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Summary. For the two Markov processes associated with the application of a measurable
transformation in a probability space in the forward and backward direction respectively, the
equivalent descriptions by kernel functions and by Markov operators in €1, %, and in the
space of absolutely continuous finite signed measures are identified. The connections between
the conservative parts of the probability space with respect to these processes and the various
conservative parts associated with a measurable transformation in the literature are clarified.
Finally the inclusion relations between these various conservative parts are established.

§ 1. Introduetion

Let (X, ®, ) be a normed measure space and let 7' be a measurable trans-
formation in X. With respect to this transformation several authors have described
a decomposition of X into a conservative and a dissipative part (cf. E. Hopr [9],
[10], Tsvrowmi [15), Cuoxs1 [1], Parry [13] and the authors [6], [14]).

Our aim in this paper is to clarify the relationship between these decompositions
and the two Markov processes associated with the application of the (not neces-
sarily invertible) transformation 7' in the forward or backward direction respec-
tively. Both processes have already been introduced by E. Hopr in [10] § 6 who
also (as did TsuruvmrI [15]) implicitely considered the conservative part of X
induced by the process associated with the transition x — 71 {x}.

Here we shall identify the four equivalent analytic descriptions of both
processes by means of a kernel function and by means of Markov operators in
L1(X, R, u), in Lo(X, R, u), and in the linear space of absolutely continuous
finite signed measures. Furthermore we shall show that the decomposition studied
by the authors [6], [14] which is in some sense a refinement of a decomposition
studied by Croxs1 [1] coincides with the one induced by the process associated
with the transition z — 7'#. The decomposition studied by Parry [13] is obtained
if the c-algebra M is replaced by the largest g-subalgebra © with the property
that 7' is “essentially invertible” in (X, &, u).

The conservative parts of X with respect to the decompositions studied by
E. Hopr and Tsurumi, CHOKsI, the authors, and ParrY, form an increasing
sequence of sets in this order if 7' satisfies some regularity conditions. In order to
show that inequality may also occur between the last two mentioned ‘“‘con-
servative” parts of X (for the other inclusions this has already been shown) we
shall finally construct a measurable transformation in a suitable measure space
which is “purely dissipative” in the one sense and conservative in the other.

The authors gratefully acknowledge several stimulating discussions with
L. S. van Bentaem Jurrine. They further have to thank the referee for his
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suggestions which have led to a considerable condensation of the manuseript.
A more elaborate version has been mimeographed 1967 as an internal report at
the Technological University Eindhoven.

§ 2. Preliminaries

For later reference we restate the four equivalent descriptions of a y-measurable
Markov process as introduced by E. HopF in [10] and the connections between
them.

Definition 1. A y-measurable Markov process in (X, R, p) is a non-negative
function P({-,-) on X X R with the following properties:

a) For every 4 ¢ R the function P(-, 4) is defined p-almost everywhere on
X and 9-measurable.

b) If {4} 1 is a sequence of pairwise disjoint sets 4, € R, then
P (x, U An) => P(x, An)
n=1 n=1

for y-almost all z € X.

¢) P(z,X)=1 for y-almost all ze X.

d) Pz, A) = 0 for p-almost all x € X for every u-null set 4.

Definition 2. Let &, be the real linear space of all real-valued finite signed
measures on (X, R) which are absolutely continuous with respect to u. A Markov

operator in @, is a non-negative linear operator A in @, such that Ap(X)= ¢ (X)
for all pe@,.

Definition 3. A Markov operator in £;(X, ®, 4) is a non-negative linear
operator L in £;(X, R, u) such that

[Lidu= (fdu forall fei(X, %R, u).
X X

Definition 4. A dual Markov operator in Qe (X, 9, x) is a non-negative linear
operator L* in L. (X, R, 1) with the following properties:
a) If {gn}pe1 € Qoo(X, R, u) is a non-increasing sequence of functions such that

limg, (x) =0 for y-almost all xe X,
n—>o00

then
lim L*g, (x) =0 for y-almost all xe X .
n—roo
b) L*¥1 =1.

