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Summary. This paper  is concerned with the  use of the ~f l  and Lf~ metrics in a s tudy of 
certain properties and  implications of convergence rates in the central limit theorem for sums 
of independent  and  identically distr ibuted random variables which belong to the  domain of 
a t t rac t ion of the normal distribution. Also, some general convergence rate results on the  ~f~ 
metric obtained under  the assumption of a finite second moment  are used as a vital  tool in a 
new proof of the classical iterated logarithm law and in extending the scope of classical 
methods for the proof of other similar results of a more general kind. 

1. In t roduct ion  

I n  this  paper ,  we consider  a sequence of  i ndependen t  and  iden t ica l ly  d i s t r ibu ted  
r a n d o m  var iables  X i ,  i ~ 1, 2, 3 . . . .  which belong to the  domain  of  a t t r a c t i on  of  
the  no rma l  d i s t r ibu t ion .  Since this  las t  p r o p e r t y  implies  E IXt] < co, we shall  

~ X  suppose  for convenience t h a t  EX~ ~ O. Then,  ff Sn ~ ~ ~, n ~ 1, there  is a 
i=1 

monotone  sequence of  normal iz ing  cons tan ts  {Bn, n ~ 1} such t h a t  as n- -~  c~, 

x 

1 f e-  (1/2)u2 du, F n  (x) = P r  (Sn < Bn x) -+  q~ (x) - -  ~/2- _ ~o 

and  i t  is no t  difficult  to see t h a t  as n -+ cr 
oo 

f IFn(z) - r  d x - ~  0. 
- - r  

We shall  f i rs t ly  es tabl ish  the  following theo rem:  

Theorem 1. I /  

o)  ~ n - ~  f [ Fn(~) - r  t dz < co, 
n = l  - - o o  

then EX~ < co. That is, the X~ belong to the domain o[ normal attraction o/the normal 
distribution. 

I n  connect ion  wi th  this  theorem,  we men t ion  the  resul ts  of  IBRAOI~OV [7] 
where i t  is shown t h a t  ff 

oo 

f ] ~ (x) - ~ (*)l d~ = O(n-~) 
- - o o  

for some ~] > 0, then  E X  2 < ~ .  Also, i f  EX~ ~ a2 < ~ ,  t hen  for 0 < ~ < 1, 
co 

yl 'r(S.  <= r  dx = o(n  
- - o o  
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ff and only if, as z --+ c~, 
x 2 d Pr (Xi ~ x) = 0 (z-~ 

Ixl>z 
We shall show in Theorem 2 that  ff EX~ = a 2 < c~, then 

TL 
1 - - r  

if and only if E X  2 log+ ]X~[ < eo. (Here, log + x = max(0, log x)). 
The other main theorem of this paper is Theorem 4. 

Theorem 4. Let EX~ = 1, F (x) = Pr (Xr < x), and ien (x) = Pr  (Sn <= x a n / n ) ,  
where 

IxI< Vn Ixl V ~ 
Then, i / K  > O, C > 1, and {n~, k > 1 } is a sequence o/integers with n~ ,,~ K C 2~ 
as k ---> ~ , we have 

(3) s u p  I - < 
k = l  x 

This theorem depends on refinement of the details of proof of Theorem 1 of 
F~I~DMA~, KXTZ, and KoorMx~s [3] where it is not difficult to see that  the follow- 
ing somewhat stronger result is, in effect, derived. 

Theorem A. I[  E X ~ =  1 and F n ( x ) =  Pr(Sn < x a n V n  ) where an i8 given by (2), 
then 

(4) s u p  (x) - r (x) l < 
n ~ l  x 

We remark, in passing, that  conditions (3) and (4) would, of course, be equivalent 
if it could be shown that  the L~ metric is ultimately monotonically convergent 
to zero. Theorem 4 is particularly useful from the point of view of applications 
since it is often convenient to study convergence along a geometric subsequence. 
We shall illustrate by obtaining a new proof of the law of the iterated logarithm 
and by showing how results of C ~ o v ~  [1] may be extended. 

