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Summary. This paper is concerned with the use of the £ and £, metrics in a study of
certain properties and implications of convergence rates in the central limit theorem for sums
of independent and identically distributed random variables which belong to the domain of
attraction of the normal distribution. Also, some general convergence rate results on the P
metric obtained under the assumption of a finite second moment are used as a vital tool in a
new proof of the classical iterated logarithm law and in extending the scope of classical
methods for the proof of other similar results of a more general kind.

1. Introduction

In this paper, we consider a sequence of independent and identically distributed
random variables X;, ¢ = 1, 2, 3, ... which belong to the domain of attraction of
the normal distribution. Since this last property implies B |X;| < oo, we shall

7

suppose for convenience that ZX; = 0. Then, if 8, = ZX"’ n = 1, there is a
i=1
monotone sequence of normalizing constants {B,,n = 1} such that as n — oo,

Fo2)=Pr(Sy, < Byz)—>D(x) = VSTZ Je= 2 qu,

and it is not difficult to see that as % — oo,

ﬁFn("c) — D ()| dx—0.

We shall firstly establish the following theorem:

Theorem 1. If
1) St [| Fule) — D) | de < oo,

n=1 —oo

then EX2 < oo. That is, the X; belong to the domain of normal attraction of the normal
distribution.

In connection with this theorem, we mention the results of IBraGIMOV [7]
where it is shown that if

{172) — @) d = 0u-n)

— 00

for some 7 > 0, then EX? < oo. Also, if EX? = 02 < oo, then for 0 < < 1,

ﬂPr (Sn = xa]/?z) — D (z)| de = O(n-92)
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if and only if, as z — co,
f 22dPr(X; = 2) = 0(z9).

|z] >z

We shall show in Theorem 2 that if EX? = ¢2 < oo, then
>alf|Pr (Sn = ZO‘V?L) ~ D (x)|de < oo
1 —oo

if and only if EX?logt | X;| < co. (Here, logt = max (0, log x)).

The other main theorem of this paper is Theorem 4.

Theorem 4. Let EX?=1, F(z)=Pr(X;<z), and Fy(@)=Pr(SyxZzon }n),
where
(2) opg= | deF(x)——[ J" x dF (x)

Jzl<yn lz|<Yn

Then, if K > 0, C > 1, and {ng, k = 1} is a sequence of integers with ny ~ K%k
as k — oo, we have

2.

(o)

3) > sup | F, (@) — ()] <eo.

k=1
This theorem depends on refinement of the details of proof of Theorem 1 of
Friepmaw, KaTz, and Koormaxs [3] where it is not difficult to see that the follow-
ing somewhat stronger result is, in effect, derived.

Theorem A. If EX?=1 and Fy(z) = Pr(Sy <o,/ n) where o, is given by (2),
then
(4) > nlsup | Fy(z) — @ (@)] < co.

n=1 z
We remark, in passing, that conditions (3) and (4) would, of course, be equivalent
if it could be shown that the L., metric is ultimately monotonically convergent
to zero. Theorem 4 is particularly useful from the point of view of applications
since it is often convenient to study convergence along a geometric subsequence.
We shall illustrate by obtaining a new proof of the law of the iterated logarithm
and by showing how results of CHOVER [1] may be extended.

2. Proof of Theorem 1

Let F(x) = Pr(X; < z), and suppose that f(f) and f, (f) are the characteristic
functions corresponding to F(z) and F,(x) respectively. Then, integrating by
parts in the equation

fa(t) — e = [eited[Fy(z) — D ()],

we obtain

_ fal—etit feio[Fo () — D (@) do,

8o that
L’L(t) *; e—4i? { éﬂLlFﬂ(w) — @ (.’L‘)l dx,




Some Properties of Metrics in a Study on Convergence to Normality 183

and therefore using (1),
fult) — e~ 3"

—1
(5) gn . < 0.
Now, by Lemma 2.1 of [7], f(f) is representable in the form
(6) f(t) = exp{— {2 H(1)},

where  (t) is a slowly varying function as ¢ — 0 and
H(t) ~ f 22 dF (x)

|| =1
as ¢t — 0. Then, from (6),

w0 = |1 () = {7 (3]
so that (5) gives for ¢ > 0,

2 27 n 14
-1 R gty —
2m expl— g g () 1}~ 1] <
However, as n — oo,

=83 n{ )~} 1= b el oo

go that for ¢ > 0,

o0

-1 Pt
}f‘n ll— B:H<Bn> < oo
Therefore,
31 1 2
Y (2 ) -2 (3,)
Sy~ g AN Sl g2
zgn 1 BzH<Bn) +;n fl B:H(Bn)!<°°’

or equivalently, in view of (6),

W) S log (2 By — dlog {(B;1)] < co.
1
Now,
logf(2B, ") —4log f(B,; ")
(8) =log[1 — {1 — {(2B;1)}] — 4log[1 — {1 — {(B;)}]
=—{1—f@2B; )} +4{1—f(BH)}+ 4,
where

o 222“ [4{1 = (B} — {L —f@B ).

