt  = u}, s < t. (12) 

Proo/. Applying ITo's formula ([10], [11]) to Eq. (4) we get: 
t 
A x 8 s A(x~o, Y~o)= 1 + f ( o, Yo)g(x~)dy~. (13) 

0 

Therefore: 

{i } X $ 8 , E(o)(A(x~, y~)l~(xt ,  yto)) -= 1 + E(o) A (  o, yo)g(xs)dysIG2(xt yto) . (13a) 

I t  will be proved later (starting with Eq. (19)) that  (13a) implies that:  

t 

E(o) (A (x~, yt)[M (xt, y~)) = 1 A- f E(o){A (x~, y~)g (Xs)[ M (xt, y~)} dys. (14) 
0 

Let t >-- s > 0 and ~1 = ~ (x~, y~), ~2 ----- ~ (Y~ -- Ys, s < ~ ~ t) and ~ -- ~ (xt, y~). 
Since, under it0, ~(x~) is independent of 2 ( y  t) and ~ is a Brownian motion, it 
follows that  ~1 and ~2 are conditionally independent given ~ ([5], 25.3A p. 351). 
Applying again theorem 25.3A of [5] (with subscripts 1 and 2 interchanged) it 
follows that  for any B e x o, YoJ. 

P (B[ 2(x t ,  y~) = P (B[2(x t ,  y~)). 

By [8] (theorem 8.4 chapter I) and by the smoothing property of conditional 
expectations: 

~(0) {A (x$, y~) ~ (x~)I ~ (x~, y~)} = E(0) {A (zb y~) g (x~)[ ~ (x. yg)} 
= E(0) {E(0) (A (xg, y~)[ ~ (xs, xt, y~)) g (xs)] 2 (xt, yg)}. 

By the Markov property of (Xs, ys), ~ (xg, y~) and ~ (xt) are conditionally indepen- 
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dent given ~(xs ,  Ys). Therefore ([5], 25.3A) ~ t x  8 .s, and ~(xt)  are also condi- 0'  gO) 
tionally independent given ~(xs ,  y~). Applying again 25.3A of [5] with inter- 
changed subscripts) we have from the last equation, 

K(o) {A y )g 
= Eco){E(o)(A(x~,g)l~(xs,y~))g(x~)l~(xt ,y~) } . (15) 

By the same argument as used for Eq. (7), the right hand side of (15) is given by 
([8], chapter I, theorem 9.5): 

f g(z) zl(z, y~) P (dz, s; u, t) (16) 

where P(dz, s; u, t) is defined by Eq. (12). Eq. (11) follows now by substituting 
(16) and (15) into (14). 

Corollary 1. I/ the transition probability Prob {xt ~ F I xs = z}, s < t, is absolutely 
continuous with respect to the Lebesgue meazure with the density pz(u, t -- s), then a 
version o] Prob {xt e 1~ I ~(y~)}, t > O, is also absolutely continuous with respect to 
the Lebesgue measure. This density, p(u, t l~(yto)), satis[ies 

~)(u, t) 
p (u, t I ~ (Y~o)) = ~ q~ (u, t)du (17) 

Et  

where q5 (u, t), satis]ies a.s. the stochastic integral equations: 

t 

q5 (u, t) = p (u, t) ~- ~ f g (z) q5 (z, s) Pz (u, t -- s) dz dys (18) 
0 Er 

(where p(u, t) is the density o /Prob{xt  e / '} ) ,  and (0 < s ~= t): 

t t 

qS(u, t )= ~qS(z , s )pz (u , t - - s )dz  + f ~g(z )qS(z ,u )pz (u , t - - v )dzdy  ~. (18a) 
Er S E r  