2. Proo~ of Theorem 1 

Let F (x) = Pr  (Xl < x), and suppose that  /(t) an d /n  (t) are the characteristic 
functions corresponding to F(x)  and Fn (x) respectively. Then,  integrating by 
parts in the equation 

r  

/n (t) - -  e -~t~ =- ~ e itz d [Fn (x) --  q3 (x)], 
- -  c ~ o  

we obtain 

so that  

i n ( t )  - ~-~t2 _ J ' e ~ t ~ [ F n ( x )  - ~ ( x ) ]  dx, 
it 

- -  c z o  

c o  
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and therefore using (1), 
co 

~- [ < o o .  

Now, by  L e m m a  2.1 of  [7], [(t) is representable  in the form 

(6) ](t) = exp {- -  �89 2 H( t )} ,  

where H (t) is a slowly vary ing  funct ion as t --> 0 and  

H(t) ,., f x 2 dF(x) 
Ix t i~ l  

as t -+ O. Then, from (6), 
[n(t) = [[( B--~)]n--exp { - ~ H t--ff~ - / t \ l  

so t h a t  (5) gives for t > O, 

However ,  as n --> oo, 

exp - - ~ -  H :Bn- - - 1  - - 1 = ) ~  1 - -  ~ ( l q - o ( 1 ) ) ,  

so t h a t  for t > 0, 
oo 

n -1 1 - - ~ - H  < o o .  

Therefore,  

oo 1 I 

~ n  -1 1 - -  ~ -  - F Z n - 1  1 - -  B~- < o o ,  
1 1 

or equivalent ly ,  in view of (6), 

(7) ~ ]log i (2 B~ -~) - -  4 log / (B~-I) ] < ~ .  
1 

~ O W ~  

(s) 

where 

log /(2 B n  1) - -  4 log / (B~ 1) 

= log[1 -- {1 - - / ( 2 B ~ ) } ]  -- 4log[1 --  {1 --/(B~-~)}] 

= -- {1 - - / ( 2 B y e ) }  + 4 { 1  - - / (By1)}  + A ~ ,  

oo 

An = ~ r - 1 1 4 { 1  - -  I (B~I )}  r --  {1 - -  [(2Bnl)}r] .  
r = 2  

Fur thermore ,  as n --> c~, we have  

1 - - / ( 2 B n  1) ,,~ � 8 9  1) ~ 2n-1 ,  

1 - / ( B 2  ~) ~ ~ B ~ 2 ~ ( B ~  -~) ~ ~n-1,  
so t h a t  

1 

13"  
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Consequently,  f rom (7) and  (8), 

i 14{1 - -  ] ( B j I ) } - -  {1 - - ] ( 2 B j 1 ) } I  < co, 
1 

and a for t io r i ,  taking real par ts ,  

l 14{ 1 - Re I ( B j  *)} - {1 - Re 1(2B~-1)}1 < co. 
1 

This m a y  be rewri t ten  as 

4 (1 - -  cos B n  1 x) - -  (1 - -  cos 2 B ;  1 x)} dF (x) < ~ ,  

which reduces to 

(9) ~ (1 - -  cos B j  1 x) 2 dF(x) < ~ .  

Now, for l xl <= 7c Bn, we can find a posit ive constant  C so t h a t  

1 - -  cos Bnlx  > C(Bnlx) 2, 

and therefore,  (9) yields 

1 IxI<=B. 
(10) 

Fur thermore ,  

I B j  4 

(11) 

eo r  

co n - - 1  

n = 2  k = l  

co 

=~zayB~Pr(=B~<[Xil  <=~rB~+l) i B;  4" 
/ c = l  n = k + l  

Also, Bn = Vn h (n) where h (n) is slowly vary ing  as n -+ co ([71, L e m m a  2.2) so, 
using a s t andard  resul t  on regular ly  vary ing  functions (e.g. F E L L ~  [2], I I ,  273), 
we have  