Furthermore, as n — oo, we have
1—7/2B;Y)~3@2B; Y2 H2B Y ~2n1,
1 —-f(B;Y)y~iB?H(BY) ~ {n1,
so that

?iAn}<oo.

13*
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Consequently, from (7) and (8),
S 1440 = f(B70) — (1 — (@B <o,
and a fortiori, taking real parts,
?14{1 — Ref(BY)} — {1 — Ref(2B;Y)}| < oo.

This may be rewritten as

i r{él(l—cosB;lm)——(1~—cos2Bn_1x)}dF(x) < o0,
1l |—co

which reduces to
9) >
1
Now, for [ocl <z By, we can find a positive constant C so that
1 —cos Bylz = C(B, )2,

8

(1 — cos B 1x)2dF (x) < oo

!
§—

and therefore, (9) yields

(10) > Bt [ wtdF(2) <oo.
1 |2] £ nBn
Furthermore,
oo oo n—-1
S Byt [ wtdF(z) = Byt ] x4 dF ()
n=1 |z|=nBa n=2 k=1 nBr<|z|=nBr+
o0 n—1
(11) _2_n4ZBn4ZBkPr an<|le<75Bk+1)
n=2 k=1
=at> BiPr(n By < |Xi| SwBii) 2, Byt
k=1 n=k+1

Also, By = ]/nk ) where & (n) is slowly varying as n — oo ({7], Lemma 2.2) so,
using a standard result on regularly varying functions (e.g. FELLER [2], IT, 273),
we have

> Brt~EkB;*
n=k+1

as k — oo and, from (10) and (11),

(12) 22k1h1n;3k<<lliﬂ < Bpyy) < o0
k=1

But, since B, 18, converges to normality, nPr(|X;| > e¢By) >0 as n— oo
for any & > 0 (e.g. Lokve [8], 316), and therefore, from (12),

(13) oi]?r(lX@{>an)<c><>.
n=1
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Now suppose that | X;|2 = oo, so that the slowly varying function
K@)= f 22dF () >o00 as t->0.
Jat] =1

Under these circumstances, we shall obtain a contradiction with our assumption
of convergence to normality by showing that the condition (13) implies that
Bt 8, converges in probability to zero.

Using the degenerate convergence criterion (Lo#ve[8],317), we have B, 18, 2o
provided that, as » — oo, and for any ¢ > 0,

nPr(|X;| > eBp) >0 22dF (x) -0

n
>
® |o|<nBa

As we have indicated, the former is satisfied so it remains to establish the latter.
We have, since n B, 2K (B;1) —>1as n —> oo,

n
[ 22dFPx)=< | deF(x)+7zzzB,%+lPr(an<]XilgyszH)

|zl <aBn |#|<nB1 k=
< f 22dF (x +OZK(B“1)kPr(7tB;§<]XZi =< 7 Br11)
|z|<nB1 k=1

for some positive constant C. Then, using (12) and by virtue of our assumptionthat
K () — o0 as t —+ 0, we have from the Kronecker Lemma (e.g. [8], 238), that
—g—zn— / 22dF (z) ~ _I?(iBﬂ / 22dF(x) -0 as n->o0.
|z|<7Bn |z| <nBn
This establishes the required contradiction. The result of the theorem is then
immediate. (13) is only possible in the case where K (B, ') approaches a positive
constant as n —> oo in which case it is easily seen that EX? < co.

3. Background fo Theorem 1
Theorem 2. Let EX; =0 and EX? = 02 < co. Then, the following three
conditions are equivalent:
(i) Eleog+,X-[<oo,

(ii) Zn—l_f[Pr(Sn xo]/) D(z)] de < o0,
1

(iii) Zn—lsup]Pr(Sngxo*]/ﬁ)——(D(x)l < o0,
1 z

Proof. The equivalence of (i) and (iii) has been established in Heypz [5]. We
shall proceed to establish the equivalence of (i) and (it).