Proo]. Since 

Er 

where F (z) is the probability distribution of x0, it follows that for t > 0 Prob {xt e F} 
is also absolutely continuous with respect to the Lebesgue measure with density 

p(u, t). By Eq. (1O), we set: r  t ) =  A(u,y~o)p(u, t). Since xt is a Markov 
process p(u,t)P(dz,  s;u,t)--=p(z,s)pz(u,t--s)dz. Therefore, multiplying Eq. (11) 
by p(u, t), (18) follows. Following the same arguments as used to derive (11), it 
also follows that 

t 

f i  (u, y~) -= ] A(z, y~) P (dz, s; u, t) dz + ~ f g  (z) A(z, y~)P (dz, U; u, t) dy v , 
Br S .Er 

multiplying this equation by p(u, t) gives (18a). 
I t  remains, now, to prove that, a.s., 

E(o) A(xg, yg)g(xs)dys]~(xt,Yto) = fE(o){A(x~,y~)g(xs)l~(xt,Yto)}dys (19) 
0 
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where A (x~, y~) is given by Eq. (4). Throughout the proof we will write A (8) for 
A (x~, y~) and ~ (s) for ~ (xs, y~)). 

Let us first assume that  [g(x)[ is bounded. I t  follows, then, from theorem 7.3 
of [11] that  all the moments of A(s) are bounded in any finite s interval and 
A(8)g(xs) is continuous in quadratic mean. Therefore, there exists a sequence of 
partitions 

0 -~- t (n) < t(1 n) < " "  < t~ n ) ' ' "  t (n) ~ -  t 

(n) __ t!n)) ; lim ~n 0 5 n =  max (ti+ 1 -= , 
O <=] <:n-1  n-->vo 

such that  the sequence of partial sums 

n--1 

in  = ~. A (t~n) g (Zt!n)) (Yt(V. - Yt?)) 
i=O z tJ .  

t 
converges in q.m. to ] A(s)g(xs)dys. Let 

0 

= ~ E(0) {A (t!~)) g (x~,,))12 (t)) (y(~) -- y(~)). 
i = 0  &+x tt 

Since convergence in q.m. and conditional expectations commute, 

Z(0) {A (~) g (xs)[ ~ (t)} 

is q.m. continuous (in s) and: 

{; } E(0) A (~) g (xs) dy~ 1~ (t) = ~mE(0) {Ix 1~ (t)} 
~ - - +  r  

=- lim Jn  
n - - +  OO 

t 

-= f U(o) (A  (s) g (xs) [ ~2 (t)} dys, 
0 

which proves (19) for I g (x) l bounded. I t  follows, by the same argument, that  (19) 
holds whenever A (s)g(xs) is continuous in q.m. 

From this point up to Eq. (24) we follow D:z~KI~ ([11], proof of theorem 7.3). 
Let 

v for v<=n 
]n  (v)  = V + �89 (v  - -  n - -  2 )  (v  - -  n )  3 for n < v < n + 1 (20) 

n-l- �89 for n- I - l<=v.  

I t  follows by a direct calculation that :  
t ~ p 

a) for all x e [0, oo), In(X), /n(x), /'n'(x) are continuous and 0 = /n (x )  <= 1; 
- ~ ~/~'(z) =< 0, 

i /  b)/~(x)----0 for x_-->~+l; /~(x)=0 for x ~ ( n , n - } - l ) ,  

c) for any x~[0,r  0 <=/n(X)~X as n-->c~. 



236 1~. ZAKAI: 

Applying IT~)'s formula to ]n (A (s)) we have by Eq. (4) 

8 

In (A (s)) -- 1 = .[/n (A (0)) A (0) g (xo) dyo 
0 

8 

+ �89 .[f~'(A(O))A2(Olg2(xoldO. 
0 

(21) 

By property c and monotone convergence for conditional expectations we have 

E(0) {A (t) l 2 (t)} - 1 = limE(0) {/n (A (t)] ~ (t))} -- 1 
n---> OO 

(i } �9 , , #  

+ P~limff(0) 1,~ (A(s))A~(s)g2(zD~s]~(t) 

provided that  any one of the last two limits (in probability) exists. Similarly we 
have from Eq. (21): 