~, B P  ~ ~ ~ ;  ~ 
n = k + l  

as k --> ~ and,  f rom (10) and  (11), 

(12) i k  Pr( :~B~ < IX~I --<_ ~ Bk+l) < ~ .  
k = l  

But ,  since B~ I Sn converges to  normal i ty ,  n Pr(I  X/I  > eBn) --> 0 as n -+ co 
for any  s > 0 (e.g. L o ~ v ~  [81, 316), and therefore, f rom (12), 

(13) ~ P r ( I X ,  1 > ~ B . )  < oo. 
n ~ l  



Some Properties of Metrics in a Study on Convergence to Normality 185 

Now suppose that  E [ Xt 12 = co, so that  the slowly varying function 

K ( t ) =  f x~ d F  (x) -+ co as t ~ 0 .  
Ixtl < l 

Under these circumstances, we shall obtain a contradiction with our assumption 
of convergence to normality by showing that  the condition (13) implies that  
B~ 1 Sn converges in probability to zero. 

1 P Using the degenerate convergence criterion (Leave [8], 317), we have B n Sn --> 0 
provided that,  as n -+ c~, and for any e > 0, 

7b 
nPr([Xi[ > eSn)-+O, B f  ; x2dF(x) -+O.  

Ixl<~B. 

As we have indicated, the former is satisfied so it remains to establish the latter. 
We have, since n B;SK(B~ 1) -+ 1 as n - ~  co, 

f xSdF(x) =< f x 2 d F ( x ) + z 2 ~  Bsk+l P r ( ~ B e <  ]X/I _<--7~B~+1) 
]x ] <zrJBn IxI < r~B1 k = l  

f xSdF(x)+CEK(B~-~)/sPr(~B~< IX~l GzcB~+~) 
] x ] < : ~ l  k = l  

for some positive constant C. Then, using (12) and by virtue of our assumptionthat 
K(t) -+ co as t -+ 0, we have from the Kronecker Lemma (e.g. [8], 238), tha t  

f 1 f x2dF(z)-§ as n-+oo B~n x2dF(x)'" K (B2) 
[xI<~B,, [xl<~B,, 

This establishes the required contradiction. The result of the theorem is then 
immediate. (13) is only possible in the case where K(B~ ~) approaches a positive 
constant as n -+ ~ in which case it is easily seen that  EX~ < ~ .  

3. Background to Theorem 1 

Theorem 2. Let E X t = O  and EX~-=a 2<co.  Then, 
conditions are equivalent: 

(i) 

the /ollowing three 

 X log+ I [ < 

(~) ~n-1 f~ Pr (& < xoV~) -- ~(x)I dx < ~ ,  
1 - - c o  

1 x 

Pro@ The equivalence of (i) and (iii) has been established in H~YDr: [5]. We 
shall proceed to establish the equivalence of (i) and (fi). 

Suppose firstly tha t  (fi) holds. I t  is easily seen that  the proof of the necessity 
part  of the theorem of [5] is still applicable and (i) follows. If, on the other hand, 
(i) holds, we have from Lemma 2 of H~yDn [6] with an 2 ~ (2-~ e)log log n, 
s > O ,  a n d B ~ = a  -2 f x 2dPr(X~ =<x), that  

(14) y JIVr (S. _--< - s: )l dx < 
1 - - r  
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if 
oo 

(a) ~ n - i ( 1  -- B~) < co, 
1 

oo 

(b) ~ n-1 I x2d~)(xBn 11 < co, 
i Ixl>a,, 

oo  

(c) ~ n - i l o g  log n sup IPr (Sn < x(;Vn ) - -  qD(xBj1)l < co. 
3 x 

Furthermore, it is shown in the proof of the theorem of [6] that  these three 
conditions are satisfied. Consequently, from (14), we see that  (ii) golds ff 

(15) ~n, i I I ~ ( X S n  1) -- ~(x) Idx < co. 