It is partially well-known (ef. [10]) and for the rest easily verified that the
following relations establish one-to-one correspondences between y-measurable
Markov processes in (X, R, u), Markov operators in @,, Markov operators in
(X, R, y), and dual Markov operators in Lo (X, R, u) (we shall denote by
dy/du the Radon-Nikodym derivative of ¢ with respect to u and by ¢4 the char-
acteristic function of the set A4).

(1) Ap(d) = fP(x,A)(p(dx) for all pe®, and all AeR;
x
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dy ddeg .
2) L A T for all p e @y;
2) Aff for all p € @, (or, equivalently,
Ap(A) = [ Lf(2) p(dz) for all & 21(X, R, x)) and all 4 € R;
A
(3) [iL*gdu = [gLjdu for all fe (X, R, u)
x X and all g€ Qo (X, R, ) ;
4) P, 4)= L*cy for all 4 e R.

Notice in particular that the conditions imposed on a bounded operator
L#*in Qo (X, R, u) as in definition 4 guarantee that its adjoint L** in 2% (X, R, u)
leaves the subspace Q1 (X, R, u) invariant and there induces a Markov operator L.
Hence every dual Markov operator L* in 2. (X, R, u) is the adjoint of a uniquely
determined Markov operator Lin €, (X, R, u) (this fact has already been mentioned
e.g. in [2] p. 2).

Combinations of (2) (3) and (4) lead to the further relations

6) [P, A)f@)u fo ul(dz) forall AeR
X and all fe (X, R, u);
fL*g(x)g( fg ) Agp(dz) for all pe @,
X

and all ge 8 (X, R, u).

§ 3. The Transition x — Tx
Let T be a measurable transformation in (X, R, u) which is negatively non-

singular (i.e. 4 (1"-14) = 0 for all y null sets 4 € R). As already done in [10] §6
we define a y-measurable Markov process P’ (x, 4) by

P(,Ay=cp1y forall AeR.

This definition agrees with the fact that under the transition from x to T« the
probability of entering the set 4 € R is 1 or 0 according to whether x does or does
not belong to the set 7'-14.

By (1) the corresponding Markov operator A’ in @, is given by

Apd)= ch_lA (x)p(de) =@(T14) forallpePyandall AeR.
x

Relation (4) yields that for every 4 € & the corresponding dual Markov operator
L’* gatisfies
L'* Cq==10y40 T

from which we deduce that the dual Markov operator L'* is given by
L'*g=goT forall gel(X,N, u).

In order to obtain a satisfactory formula also for the corresponding Markov
operator L’ in (X, R, u) we have to impose on 7' the extra condition 77X € R
which, incidentally, is equivalent to the condition 77T-1% c R. The following
lemma is an easy consequence of the fact that a 7! R-measurable function is
constant on every set I'-1{x} for x e T X.

12%
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Lemma 1, Let g be @ T-1R-measurable function on X and suppose TX e R.
If T-1z denotes any element of the set T—1{x} for x € T X, then the relation

go T-1(x) =g (T} forall zeTX

unambiguously defines a R-measurable function g o T—1 on T'X.

’

Defining s = d—‘;ﬂ” we have s€ & (X, R, u), s =0, and

(6) p({T14)= J'cA(Tx),u(d:c) = ch (x)s(x)u(dx) forall Ae@R.
x x

In particular, for 4 = X\T X we geb

(7) 0= | s(&)p(da),
X\TX

hence s{z) = 0 for u-almost all z e X\TX. Moreover, from (6) we derive via
monotone approximation

(8) {9(Ta)p(da) = [g(x)s () p(de)
X X

for all R-measurable functions ¢ satisfying gs e (X, R, p) (or, equivalently,
goTe (X, N m).

Let E ;. be the conditional expectation operator with respect to the g-algebra
T-1R (cf. e.g. [12], IV.3).In view of (7) for every f € 21(X, R, u) we shall define

s@)Epagf(T12)=0 forall zcX\TX.
For every f e &1(X, R, p) and every A € R we then obtain
£8 (@) B f (T2 ) p (dx) = A[5(90) ca () Bp-g f(T-12} u(dz)
= [eall2) Brapf @pd) (b3 (8)

= [ca(Tx)f (@) p(da) (sincecsoTis T-1 R-measurable)
X

= [ P'(z, ) [{z) u{du).
X

Comparing this with (5) we see that the Markov operator L' in €3 (X, R, p)
is given by
L'f=s[(Epagf)oT-1] forall fei(X,%R, u).