{! } E(0) (A  (t)} --  1 = limE(0) /'~ (A (s)) A (s) g (xs) cly~ 

Since k(t) is the R - - N  derivative of two equivalent probabil i ty measures, 
E(o) {A (t)} = 1. Also, since 

E(o) (/'~(A(s)))~ A2(s)g2(z~)ds < (n + 1)2 S E(o)g2(xs)ds < ~ ,  
0 

the first term is the r.h.s, of Eq. (23), being the expeet~ation of a stochastic 
integral, is zero and; therefore: 

limE(o) ( ~f( (A (s)) A2(s)g2(xs)ds} = O. (24) 
n - + ~ ,  t 0  

Since ]'~'(A) ~ 0, it follows tha~ the last term in the r.h.s, of Eq. (22) converges 
in L1 and, therefore, in probability to zero, and 

Is', )} E(o){A(t)l~(t)}-- 1 = P-hmE(o) ~(A(s))A(~)g(xs)dysl~(t . 
n - + o o  t 0  

Since 

{i t I/~(A(s))A(s) I ~ n + l  and E(o) g 2(x~)ds <r162 

it follows that/ 'n  (A (s)) A (s) g (xs) is continuous in q.m., therefore : 

t 

E(o) {A (t) l ~ (t)} -- 1 = P4im j'E(o) {/~(A (s)) A (s) g (xs) l ~(t)} dys. 
~,--.~ oo 0 

(25) 
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Since E(1)lg(xt)l ~ co, it follows from (1) that  

E(o) (A(t)lg(xt)I) < ~o. (26) 

Now, [/' (A (s)) A (s)g (x~)] <= I A (s)g (x~)l and /~ (A (s)) A (s). [g (x~) l converges 
to A(s) .  ]g(x~)] as n ~ o o .  Therefore, a.s., IE(o){j~(A(s))A(s)g(x~)]2(t)}l 
~= E(o)(A(s)" Ig(xs)lj~(t)} and E(o){/~(A(s))A(s)g(xs)12(t)} converges a.s. to 
E(o) {A (s)g(xs)l~J(t)}. Applying, now, ITS'S dominated convergence lemma for 
stochastic integrals ([12] property G--2 p. 14, or [3] property 5 Ch. 2 section I), 
it follows that  the order of the limit and the stochastic integration is Eq. (25) may 
be interchanged which proves Eq. (19). 

4. Sufficient Conditions for the Uniqueness of the Solution to Eq. (18) 

Lemma 1, I / p  (u, t) is bounded on Er • [0, T] and g (u) is bounded on Er then, 
under the conditions o/ corollary 1, 

T 

~(1) f f (~(u, t))2dudt < ~ .  
O E r  

Proo/. By Eqs. (10) and (17) we have: 

E(D f (q5 (u, t))2du • K E ( 1 ) f  (A(u, yto))2 p (u, t)du 

= KE(1) {E(0)[E~0)(A (x~, y~)]2  (xt, y~) I ~(y~)]} 

<= K E (~) {E(0) [E(0) (A~ (x~, yto) 12 (xt, yto) I ~ (y~)]} 

= KE(o) {A (Jo, Yto) E(0) [E(0) (A 2 (Xto, Y~)I 2 (xt, yto)) 1 2 (y~)]} 
17 i~1/2 1/2 4 t t . . . .  <o) (A2(4 ,  Y~o)) .E<0) {A (x 0, Yo)}. 

The result follows now by the boundedness of g(u), Eq. (4) and theorem 7.3 
(equation 7.84') of [10]. 