Now, 

so that  

B ~  t e o  

(161 -- ~ , 

B g *  

- 1/~ u-2 du 
1 

2 ( 1 - - B n ) <  2 B2 - 2V~ ~ ( 1 -  n), 

and (15) holds in view of (a). This completes the proof of the theorem. 
Next, we shall go on to examine the effect of the choice of Bn on the magnitude 

of the L1 metric ~ ] F~, (x) -- q5 (x) l dx. In doing this we shall, in the light of 
- - o o  

Theorem 1, concentrate on the context of EX~ = ~9. < co, so that  Bn may be 
written in the form Bn -= ~ U ~  -~ en) where en --* 0 as n -~ co ([7], Lemma 2.2). 

As a starting point, we take a simple example which well illustrates the rSle 
of en. Let the X~ be normally distributed with unit variance. Then, since sn/y- fi 
gas the same distribution as X~ we have, as in (16), 

/ I er (s,, <_x 1/n(1 -~ 7~n))- ~5(x)] d x = f ] q g ( x ] l ~ - ~ n ) - - ~ ( x ) l  dx 
- - o o  - - o o  

(171 2 l) -i/2) = 0 (I sn 1), - ~ (l-(i+le~ 

so that  we must have ~ n - i  ] s~ 1 < oo in order that  
1 

~ n  -11  [Pr (Sn <=x V ~ I  q- en))--qP(x) I dx < oo. 
1 - - o o  
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With this kind of consideration in mind, we shall go on to establish the following 
theorem. 

Theorem3. Let EX~log+lXi  I < o o  and write B'2n-~ n EZ~(1 ~- en) where 
r  

~ -~ o as n-~ oo. II ~ n-~ [ ~ I < oo, then 
1 

(18) n -1 f t P r ( S .  ~ B~x) --  qS(x)l dx < oo. 
1. - - o o  

Conversely, i/ (18) holds/or 8ome monotone sequence {Bn}, and the Xr belong to the 
domain o/ attraction o/ the normal distribution, then E X  2 < oo and 

B~ 2 = n E X  2 (1 ~- 8n) 

where en --~ 0 as n -+  c~. [~, in addition, 

~ n - ~ I s n ]  < c o ,  then EX210g+lXi] < c o .  
1 

Proo]. Write EX~ = a2 (<  co). We obtain from Theorem 2 that  

~ - ~  e r ( Z n < = ~ V ~ ) - ~ ( x ) l d x < ~ ,  (19) 

while 

(20) 
IPr (S~ ~:xV(x + ~ n ) ~ V ~ ) - O ( x V ~ )  [ + lr ~-~)-~(x) I, 

so that  the result of the first part of the theorem is immediate from (17) and (19). 
Now suppose that  (18) holds for some monotone sequence {Bn}, and the Xl 

belong to the domain of attraction of the normal distribution. I t  follows from 
Theorem 1 that  EX~ : (y2 < ~ ,  and consequently Bn must be of the form 

B n = ( ~  nVn(1-~en) where sn->O as n - + c ~ .  Further, the Eq.(20) can be 
rewritten to yield 

o o  o o  

flPr(S~ <: x~V~ ) -  r dx <: f [ Pr(S~ :< ~ V ~  + ~) ) -  ~(~) I dx + c l ~ l ,  
- - o o  - - o o  

o o  

where C is a positive constant, so that, if  ~ n-1.] en [ < c~, (19) holds. The result 
1. 

EX~ log+ ]Xil < 0o then follows from Theorem 2. This completes the proof. 

4. Proof of Theorem 4 

From the proof of Theorem 1 of FnIEDMA~, KATZ, and KOOt'3CA:~S [3], we 
extract the information that  

n-1. [ F ~ ( x ~  1) -- ~ ( x ~ : l ) [  
(21) 

__< Mn-~2{an + 1~I3} + n-1 I . [ o : l ( x  -- V~ ~n)] _ . ( ~ z l x ) ]  + e~, 

where M is a positive constant, 

#~= f xdF(x), as= f Ixl3d~(x), c~=Vr(lX~l>V~), 
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and also t h a t  ~ n -a/2 an < 0% and cn < ~ .  Now, since E X i  = 0 and E X  2 = 1, 
n = l  n = l  

i t  follows t h a t  Vn/~n ---> o and 1 __> an ~ 1 as n --> oo. Consequently,  using the  
mean  value theorem,  we obta in  