We collect the results in a theorem:

Theorem 1. Let T be a negatively non-singular measurable transformation in
(X, R, u). Then
P’(', A) = Cp-14 fOT all Ae%h

defines a p-measurable Markov process in X. The corresponding Markov operator
A’ in @, and dual Markov operator L'* in (X, R, u) are given by
Apd)=@(T1A)y forall ¢c®y andall AcR,
L'*y=goT forall ge (X, R, u).
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If the transformation T moreover satisfies TX € N then the corresponding Markov
operator L' in 21(X, R, u) is given by
L'f=s[(Bpapf)oTt] forall feli(X, N, p)
where
a4’ u
§ = ’*dlu

§ 4. The Transition x — T-1{x}

Let T be a measurable transformation in (X, R, u) which is positively non-
singular (i.e. u(4) = 0 for all sets 4 € R satisfying u(T-14) = 0) and satisfies
TXe®R Since T-1(X\TX)=0 we obtain u(X\7X)=0 and therefore by
Lemma 1 for every 7-1R-measurable function g the function g o -1 is defined
u-almost everywhere on X and %-measurable.

Our aim in this section is to give explicit formulas for the four objects char-
acterizing the y-measurable Markov process corresponding to the transition
x> T-1{x} as, under slightly stronger conditions, introduced by E.Horr
in [10], §6.

We define

9 P, A) = (Epagca)o T forall 4deR.
Note that for any 4 € T-1 % this formula reduces to
P(', A) =Cr4-

This agrees with the fact that under the transition x — 7-1{x} the probability
of entering the set 4 € 7-19 is 1 or 0, corresponding to whether or not  belongs
to T 4.

It is easily verified that relation (9) indeed defines a u-measurable Markov
process. By (1) the corresponding Markov operator A in @, is then defined by

Ap(d) = fE’T_lch(T—lx)(p(dx) forall ge®, andall Ae®R.
X

Relation (4) yields for the dual Markov operator L* in & (X, R, )
L¥cy = (Bpagcq)oT-1 forall AeR.
Via monotone approximation this implies
L¥*g = (Epagg)oT-1 forall ge Qo (X, N, u).

In order to obtain a formula for the corresponding Markov operator L in
Q1 (X, R, p) first consider the measurable space (X, 7-1%). Since the restriction
vy of Au to (X, T-1R) is absolutely continuous with respect to u, the Radon-

Nikodym-derivative r = % € & (X, T-1R, u) exists. We obtain

fr(x)cA(Tx)‘u(dx)z j'r(x)lu(dx): Ap(T14)y=p(4)= ch[u(dx) forall AeR
X 714 X
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and via monotone approximation

(10) fr@f(Tz j f)u(dz) forall fe (X, R,u).
X

The Markov operator L in &; (X, R, u) defined by
Lif=r(foT) forall fei(X,R,u)

then turns out to be the adjoint operator in 21(X, R, u) of the dual Markov
operator L* obtained above: forall f € €; (X, R, u)and allg € (X, R, u) wehave

ff VL*g (@ ff ) Bpagg (T1a) p(de)
(@) {(T2) B p-gg (x) p(dz)  (by (10))

f
X
= [r@)f(Ta)g(@)u(dx) (sincer(foT)is T-1R-measurable)
x
= J9@

Again we collect the results in a theorem.
Theorem 2. Let T be a positively non-singular measurable transformation in
(X, R, p) satisfying TX € RN. Then
P, A)= (Epages)oT1 forall Aec®R
defines a p-measurable Markov process in X. Let v be the measure Ay restricted fo
(X, T1R) and let r= Z—; e & (X, TR, u). Then the corresponding Markov

operators A in Dy and L in L (X, R, p), and the dual Markov operator L* in
Lo (X, R, ) are given by

Ap(d J‘ET-%CA(T “1z)p(dw) forall @e®, andall Aec®R,
f_r(foT forall fe (X, R,u),
L*g = (Epagg)o T-1 forall ge (X, R, u).