Let H be the class of real valued functions ~(u, t, co) on Er • [0, T] • Y2 
such that 

T 

I1 vll -= (E(1) f f V~(u, t, co)dudt)l/2 < r 
o~,~ 

and for each t in [0, T], the collection of random variables ~p (u, s, co), 0 ~ s ~ t, 
u ~ Er, is measurable with respec?~ to ~ (~t, w~0). Note that  H is Cauchy complete 
in the norm II ~f l[ defined above. Let Ut denote the operator 

ut / (~) = (u,/(.)) (u) = f / (z) p~ (u, t) dz (27) 

for t > 0 and Uo/(u) = / (u ) .  In this section we will assume that Ut is a bounded 
transformation from L2 functions on Er to L2 functions on Er, uniformly in [0, T]. 
Namely, there exists a constant k < co such that  

(~,/(u))2 d~ __< ~ f /2 (u) du (28) 

for all t e [0, T] and all /(u) which are L2 on Er. 
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Sufficient conditions for pz(u, t) to exist and have this 
following : 

(i) There exists a constant g > 0 such that  for all 

property are the 

x e E r ,  v e e r ,  v~bT(x)b(x)v > ~VTV. 

(ii) The functions, 

Oai (x) ai(x) axi (bT(x) b (x))i~, O(bT(x) b(x))~j a2(bT(x) b(x))~j 
' ' axi ' Ox~ ~x i 

are bounded, and satisfy a tt61der condition in Er. 
This follows from the bound 0.24 C2 of theorem 0.5 [10] and Parceval's theorem. 

Theorem 2. I1 p (% t) is bounded on Er X [0, T], g (u) is bounded on Er and Us 
satisfies Eq. (28), theu Eq. (18) has a unique solution in H. 

Pro@ Let ~ (u, s, co) belong to H. By a standard argument (e. g. approximating 
Uo-s~f(u, s, co) by functions continuous in 0, u, s as on p. 17 of [6]), it follows that  
t 

f U~-s~p(u, s, co)dws(co) has a version which for almost all co is a Borel function in 
0 

t 

(u, t). Therefore ~ Ut-s~(u, s, o))dws(eo) also belongs to H and 
0 

!U~-s (u,s, co) dws(co) ~ k T t ]  (u, co) ll. y~ ~o 87 

Define ~5 i (u, s, co) by: 

~o (u, t, co) = p (u, t) 
t 

~ i + l  (U, t, co) = ]9 (U, t) + I Ut-s ~Dl (u, t, 09) g (u) dys (co) 
o 

t 
= p (u, t) + ~ g (x~ (~o) Ut-~ g (u) ~l (u, s, o~) ds 

0 t 
+ ~ Ut-~ g (u) r (u, s, ~) dw~ (co). 

0 

I t  follows now, by the method of successive approximations, that  ~bi (u, t, co) 
converges in H as i --> vr to ~b (% t, co) which is a solution to (18) and the solution is 
unique. The details are the same as for stochastic differential equations (e. g. [6], 
[7], [10]), and, therefore, omitted. 

5. An Evolution-Type Integral Equation for the Unnormalized Density 

Assume that  the xt process possesses a transition density Pz (u, t) for t > O. 
Let  ~+ denote the (Fokker-Planck or forward Kolmogorov) differential operator 

~+= ~ ~al(u) 1 ~ ~ 02(bT(u)b(u))lj 

= i=1 j=] 

where a~(u) and (bT(u)b(u))fj denote the i-th component of a(u) and the i]-th 
component of bT(u)b(u), respectively. 
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A real valued function / (x), x ~ Er, will be said to belong to C( 2, ~) ff / (x) and 
its first and second partial derivatives are bounded, continuous and satisfy on Er 
a HSlder condition with exponent ~ > 0. 

A transition density will be said to be of class A it ff satisfies the following 
conditions : 

A.1. I f / ( u )  is real valued, continuous and bounded on Er and 0 --< s --< t then 

t 

ut / (u) = u8 / (u) + y ~+ Go / (u) dO. (29) 
8 

A.2. I f  / (u, 0), u ~ Er, 0 ~ [01, 02] and its first and second partial derivatives 
with respect to the u variables are bounded and continuous on Er • [01, 02], and 
](u, O) is C (2,~) in u, uniformly in [01, 02], then Ut](u , O) and its first and second 
partial derivatives with respect to the u viariables are continuous on (0, T) 
• Er X [01, 02] and bounded on [0, T] • G • [01, 02] where G is any bounded 
subset of Er. 