I + [ ( ~ j l ( x  - V ~ - # n ) ] -  + ( ( ~ j l x ) l  ~ CVnl nI 
for some posit ive cons tant  C ( independent  of x). Fur thermore ,  we note  t h a t  
/zn = o(1) = o(an) as n -> oo and we can write ins tead of  (21), 

(22) n -1 sup I F n  (x) - q~ (x) [ ~ A n -a/u an -}- B n -~/2 bn j -  Cn , 

where 

= f Ix] F(x) f xdr (x ) l  = 
Ix[-~ V~ 1~1 -~ ~/~ 

and A, B are posit ive constants.  
Before proceeding, we check t h a t  the  result  (4) follows f rom (22) and to do 

this, in view of the  abovement ioned  results, i t  is just  necessary to  show t h a t  

i n 1/2 bn < c~. This is easily seen to be the case as E X ~  < ~ ,  so t h a t  
n = l  

n = l  n = l  /~=n 

= ( k + l ) l / 2 p r ( I c ~ = X ~ < l c @ l ) ~ n - 1 / 2  
k=l n=l 

C' ~ (/c + 1) Pr(/c ~ X~ < k + 1 )  < oo, 
k=l  

C'  being a posi t ive constant .  We arc now in a posit ion to  deduce (3) f rom (22) 
by  showing t h a t  

/~=i k=l k = l  

Since an is non-decreasing in n, 
oo oo ~t1r I oo 

n = l  k = l  n = n ~  k = l  

I towever ,  since n~ N KC2~ as/c --> co, 

( n k + l -  nk)(nk+l  - -  1) -3/2 '~ C -a (C 2 - -  1)n~ -112, 

so t h a t  i n [  lf~ a ~  < ~ .  Also, since bn is non-increasing in n, 
k = l  

n -I/~' bn >= ~ n -1/2 bn => X.,X" ~-112,~k+1 (nk+z - -  nk) bn~,~ 
n = l  k = l  n = n ~ + l  k = l  

and 
n - 1 / 2 ( n k + l _ n l c )  ~ 1 / 2  (1 - - C  -2) 
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oo 

so that  ~ n~/~ bn~ < co. Finally, en is non-increasing in n, so that  
k = l  

while 

co ~+I oo 

n = i  k = t  n = n ~ +  1 k ~ i  

n~+i - -  nk ~ (1 -- C -2) nk+l, 

and consequently, ~. n~ cn~ < oo. The result (3) then follows from (22). 
/ c = l  

Corollary 1. Let E X ~  --~ 1 and {~(n), n ~ 1} be a monotone sequence. Then, i/ 
K > O, C > 1, and {n~,/c ~ 1} is a sequence o I integers with n~ ~ K C  2~ as l~-->c~, 
the lollowing two conditions are equivalent: 

r  

(A) ~, Pr (Sn~ > cf (nk) V~nk) < oo, 

~o 

(B) ~ [~0 (nk)] -1 exp {-- �89 [~ (n~)] 2 ~ 2 }  < c~, 
l c= l  

0-n being given by (2). 

P r o @  From Theorem 4, we immediately obtain the equivalence of (A) and 
the condition 

~[1 ~(~(n~) - i  - -  ~ )] < ~ o .  

The result of the corollary then follows since, as/c --> c~, 

- ~ ( ~ ( n ~ )  ~ )  ~ ~ ~(~) 
1 1 

, ~  0 - - - 2  V2~ ~(nk) exp{-- �89 2 n~ }, 

using a well-known asymptotic formula (e. g. F~LLE~ [2], I, 166). 

5. Applications of Theorem 4 

In this section, we shall illustrate the usefullness of Theorem 4 and Corollary 1 
with two applications. We start by giving a new proof of the classical iterated 
logarithm law based on the use of Corollary 1. By making use of the corollary, 
we are able to avoid the ordinary complications of truncation and the use of 
exponential bounds. 