Suppose firstly that (ii) holds. It is easily seen that the proof of the necessity
part of the theorem of [5] is still applicable and (i) follows. If, on the other hand,
(i) holds, we have from Lemma 2 of Hreypr [6] with a2 = (2 + &) log log n,
¢>0,and By =02 [ 22dPr(X; <), that

lz]< Ju

(14) in—lﬂPr(Sngxaﬁ)—@(ngl)]dx<oo
1 —oo
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if
n-1(1 — B;f) < oo

3

w7l | 22d®(x B;l) < oo,

lz]=an

8 =48 ~\18

(e) > mtloglognsup |Pr(S, <wo)/n) — ®@B;Y)| <oo.
3 2

Furthermore, it is shown in the proof of the theorem of [6] that these three
conditions are satisfied. Consequently, from (14), we see that (ii) holds if

(15) Dulf|@@B ) — D(x)|de < 0.
1 —co
Now,
le|B;t B
]@(xBn—l) — (D(x)l = Vl—-ﬂ e 3 dy — _Vlg":nf o—buia? du,
[z 1
so that
[e) oo B;L-l
/l@(an—l) _di(x)[ dax = 22—% /x ,/e—%uﬂxzdu] d
—Y p {
9 Bt oo
(16) =5 { xe Tt dx} du
ne] |/
Bz!

2
=7 [ u2du

Vﬁ/u

5 2 .
= Vin (1 — Ba) < Von (1— By),

and (15) holds in view of (a). This completes the proof of the theorem.
Next, we shall go on to examine the effect of the choice of By, on the magnitude

of the Ly metric [|Fy,(x) — @ ()| dr. In doing this we shall, in the light of

Theorem 1, concentrate on the context of EX? = ¢ < oo, so that B, may be
written in the form B, = o |/n(1 + &n) Where &, — 0 as n —> oo ([7], Lemma 2.2).

As a starting point, we take a simple example which well illustrates the role
of &5,. Let the X; be normally distributed with unit variance. Then, since S,/ ]/7_1,
has the same distribution as X; we have, as in (16),

[1Pe(sa = falT+en) — 0@ do = [ |0 (0] T+ 20) — Do) da
an = v (L= (L |en])2/2) = O (| en)

so that we must have zn—ll en| < oo in order that
1

S [1Pr (Sn < rll F o)) — B @)] da < oo
1

—_—
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With this kind of consideration in mind, we shall go on to establish the following
theorem.

Theorem 3. Let EXjlog™|X;| < co and write B2 =n EX?(l + e,) where
en-—>0asn—>o0. If > nl]ey| < oo, then
1

(18) Zn*lﬁPr(Sn§an)—~®(w)]dx<oo.
1

— oo

Conwersely, if (18) holds for some monotone sequence {By}, and the X; belong to the
domain of attraction of the normal distribution, then EX? < co and

B2 = n EX2(1 + &)

where g5, — 0 as n — oo, If, in addition,

> lien| <oo, then EXFlogt|X;| < oo.
1
Proof. Write EX? = ¢2 (< o0). We obtain from Theorem 2 that

(19) St [|Pr (S, < 2o n) — @ (@)] de < oo,
while ' o

20) | Pr(8n £ @0 |n(l+ &) — O ()]
< ]Pr(Sn < x]/(l + &5) o‘l/n)— @(m]/l + en) | + ]@(x]/l -+ an) — D (x)],
so that the result of the first part of the theorem is immediate from (17) and (19).

Now suppose that (18) holds for some monotone sequence {B,}, and the X;
belong to the domain of attraction of the normal distribution. It follows from
Theorem 1 that EX? = ¢2 < co, and consequently B, must be of the form
By, =o0]n(l + en) where e, —0 as n —oco. Further, the Eq. (20) can be
rewritten to yield

T|Pr(3n <wzo)n)— @) de < T[Pr(sn < wc)n(l + en))— P (2)|dz+ 0| enl,

where C' is a positive constant, so that, if Zn—l | en[ << oo, (19) holds. The result

1
EX%log*t | X;| < co then follows from Theorem 2. This completes the proof.

4. Proof of Theorem 4

From the proof of Theorem 1 of FrIEDMAN, KaTz, and Koormans [3], we
extract the information that

nl | Fp(xo, ) — D(woy Y]
= Mn=32{an 4 | pa P} + 072 [ Do @ — Y1 )] — Do, @) | + e,
where M is a positive constant,

pn= [ xdF@), an= [ |2PdF(z), en = Pr(| X;| > |/n),

l21< ya |2i< ¥

(21)
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and also that Zn“3/2 @p < 00, and Z ¢n < oo. Now, since EX; = 0 and EX?=1,
n=1 n=1

it follows that ]/nyn —0and 1 = 0, — 1 as n — co. Consequently, using the

mean value theorem, we obtain

|®loy @ — Y pn)] — Doy 2)| < O | pa

for some positive constant C (independent of x). Furthermore, we note that
Uan =o0(1) =o0(ay) as n —> oo and we can write instead of (21),