Theorem 3. Assume that the xt process possesses a transition density which is o/ 
class A. Assume that #(u ,  t) satisfies Eq. (18) and a.s. q)(u, t) and g(u)#(u,  t) 
together with their/irst and second derivatives with respect to the u variables bounded 
and continuous in Er • [tl, t2] and q5 (u, t), g (u)~9 (u, t) are C (2,~) in u, uni/ormly in 
[tl, t2], then qb (u, t) also satis/ies the evolution-type equation 

t t 

(u, t) = ~ (u, s) + f ~+ ~ (u, ~) d~ + ~g (u) ~ (u, ~) dy, (30) 
8 8 

tl ~ s ~ t < - - t 2 .  

Proo/. Rewriting Eq. (18a) in terms of (27) we have: 

B 

qb (u, O) = Uo-s r (u, s) + f Uo-~ (g (u) qb (u, ~7)) dye. 

By Eq. (29): 
t 

Ut- 8q~(u,8) ----- r  8) + f~+U0_ 8r 8) dO, 
8 

t t 

f (Ut-,g(u)qb(u, ~))dy, = fg(u) r  ~)dy, 
8 8 

t t 

+ f f g+ Uo-~(g(u)q)(u, v))dOdy~. 
s 

Subst~ituting for Uo-s from (31) to (32): 

t 

Ut-s cp (u, 8) = ~ (u, 8) + f g§  (u, O) dO 
8 

t 0 

- f ~§ ~ Uo-~ (g (u) ~ (u, ~)) dy~ dO. 
8 8 

(31) 

(32) 

(33) 

(34) 
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Replacing, in (31), 0 by t and substituting from (34) and (33) we have: 
t t 

q5 (u, t) = r (u, s) + i ~+ q) (u, O) dO + Ig (u) ~ (u, V) dy, 
8 8 

t t 
+ f Ig  + Uo-,(g(u)~(u, 7))dOdyn 

s 
t e 

-- I g+ I Uo-, (g (u) r (u, V)) dy, dO. 
8 8 

Comparing the last equation with (30), it follows that  in order to prove (30) it 
remains to show that :  

t ~ t 0 

I t  follows from A.2, by the mean value theorem for derivatives and ITd's domi- 
nated convergence lemma ([12] p. 14 or [3] chapter 2 section I) that,  in the right 
hand side of the last equation we may interchange g+ with the integration with 
respect to Yr. Eq. (35), therefore, beeomes: 

t t t 8 

f f g+ Uo-n (g (u) ~)(u, 7)) dO dy~ ---- f ~ g+ Uo-~ (g (u) e (u, 7)) dy~ dO 
8 ~ S 8 

t 

8 8 

(and it remains to justify the formal interchange of the order of the integrations). 
Let: 

~o(e, fi) = g+U~_~(g(u)r fi), ~ > fl 

we have, then, to show that :  
t t t 

I IV( O,v)dOdyv = I IV(v,O)dyodT. (35a) 
s r) s s 

Let 

where 

Consider now: 

f 
/1 (~) --'--: I VN  (0, ?]) dO 

/5 (7) = S w (v, o) dvo 
$ 

{~,, t~'1 <~v v ~ =  o, I~[>~v. 

E l : ( 7 ) a v , -  S12(7)d7 �9 
$ 

The following relations are derived in [11]: 

E ( f  hl(s)dys !h2(s)dy~)~ E ~hl(s)h2(s)ds 

(36) 
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~nd 

Applying these relations repeatedly and using 

021_, 8 > U 
Z u ( s )  = , s = u 

[1, s < u  

we obtain the following equations: 

, ,  

8 8 5  

8 $ $ 
t t t  

= E f f f Z, (~) Ze (~) ~o~ (7, ~) V,z~ (0, ~) d~ d7 dO 
8 8 8  

(i, j , )  i, -- 2 E  2(7)d7 ~(7)dy~ = -- 2 E  2(~1) ~/~(~)dyed7 
8 ~ 

t ~ 

8 8 

t t t 

8 8  8 

Substituting into (36), collecting the Z terms, and using 20(~)= 1--Ze(0); 
Z~ (~) = 1 -- Z~ (7) we get that  (36) is zero. Let 