Theorem 5 (KAi~T~[Ai~ and Wi~Ti~Ei~ [4]). I] E X i  ---- 0 and E X ~  ~ 1, then 

Pr lim sup l/2MEglog~ ~ 1 ~ 1. 
k n-'-> ~ 

Proo 1. Let b~ = (2n log log n) lm and tn = (2 log log n) 1/2. Firstly we shall 
show that  if ~ > 0, then Pr (Sn > (1 -t- 8) bn i.o.) = 0 ("i.o." stands for "infinitely 
often"). 
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For  c > l ,  let nic be the integer  pa r t  of  c 2Ic, ]~ ~ 1. Then, ff Mn ~ m a x  Sic, 
We h a v e  1 =<k =<n 

Pr  (S• > (1 + 6) bn i.o.) =<_ Pr  (Mn~ > (1 + 6) b~,c_ I i.o.), 

where 
(1 + 6) bn~_l ~ c-1 (1 § a) bn~. 

Thus, taking (~' with 0 < ~' < (~, we can select c > 1, so t h a t  c -1 (1 § (~) > 1 § ~', 
and then, 

Pr(Mn~ > (1 § 6)b~_li .o.)  ~ Pr(Mn~ > (1 + 6 ' )b .~i .o . ) .  

Consequently,  the  result  P r (Sn  > (1 § a) bn i.o.) = 0 will follow f rom the Borel- 
Cantelli l emma  if we show t h a t  

r 

(23) ~ Pr (Mn~ > (1 § ~') bn~ ) < c~. 
k = l  

Now, using an inequal i ty  due $o KOL~OGO~OV (e. g. L o i r e  [8], 248), 

t~  1 Pr(Mn~ > (l § ~') bn~) ~ 2 Pr[Sn~ > (l § 6' -- ~/2) bn~] 

2 Pr  (S,~ > (1 + (Y') bn~ ) 

for 0 < ($" < 6' and/~ sufficiently large. Thus,  b y  appeal  to Corollary 1, we have  
convergence in (23) ff 

~ t Z  ~ e x p { -  �89 + a")~t~ ~ }  < ~ .  

k = l  

This is easily seen to be the case as 

, ~ -2  ~ t y J e x p { _  (I 6 " ) t  2 t ~ l e x p { - -  1(1 § ~''~2 t2 an~} �89 § n~} 

= O(k-(l+0") (log k) -1/2) as /c -+ ~ .  

In  order to complete  the proof  of  the theorem it remains  to show t h a t  

P r ( S n > ( 1 - - 6 )  b n i . o . ) = l  for ~ > 0 .  

Take  1 > 3 > ~' > 0 and let 
2 u k = nk - -  nic-1 "-~ nk (1 - -  c-2), 

vic = (2 log log u~) 1/~ ~ (2 log log n~) 1/2 = t,~, 
a n d  

Aic ~- {Sn~ - -  Sn~_~ > (1 - -  a ')  u~vic}. 
Then, 

Pr(Ak)  = Pr  (Sn~_n~_ ~ > (1 - -  6')UkVIC), 

while for 1 > (~' > (~" > 0 and k sufficiently large, 

v k l  e x p [ - -  �89 ~')2 v2 - - ~  ~ > - -  l: an~-n,-~] = vk -~ exp [ - -  1 (1 6") 2 v~] 

= 0 (k -(~-a'')~ (log k)-~/~), 

so t h a t  f rom Corollary 1, ~ P r ( A i c ) =  ~ .  Therefore,  since the sums S ~ -  Sn~_ 1 

are non-overlapping,  we have  f rom the Borel-Cantelli  l emma t h a t  P r  (A~ i.o.) = 1. 
Fur thermore ,  i f  Bic = {[ S~_, g 2bn~_,}, i t  follows f rom the first pa r t  of  the 
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(24) 

where 

proof  t h a t  Pr  (/]~ i.o.) = 0, where we have used a bar  to denote the comple- 
men ta ry  event. We mus t  therefore have P r ( A e  (~ B~ i.o.) = 1. Also, 