§ 5. Relations hetween the Markov Processes Associated with the
Transitions x — Tx and x — T-1 {x}

Let T be a (positively and negatively) non-singular measurable transformation
in (X, R, u) satisfying T X e R. It is to be expected that the transition x— 71 {x}
followed by z — T'z results in the identity transformation. In fact E. Hopr [10]
has already pointed out that in this case we have A’ A = I in @, and therefore
also L'L = I (in & (X, R, ) and L*L'* = I (in Lo (X, R, p)).

From (6) and (10) we deduce

p(I14)y= [s(x Ir u(dz) forall AeR
A

which implies r (z)s (T %) = 1 for y-almost all x € X and therefore r(T-1x)s(x) =1
for p-almost all # € X. A straightforward computation now gives, in addition to
the above-mentioned equalities,
LL = Epay in (X, R, ),
L'*L¥ =Ep.q in L(X, R, ).
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If T is also measure-preserving, then we have r(x) = s(x) = 1 p-almost
everywhere on X and for every g € Lo (X, R, ) (c &1 (X, R, 1)) we obtain

Ly=L*g=goT,
L'g=L*) = (Ep-gg)o T-L.

Another special situation which we shall meet in the sequel and which is
closely related to invertibility of 7' is considered in the following definition.
Recall that every subset 4 ¢ X has a “measurable cover” (4> e R, uniquely
defined up to a wp-null set by the conditions 4 c {4) and u(B) = 0 for every
B e % satisfying B c {4>\4 (cf. [4]). The symbol [u] after a statement concerning
some measurable sets will indicate that the statement holds if these sets are altered
by appropriate y-null sets.

Definition 5. A measurable transformation 7' in (X, , u) is said to be essen-
tially invertible if the following two conditions are satisfied:

a) IT-14>=A4Tu] forall Ae®,

b) T-1TAY =A[u] forall Ae®R.

Note that in contrast to the concept of invertibility, the concept of essential
invertibility depends on the underlying measure u. It follows from condition b)
that an invertible transformation is essentially invertible if and only if it is

negatively non-singular. If 7' is non-singular, essentially invertible and satisfies
TX e R, then from T-1H = R[u] we conclude

LL'=1 in (X, %, pu),
L*L* =1 in (X, R, u).

Given any non-singular measurable transformation T in (X, R, y) it is always
possible to enforce essential invertibility by shrinking the original ¢-algebra R

o]

to the o-algebra R =) T+ R (notice that 71 R = Reo).
k=0

Theorem 3. Let T be a non-singular measurable transformation in (X, R, y).
Then Noo is modulo p the largest o-subalgebra & of R such that T is essentiolly
tnwertible on (X, &, u).

Proof. Since T-1(X\TX) = @, it follows from the non-singularity of 7' that
{T'X)» = X[u] and therefore

KTT14> =ANTXy=A[u] forall 4eRe.
For every 4 € R there exists a set B € A such that 4 = T-1 B, and therefore

{TAY=<KTT-1B) = Blu],
T-2{TA>=T1B=A[ul.
Hence 7 is essentially invertible in (X, Roo, ).

On the other hand, if & is a ¢-subalgebra of R such that 7' is essentially
invertible in (X, &, u), then some easy computations show that

T{AYy =<TA>[p) forall AcX
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and (by induction on »)
T-n{TnAY=A[u] forall 4e&.
The set
B=limsup 7-#<Tr 4y =) | JT-*{Tr A4

n—>00 k=1 n=k

belongs to T-* R for every £ = 1 and therefore even to R... Moreover it satisfies
B = A[u]. This shows & c R[]

Let T be a non-singular essentially invertible transformation in (X, R, p)
satisfying TX e R, and let 4 € R be given. Then

ca(x) = cp-rypyy () for p-almost all zeX.

By Theorem 2 we obtain
L* cq = (Byp-spop-1gray) 0 T71 = c¢pyy

and by induction on n
(11) L*n C4 = Cerngy o

§ 6. The Decompositions of (X, R, w) Corresponding to the Transitions
x— Tx and « — T-1{x}

The following theorem is due to E. Hopr ([10] § 6; cf. also [12] V.5).