(j! . ) I~  = ~(O,~)dOdy~ -- ~ ~o(O,~)dy~dO 
8 ~ 

(/! ~ ) - ~ ( 0 , 7 ) d O d y ,  - ~f~N(O, 7 )d~dO . 
8 8  

Then, for any ~ > 0: 

Prob{I IN] > 0} ~ Prob/sup [ ~0(0, 7)] ~ N / .  

I s < = o ~ _ t  

Since under our assumptions ~ (0, 7) is a.s. a bounded function of 0, 7 in ~ e Is, 0], 
0 e Is, t], it  follows that  I~v converges in probability to zero. Therefore, (35a) 
and (35) holds a.s. Note that  the strong assumptions in theorem 3 were mainly 
needed for the justification of the interchange of ~+ with the stochastic integration 
in the right hand side of (35) (the proof of (35 a) can be modified to hold under 
weaker assumptions). 

Theorem 4. Assume that Ut is o/ class A and i / / ( u )  and i ts / irs t  and second 
partial derivatives are continuous and bounded, then Ut ~+ /(u) -~ ~+ Ut /(u). Also 
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assume that a.s. qS(u, 0), g(u) r  O) and ~+g(u)r  O) and their first and 
second Tartial derivatives are continuous and bounded in Er • [tl, t2] and q} (u, 0), 
g(u) qb(u, 0), g+g(u) qS(u, O) are C (2,~) in u uni/ormly in [tl, t3]. Then, i/ ~)(u, O) 
satis/ies in [tl, t2] Eq. (30), it also satis]ies in [tl, t~] Eq. (18/. 

Proo[. Only the formal part of the proof will be given; the justification for 
the operations are the same as in the proof of theorem 3 and are, therefore, 
omitted. 

t t t t 

S ~+ U~_o r (u, o) dO = I ~+ r (u, O) dO + I ~+ f V~_~ ~+ ~ (u, O) d~ dO 
s s s 0 

t t~7 

= I ~§ r o) dO + I I ~§ V~_, ~§ �9 (u, O) dO dv 
8 8 8 

t t 

= Sg+r + ]g+ Ut-~fg+r 
8 8 8 

Substituting for f g+ ~ (u, O) dO from Eq. (30) yields: 
8 

t t t 

- f g+ Ut-~ g (u) 6)(u, ~) dy e drl, 
8 

o r  : 

~+ Ut-v g (u) q5 (u, ~) dy~ d~ = I ~+ q5 (u, O) dO -- ~ ~+ Ut- ,  q5 (u, s) d~ (37) 
$ 8 $ 

t 

= f g + r  O) d O - -  U t _  ~ q ) ( u , 8 )  + r  8 ) .  
8 

Applying (27) and interchanging the order of integrations : 

t t 

S vt-~g(u) ~(u, ~) dye - It(u) ~(u, ~) dye 
8 8 

t t 

= ~ ~§ [. ut- ,  g (u) ~ (u, ~) d~ dye (3S) 
s ~ 

t ~ 

= .f ~§ g~_, ~ ~ (u) r (u, ~) dye d~. 
8 8 

Eq. (18a) follows now from Eq. (38) and (37). 

l~emark. Several generalizations of the results of this paper with, essentially, 
the same proofs are straightforward. In particular, replacing a (x), b (x), g (x) by 
the time-dependent a(x, t), b(x, t), g(x, t); or, replacing the equation for yt in 
Eq. (2) by 

t t 

~ = I ~ (x~, ~ )  ds + I dw~ 
0 0 

where yt, g(x, y), ~v t take values in the q-dimensional Euclidean space Eq; or 
replacing wt and wt by general processes with independent increments [13], [14]. 
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