A~ (~ B~ c {S~ > (1 - -  d') u~v~ - -  2bn~_~}, 
while 

(1 - -  d')  u ~ v ~  - -  2 b ~ _ ~  , . .  [ (1  - -  d ' ) ( 1  - -  c 2)1/~ _ _  2 c - 1 ]  b ~ ,  

so tha t  ff we take c so large tha t  

(1 - -  ~')(1 - -  c-2) t / ~ -  2c-1  > 1 - -  d, 

W e  h a v e  

1 = Pr (Ak c~ Bei.o.)  =< P r ( S ~  > (1 - -  d) b~i .o . ) .  

This implies, a fo r t i o r i ,  t h a t  P r (Sn  > (1 - -  d) b~ i.o.) = 1 and thus completes 
the proof. We next  proceed to our final application. 

I n  the paper [9], ST~ASS~ obtained a deep and ra ther  striking generalization 
of  the i terated logari thm law. For  his proof, he appealed to a result of Skorokhod 
which permits  one to realize a sequence of independent  and identically distr ibuted 
r andom variables with finite variance in terms of  r andom increments of  a Brownian 
mot ion process. Later,  C ~ o w ~  [1] developed a more classical approach to the same 
results bu t  was forced to introduce an extra momen t  condition E I X i  [2+~ < c~, 
some d > 0, in order to use an estimate of  Esseen on convergence to normali ty.  
As we shall indicate here, Theorem 4 provides just  the tool necessary to extend 
C ~ o v ~ ' s  proof  to obtain the results given by  S T ~ A s s ~  (the d = 0 ease). The 
reader is referred to the papers [1] and [9] for notat ions and explainations. 

The are three places in the paper  [1] where the suplementary  momen t  condition 
E l X~ I ~+~ < co, some d > 0, is required. I n  each case it m a y  be avoided by  use of  
Theorem 4 (or Corollary 1). The applications are routine in character  so we shall 
only car ry  out  one of t hem (the last). 

We need to show (see equations 30 and 32 of [1]) t h a t  for fixed f, 

~ t ) r ( [ Z r  - -  A l < (~ ,~ ) -~  ~) = ~o,  
r 

But, 

Pr (I Zr -- A [ < (2 m) -I s) ---- Pr (Zr < A ~- (2 m) -I e) -- Pr (Zr ~ A -- (2 m) -I e), 

and by Theorem 4, since Nr, ~ ~ m r-1 , 

r 

where s = ~Tr, ~ -+ 1 as r -+ 0% 

a =  A ( 2 m l o g l o g n r ) l / 2 8  -1, and b = ( 2 m ) - l e ( 2 m l o g l o g n r ) l / ~ s  -1 .  

Therefore, (24) holds provided tha t  

(25) Z I ~ ( ~  + b) - -  ~ ( ~  - -  b) l = ~ .  

I f  A = 0, this is easily seen to be the ease since 

(b) - -  ~ ( - -  b) = 2 r  - -  1 -+ 1 
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as r -+  oo. Now suppose  A ~ 0 
suff ic ient ly  large,  

q) (a  + b) - ~ (a  - b) = 

a n d  t h a t  e is smal l  c o m p a r e d  w i th  A.  Then ,  for r 

r  + b) - r  - b) 

( 4 n m l o g l o g n r ) - l / 2 ( [ A  [ - -  ( 2 m ) - l e ) - I  

�9 e x p { - - ( [ A  I - -  ( 2 m ) - l s ) 2 m s - 2 1 o g l o g n r }  

(4 s m log log nr) -1/~ ([ A [ - -  (2 m) -1 s) -1 

�9 e x p { - -  A S m l o g l o g n r }  

(26) = 0 (r -A~n (log r)-l/~) 

as r ->  oo since nr ~; mr. Also, 

m-l(v+l)  m-l(v+ 1) 
< j" dt j" [g( t ) ]2dt<~-a ,  

s~ t h a t  f rom (26) we see t h a t  (25) holds  a n d  the  r equ i r ed  resu l t  is ob t a ined .  
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