Theorem L Let L be a Markov operator in €;(X, R, ). There exists a modulo
4 unique set C' e R, called the conservative part of X with respect to L, such that
for every non-negative function f € (X, R, u) one has

a) > LEj)=0 or oo for y-almostall zeC,
£=0 :

(o]

b) D LFf(x)<oo for y-almost all xze X\C.
£=0
As shown by FerpMaw [3] the conservative part of X with respect to L can
also be described in terms of the dual Markov operator L*:

Theorem II. Let L* be a dual Markov operator in Qe (X, R, u). There exists
a modulo y unique set C € R wit the following properties:
a) For every measurable set 4 c C one has

oo

> L¥koy(x) =oco for y-almostall zeAd.
£=0
b) Every measurable set B ¢ X\C of positive y-measure contains a measurable
subset By of positive p-measure such that

> L*kcp (x) <oo for y-almost all xe By.
E=0 :
The set C coincides modulo g with the conservative part of X with respect to
the corresponding Markov operator L in & (X, R, u).
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Recall that a set W ¢ R is said to be wandering with respect to a measurable
transformation 7' in (X, R, ) if W T-2W = for all » = 1 and T is called
conservative if every wandering set is a y-null set.

In [6] (cf. also [14]) the following theorem has been shown:

Theorem III. Let 7' be a measurable transformation in (X, %, u). Then there
exists a modulo x4 unique set Cy € R, satisfying 710, > Cy, with the following
properties:

a) The restriction of T to the measure space (C1, ft N O, p) is conservative.

b) The set X\C; is a countable union of wandering sets.

Theorem 4. Lei T be a negatively non-singular measurable transformation in
(X, R, p). The set C1 as defined in Theorem I1I coincides modulo u with the
conservative part of X with respect to the Markov process corresponding to the
tramsition x —> T .

Proof. Let C be the conservative part of X with respect to the Markov process
corresponding to the transition # — T'x. For any measurable set 4 ¢ (1 y-almost
every point returns to 4 infinitely often. By Theorem 1 we obtain

D L*koy(x) =Y ca(Tkx) =00  for y-almost all zed.
k=0 k=0

Theorem IT then implies C1 c O[u].
Since X\(C1 is a countable union of wandering sets, any measurable set Bc X\C;

of positive p-measure contains a wandering subset By of positive y-measure.
We obtain

> L'*kcp (@)=Y cp,(Tka) =1 forall xeBy.
k=0 k=0

By Theorem II it follows that X\C; c X\C[u], and therefore ¢ = C1[u].

A sharpening of the requirement T-101>C; at a cost of a weakening of
requirement b) in Theorem III leads to a decomposition studied by CHORSsI [1]
who proved the following theorem:

Theorem IV. Let T’ be a measurable transformation in (X, iR, u). Then there
exists a modulo u unique set Uz € R, satisfying 71 Oy = (3, with the following
properties:

a) The restriction of 7 to the measure space (Cz, # N O3, u) is conservative.

b) Every invariant measurable subset of X\Cs of positive y-measure containg
a wandering set of positive y-measure.

As shown in [6] the set 2 may be obtained by an exhaustion procedure as
the (modulo p) largest invariant subset of C;. This at the same time shows the
inclusion €2 c C1[u]. As demonstrated in [6] (or by the example below) this
inclusion may be strict.

Applying Theorem I to the Markov process associated with the transition
x> T-1{g} (cf. Theorem 2) a third decomposition is obtained, implicitely
already considered in [10] and [15]:
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Theorem V. Let T be a positively non-singulai' measurable transformation in
(X, R, p) satisfying TX e R, and let the T-1 R-measurable function r be defined by

(12) ' p(TB) = [r(x) u(dx) forall BeT-19%.
B

Then there exists a modulo 4 unique set C3 € R such that for every non-negative
function f e &1 (X, :, u) one has

a) flx) + ir(T’f—lx) ot (@) f(T%x) =0 or oo for y-almost all zeCs,
E=1

b) flx)+ ir(.’l’k—l x)...r@) f(T%zx) < oo for y-almostall x e X\Cs.
F=1

The fact that the hypotheses in the given version of Theorem V are weaker
than in the case considered in [1] makes it necessary to reconsider the remaining
inclusion relations between the sets C1, Cg, and Cs.