(22) nlsup | Fy(x) — D(@)| < An-32a, + Bnl2by, + ¢y,
where
bum [ [5]dF@ 2| [ 2dF@)]| = |l
lel=Vn lelz yn

and A, B are positive constants.
Before proceeding, we check that the result (4) follows from (22) and to do
this, in view of the abovementioned results, it is just necessary to show that

zn‘l/ 2by < co. This is easily seen to be the case as EX? < oo, so that
n=1
2nV2b, 32 (k4 1)V Prk < X7 <kt 1)

n=1 n=1 k=n

k
(k +1)12Pr(l < X7 <k 4 1)> w2
n=1

3%t

I

=C z DPrk<X2<k+1)<oo,

('’ being a positive constant. We are now in a position to deduce (3) from (22)
by showing that

oo (o] (o=
>n;a,, <o, >ni?b, <oco and D mpc, <eoo.
k=1 k=1 k=1

Since @y, is non-decreasing in #,

o fr1—1

D T
n=1 k=1 n=ng k=

However, since ny ~ KC2%% as k> oo,
(M4 — mp) (a1 — 1)72 ~ 0-3(C% — 1) ny M2,

o
so that > ni 2@, < oo. Also, since b, is non-increasing in =,
E=1

zn—yz by = z z n12p, = anﬂ (mk+1 — ng) by,
k=1 a=nr+1 =

and

nk_jéz (g1 — nx) ~ ng'?; (1 —C-2),
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so that > n}/2 b, < oo. Finally, ¢, is non-increasing in n, so that
E=1

R+l

=
2 Z z Cn 2 z (nk-i—l - nk) Crgsr

1 k=1 n=nc+1 k=1

ﬁMz

while
g1 — fg ~ (1 — C~2) ngaq,

and consequently, an Cp,, < ©0. The result (3) then follows from (22).
E=1

Corollary 1. Let EX? =1 and {p(n), n = 1} be a monotone sequence. Then, if
K>0,C>1,and {ng, k = 1} is a sequence of integers with ny ~ K C2k as k—» oo,
the following two conditions are equivalent:

() SPr(S,> plng) Yig) < oo,

k=1

B) > Lot exp{— o) 07} < oo,
=1
oy being given by (2).
Proof. From Theorem 4, we immediately obtain the equivalence of (A) and
the condition

Z[l— p(ng) o‘nk)]<oo.

The result of the corollary then follows since, as k& — oo,

L= ) o) ~ i gy O (= Ay (] o)
]/2171: ‘P}’bk exp{ nk)] Gnk}:

using a well-known asymptotic formula (e.g. FerLer [2], T, 166).

5. Applications of Theorem 4

In this section, we shall illustrate the usefullness of Theorem 4 and Corollary 1
with two applications. We start by giving a new proof of the classical iterated
logarithm law based on the use of Corollary 1. By making use of the corollary,
we are able to avoid the ordinary complications of truncation and the use of
exponential bounds.

Theorem 5 (HarTvax and WintNer [4]). If EX; = 0 and EX? = 1, then
. Sy
Pr <hia—§ilpm = 1) =1.
Proof. Let by = (2n log log n)1/2 and ¢, = (2 log log )12, Firstly we shall

show that if § > 0, then Pr(S, > (1 + 8) b, i.0.) = 0 (“i.0.” stands for “infinitely
often”).



190 C.C. Hevypx:

For ¢ > 1, let ny be the integer part of ¢2¥, k = 1. Then, if M, = max Sy,
we have 1=k=n
Pr(Sy> Q1+ 0)byio)=Pr(M, > (1+98)b,, io),
where
(1+8)b,, , ~c 11+ 09)b,,.
Thus, taking §" with 0 << §’ <C §, we can select ¢ > 1, so that ¢71(14-8)>1-+&,
and then,
Pr(M,,>(1+8)b,, io)<Pr(M,, > (14 4§)b,io0).

Np-1

Consequently, the result Pr (8, > (1 4- d) by i.0.) = 0 will follow from the Borel-
Cantelli lemma if we show that

(23) Pr(M,, > (1 + &)b,,) <.
k=1

Now, using an inequality due to Kormogorov (e.g. Loive [8], 248),
Pr(M,, > (1+6)b,) 2Pr[S,, > (L + 0 — ;1 Y3 b,]
=2Pr(8,, > (144")b,,)

for 0 < ¢ < ¢’ and k sufficiently large. Thus, by appeal to Corollary 1, we have
convergence in (23) if

Sintexp{— 11+ 012 0 < oo
k=1
This is easily seen to be the case as
o exp{—§ (1 + 8”2 (3, 03,7} S t," exp{—$ (1 4 0") 1.}
= Ok (log k)~V2) as k— oo.
In order to complete the proof of the theorem it remains to show that
Pr(S, > (1 —208)byio)=1 for §>0.