Theorem 5. Let T be a positively non-singular measurable transformation in
(X, R, u) satisfying TX € R, and let the sets C1, Ca, and C3 be defined as in
Theorem III, IV, and V. Then T-1C3> Cs[ul] and C3c Ci[pul. If T is also
negatively non-singular, then T-1C03 = C3{u] and Oz c Cau].

Proof. If W € R were a wandering set of positive y-measure contained in Cj,
then we would get

ew (x) + ir(Tk”lx) coor@ew(T*z)=1 forall xzeW
k=1

which contradicts Theorem ITa). We conclude C3 c C1[u].
In order to verify the inclusion 7'-1 C3 > C3[u] consider the function
f=1el(X, R u).
By Theorem V we have

14> r(TF1x)...r(x) = oo for u-almost all xeCy
i1
and since  (z) < oo py-a.e.

1+ Zr(T’C:c) .t (Tz) =00 for y-almost all zeCs.
E=1

By Theorem V this implies C's c 71 Cg[u].
If T is also negatively non-singular, then by (12} »(x) > 0 u-a.e. and conse-
quently

1 +ZT(T’G:0) co.7(Tx) < oo for y-almost all xeX\Cs.
E=1

By Theorem V we conclude X\Os c X\T-1 O3[u] and therefore C3 = T-1C3[ul.
Using the non-singularity of T' again we get

Ca=( UT*Cslu]
n=1 k=n

where the set on the right hand side is even strictly invariant. Since (s is modulo p
the largest invariant subset of €1 we conclude Cg c Cq[u].
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TsvruMI [15] has given an example of a conservative measurable transforma-
tion in a normed measure space (X, i, u) for whic* x(C3) = 0, thereby demonstrat-
ing that the inclusion C3 c Ca[p] may be strict. This inclusion has been shown
by CHOKSI under the tacit assumption of non-singularity of 7'. That this inclusion
may fail to hold if 7' is only positively non-singular is demonstrated by the
following example (cf. [5], p. 12):

Let X be the set of all natural numbers, let 5 be the g-algebra of all subsets
of X, and let the normed measure y on (X, 9i) be defined by

1 for n <3,
ul{n})=10 for n=4,
22-n for n=25.

Define the transformation 7 by 71 =3 and Tn =n — 1 for n = 2. Then T is
measurable and positively non-singular in (X, R, u) (the only p-null set in 7-1R
is @). However, T is not non-singular since w({4}) == 0 but w(T-1{4}) =1 +0.
Inspecting the atoms of 7-1%t and taking into account that the function r is
T-1R-measurable we deduce from (12)

1 for n=<4,
rin) =40 for n=2>5,
2 for n=6.

Using the constant function f = 1 we conclude that O3 = {1, 2, 3, 4} [u] while
on the other hand we have Cs = 0 and C1 = {1, 2, 3} [u].

Corollary 5.1. Suppose that T is a non-singular measurable transformation in
(X, R, p) satisfying TX e N which is either measure preserving or essentially
invertible. Then C1 = Cy = C3[u].

Proof. If T' is measure preserving, then we have 7 (x) = 1 y-a.e. on X. Choosing
f =1 we see by Theorem V that C3 = X [u].

If T is essentially invertible, let A be any measurable subset of C;. Since 7
restricted to (7 is conservative we have

AcY Uy u

n=1 k=n

(ef. [8], Satz 6) and therefore by (11)
Z L¥k ¢y (x) = z Copigy () = oo for y-almost all ze4d.
k=0 k=0

By Theorem II we conclude C; c O3[u] and therefore O1 = Cs[u].

Observe that while the sets C; and (s are invariant under transition to an
equivalent normed measure, the set (s is not. This again is demonstrated by
TsuruMI’'s example mentioned above, where C3 = @ while (s = C; = X. Since
TsurumMI's transformation admits an equivalent invariant normed measure y’,
for the corresponding set O we get Cé = (p = (1 = X by Corollary 5.1.