Take 1 > 6 > §’ > 0 and let

up = ng — ng—1 ~ ng (1 — ¢72),

vp = (2log log uf)1/2 ~ (2loglog ng)¥/2 = t,, ,
and

Ak = {Snk — Snk—1 > (1 — 5’) ukwg} .
Then,
Pr(dp)=Pr(S,,_n,.. > (1 — ) ugvg),
while for 1 > §’ > §” > 0 and & sufficiently large,
v lexp[— 3 (1 — 8)20f o2 ] Z v exp[— § (1 — 6")24]
= (k== (log k) 1/2),
so that from Corollary 1, ZPr (Ag) = oo. Therefore, since the sums S, — 8§, ,
k=1

are non-overlapping, we have from the Borel-Cantelli lemma that Pr(4zio.)=1.
Furthermore, if By = {|8,, | = 2b,,_,}, it follows from the first part of the
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proof that Pr(Byi.0.) = 0, where we have used a bar to denote the comple-
mentary event. We must therefore have Pr(A; N Byi.o.) = 1. Also,
AN Brc{S,, > (1 — &Y ugrg — 2D, .},
while
(1 - (3,) U Vg — 20
so that if we take ¢ so large that
1—06)(1—c?22-2¢1>1-—4,

~ (L= &) (1 — 212 —2071]b,,,

-1

we have
1 =Pr(dp N Bgio) < Pr(S,, > (1 —9d)b,,io.).

This implies, a fortiori, that Pr(8, > (1 — J) bpi.0.) =1 and thus completes
the proof. We next proceed to our final application.

In the paper [9], STRASSEN obtained a deep and rather striking generalization
of the iterated logarithm law. For his proof, he appealed to a result of Skorokhod
which permits one to realize a sequence of independent and identically distributed
random variables with finite variance in terms of random increments of a Brownian
motion process. Later, CHOVER [1] developed a more classical approach to the same
results but was forced to introduce an extra moment condition E| X;|2+0 < oo,
some § > 0, in order to use an estimate of Esseen on convergence to normality.
As we shall indicate here, Theorem 4 provides just the tool necessary to extend
CHOVER’s proof to obtain the results given by STRASSEN (the § = 0 case). The
reader is referred to the papers [1] and [9] for notations and explainations.

The are three places in the paper [1] where the suplementary moment condition
E|X;|?0 < o0, some § > 0, is required. In each case it may be avoided by use of
Theorem 4 (or Corollary 1). The applications are routine in character so we shall
only carry out one of them (the last).

We need to show (see equations 30 and 32 of [1]) that for fixed ,

(24) > Pr(|Z,— Al < (2m)le) = oo,

where

Zy = 2mN, ,loglogn,)V2Sy, , A= [g ( vl ) _ g<%)}

m

But,

Pr(|Z, —A| < (2m)1le)=Pr(Z, <A+ (2m)le) — Pr(Z, <A — 2m)le),
and by Theorem 4, since N, , ~ mr1,
DN Pr{Zy <A+ 2m)te) — Pr(Z, <A — 2m)le) — D(a+b) + Pa—b)| < oo,

:
where s = oy, , 1 as r — oo,
a = A(2mloglogn,)¥/2s-1, and b= (2m)le(2mloglogn,)l/2s-1.
Therefore, (24) holds provided that
(25) 2| P+ b)— Bla—b)| =-co.
T

If 4 = 0, this is easily seen to be the case since

DB — P(—b)=2P() —1 -1
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as r — oo. Now suppose 4 * 0 and that ¢ is small compared with 4. Then, for r
sufficiently large,

Pla+b)—Pla—b)=P(a|+b) — D(a] —b)
~1—®(a|—0b)
~ (47wmloglogn,)=12(|A| — (2m)~Le)-1
cexp{— (4| — 2m)-Le)2ms2loglogn, }
= (dmwmloglogn,)~12(| 4] — (2m)-1e)-1
exp{— 4A2mloglogn, }
(26) = O(r=4"(logr)=12)

as r — co since ny ~ m’. Also,

w5 oG =[] e

m~1y
m-1{v+1) m‘l(v—l—l)_
< [ dt [ [g@ord<m?,

w1y w1y

82 that from (26) we see that (25) holds and the required result is obtained.
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