176 G. HeruBerg and F. H. Smmons:

§ 7. The Tail-algebra Decomposition

For a non- singular measurable transformation 7' in (X, N, u) satisfying

TX e R let Ro = ﬂ T-nR, let r be defined as in (12) and for f e 21 (X, R, )
define n=0

(@) = @) +k§f<Tkx)r<Tk-1x) r(a).
=1

The following theorem has been shown by Parry [13].

Theorem VI. Let 7' be a non-singular measurable transformation in (X, R, u)
satisfying 7'X = X. Then there exists an invariant set Cy € o such that for
every positive function f € 21 (X, R, y) one has

lim Eg_ f?(x) = oo for p-almost all ze Cy,
n—>r 00

lim Eg_fr(x) < oo for p-almost all x eX\O(’,.

n—>00
Theorem 6. Let T and C, be as in Theorem VI. The set Cy coincides modulo W
with the conservative part Cy of X with respect fo the essentially tnvertible transforma-
tion T in (X, Reo, ).
Proof. Let f be a positive function in €3 (X, R, p). By induction on & we obtain
from (10), replacing there f by fcu
J‘f(x) _ff Tex)r(TE1z)...r(z) p(dze) forall AeR.
4

For every 4 & Ry, the relation TX = X implies T%4 € oo and 4 = T-ETk 4,
hence

@) ff Tha)r (TF1a)...r(x) p(de),
T%4
f Hm By _ f(x) p(dr) = im _fEm o () p(da) = i J' () p(dex) .
A n—co0 fn~—>00 A k=0 TEkA

In particular for 4 € Ro N Cp and for every n = 1 we have
AclJTrAlpu]
k=0
(cf. [8], Satz 3) and therefore in case u(4) >0
> (@ plde) = [f@) pda) >0, [ lim By, () ulde) = co.
k=n TFA A4 4 n—o0

This implies Co ¢ Oy [¢].
On the other hand, let W € R, be wandering. Note that

(13) TeW AT W = 0[u]

for all integers n, m (n + m) by non-singularity and essential invertibility of 7' in
(X, R, u). We obtain

[ i By fr (@) pda) = > [ fa)p (1) = [(0) p(d) < oo.
W n—co k=0 T:W
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Since X\(y is a countable union of wandering sets in ., we conclude

lim By f2(x) << oo for y-almost all ze X\Cp.

n—>0o0
This implies X\C c X\Cg[u] and completes the proof.

Theorem 7. Let T be o non-singular measurable transformation in (X, N, u)
satisfying TX = X. Lel the sets Cy and C1 be defined as in Theorem 6 and Theorem

III. Then \ J T* C1c Colpl. If T is essentially invertible or measure preserving,
k=0
then C1 = Colu].

Proof. Since every wandering set in (' is a y-null set we have Cy c Colu].
The invariance of Cp implies the first assertion. If 7' is essentially invertible,
then we have oo = R[u] by Theorem 3, hence every wandering set in R coincides
modulo y with a wandering set in $. If 7' preserves the normed measure yu,
then 01 = 00 = X.

Theorem 7 together with Theorem 5 and the further remarks made in section 6
show that under the mentioned hypotheses we have

C3C02C01CUT_7“01C00[ILL],
k=0
where the first three inclusions may be strict. In the next section we shall show

that also the inclusion U T-* Cy c Cy[u] may be strict even if 7' admits an
£=0
equivalent invariant ¢-finite measure.

§ 8. An Example

We shall construct a o-finite measure space (X, i, ») and a measure preserv-
ing transformation 7' in (X, R, ») such that

a) X is a countable union of wandering sets,
by TX=2X,
¢) T is conservative in (X, feo, ¥).

Replacing » by an equivalent normed measure y we obtain a non-singular

transformation 7' in (X, R, u) such that C1 ={_J 7% C1 = #[u] and Cp= X [u].
£=0
Define the subset X of the real plane by
+co
X =1 I,
f=—00

Iin={(z,y): 0=z <1,y=mn} forallintegers n.

Let R, be the g-algebra of Borel sets in I, and let v, be the Lebesgue measure
on (I, Ry). Define
R={4: AcX, ANnT,eR, for — oo <n <4 oo},
+ oo
p(A4) = Z (AN I,) forall 4eR.

= —00
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Obviously (X, R, ) is a o-finite measure space.
|22, n4-1) if 0<s2<l,
T(xf")‘{(zx— Lnt2)if t=a<l.
The transformation 7' in (X, R, ») is measurable, measure preserving, and satisfies
TX = X and THR c R. Since every I, is wandering X is a countable union of

wandering sets.
Let (I, B, 1) be the interval [0, 1[ together with the Borel sets and Lebesgue

measure. The projection P defined by
P,n)=a forall (z,n)eX

is a measurable mapping of (X, R, ») onto (I, B, A) satisfying PR = B. Moreover,
for every 4 € it we have A(PA) = 0 if and only if »(4) = 0.

The projection P induces a measurable transformation T in (I, B, 1) defined
by
(14) Tox=PTP1lg =2z (modl).

The conservativity of 7' in (X, $e, v) will be shown in a series of propositions.

Proposition 1. If A e R, and v(A4) > 0, then v(4) = 1.
Proof. For every n = 0 there exists a set 4, € R such that 4 = T-24,,.
From (14) we conclude

T5"(PAy) = PT-2P-1(PA,) = PA,

hence PA € Bo. It is well known that Be, = {0, I} [1], hence y(4) > 0 implies
AMPAY=1and v(4) = 1.

Proposition 2. If W e R is wandering and v(W) > 0, then v(W) = 1.

Proof. It suffices to show that the assumption y(W) > 1 leads to a contra-
diction.

Define Wy, = W n I, and let {n;};>2, be a denumeration of the integers.
Inductively we define

k-1
W, = W, W2k=Wm\P—1P( ng), E=1.
=0

+ oo
The set W0 = |_J W3 satisfies W0 c W, PW? = PW, and P maps W9 one-to-one
= —o0
onto PW. Since »(W) > 1 implies A(PW) =1 we have »(W?% = 1 and there
exists an integer n such that »(W,\W2) > 0. Then also the set

V=PlP(W,\Wn Wo
has positive »-measure and there exists an integer m + n such that Vi = V n I,,
has positive y-measure. The two measurable subsets V1 (lying on level m) and
Vo= Wy P1PV; (lying on level n) of W satisfy » (V1) = »(V2) > 0 and
PVy = PV,. Without loss of generality we assume m << n.
Almost all points of V1 and V; are points of density of these sets (cf. [11], § 5,
Theorem 1). Therefore there exists a dyadic interval
D— [ p p+1 [ oI

20 T 2
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such that

(Vi P-1D) v(VaN P1D) 1
D >1 — s

ADy T D)
Applying 79 to the sets V1 N P-1D and Vo N P~1D we obtain two sets A3 and
Az, lying on intervals I}, and I, such that ks — k1 = n — m and satisfying

1
v(d) =v(d2) > 1 — 5

Let
B=Ain P[0, 5], then v(B)> gy, TPmBC,
and

1
y(Tn-mB) > %, hence »(4oNTn-mpB) > o5 — En—_lm >0.

This implies » (71 W N T'et#—m) > (0 which contradicts (13).

Proposition 3. 7' ¢s conservative in (X, Reo, 7).

Proof. Suppose W € R were a wandering set of positive v-measure. Then
there exists an integer n such that »(W N I,) > 0 and a dyadic interval

D:[Jl’ p+1[cl

207 24
such that
y(WAIaAP1D) 1
- iD) R
This implies »(T'et1(W N I, 0 P-1D)) > 1 and »(7T¢*1 W) > 1. This, however,
contradicts Proposition 2, since by (13) 7?1 W coincides modulo » with a wander-
ing set in Re.

In [7], p. 52 and at the colloquium on ergodic theory in Oberwolfach (fall 1965)
the following question has been proposed by the first author : Let 7 be a measurable
transformation in a measurable space (X, R) satisfying TX = X, and let X be a
countable union of wandering sets. Does there always exist a wandering set
W e R with the following properties:

+o0
X = U TeW,
n=—00
(15) TeWnNTeW=0 for —cc<m<n<-+ o0,
TeWeR for —co<n < 4 oo

The present example answers this question in the negative. Indeed, as shown
in [7], (15) implies that W should belong to R, and therefore at least one of the
sets 72 W should have positive measure. This, however, is exluded by Proposition 3.
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