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Summary. For the two Markov processes associated with the application of a me~surable 
transformation in a probability space in the forward and backward direction respectively, the 
equivalent descriptions by kernel functions and by Markov operators in ~1, -2oo, and in the 
space of absolutely continuous finite signed measures are identified. The connections between 
the conservative parts of the probability space with respect to these processes and the various 
conservative parts associated with a measurable transformation in the literature are clarified. 
Finally the inclusion relations between these various conservative parts are established. 

w 1. Introduction 

Let  (X, ~,/z) be a normed measure space and let T be a measurable trans- 
formation in X. With respect to this transformation several authors have described 
a decomposition of X into a conservative and a dissipative par t  (eft E. HoPF [9], 
[10], TsuRwMI [15], CKOKSI Eli, P ~ u u  [13] and the authors [6], E14]). 

Our aim in this paper is to clarify the relationship between these decompositions 
and the two Marker  processes associated with the application of the (not neces- 
sarily invertible) transformation T in the forward or backward direction respec- 
tively. Both processes have already been introduced by  E. HoPF in [10] w 6 who 
also (as did T s u ~ u ~ I  [15]) implieitely considered the conservative par t  of X 
induced by the process associated with the transition x --~ T -1 {x}. 

Here we shall identify the four equivalent analytic descriptions of both 
processes by  means of a kernel function and by  means of Marker  operators in 
~1 (X, ~,/z),  in ~oo (X, ~, #), and in the linear space of absolutely continuous 
finite signed measures. Furthermore we shall show tha t  the decomposition studied 
by  the authors [6], [14] which is in some sense a refinement of a decomposition 
studied by CHOKSI [ l] coincides with the one induced by the process associated 
with the transition x -+ Tx.  The decomposition studied by  P ~ Y  E13] is obtained 
if the a-algebra ~ is replaced by  the largest a-subalgebr~ ~ with the property 
tha t  T is "essentially invertible" in (X, | #). 

The conservative parts  of X with respect to the decompositions studied by 
E. HOrF and Tsuuu~I ,  C~oKsI, the authors, and P~mRY, form an increasing 
sequence of sets in this order if  T satisfies some regularity conditions. In  order to 
show tha t  inequality may  also occur between the last two mentioned "con- 
servat ive" parts  of X (for the other inclusions this has already been shown) we 
shall finally construct a measurable transformation in a suitable measure space 
which is "purely dissipative" in the one sense and conservative in the other. 

The authors gratefully acknowledge several stimulating discussions with 
L. S. win Bv.~wH~ JUTTI~O. They further have to thank the referee for his 
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suggestions which have led to a considerable condensation of the manuscript. 
A more elaborate version has been mimeographed 1967 as an internal report at 
the Technological University Eindhoven. 

w 2. Preliminaries 

For later reference we restate the four equivalent descriptions of a/z-measurable 
Markov process as introduced by E. ItoPF in [10] and the connections between 
them. 

Definition 1. A #-measurable Markov process in (X, ~R,/Z) is a non-negative 
function P(. ,  -) on X • ~ with the following properties: 

a) For every A e ~ the function P(. ,  A) is defined/z-almost everywhere on 
X and W-measurable. 

A b) I f  { n}n=l is a sequence of pairwise disjoint sets An E ~R, then 

P x, = P(x, An) 

for/z-almost all x e X. 

c) P (x, X) ----- 1 for/z-almost all x e X. 

d) P(x, A) ~- 0 for #-almost all x ~ X for every/z-null set A. 

Definition 2. Let  J r  be the real linear space of all real-vahied finite signed 
measures on (X, ~) which are absolutely continuous with respect to/Z. A Markov 
operator in J r  is a non-negative linear operator A in J r  such that  A~0 (X) ~-- ~ (X) 
for all ~ e J r .  

Definition 3. A Markov operator in ~I(X, ~,/Z) is a non-negative linear 
operator L in ~1 (X, ~,/Z) such that  

. fL ld/z= y/d/z fora l l  [ e ~ ( X , ~ , / z ) .  
X X 

Definition 4. A dual Markov operator in ~ ( X ,  ~,/z)  is a non-negative linear 
operator L* in ~ (X, ~, #) with the following properties: 

a) I f  {gn}n=i C Boo (X~ ~, /z)  is a non-increasing sequence of functions such that  

limgn(x) ~ 0 for/z-almost all x e X ,  
n--->oo 

then 
lira L* gn (x) ---- 0 for/z-almost all x e X .  

n - - > o o  

b) L* 1 = 1. 

I t  is partially well-known (of. [10]) and for the rest easily verified that  the 
following relations establish one-to-one correspondences between /z-measurable 
Markov processes in (X, 0t,/z), l~arkov operators in J u ,  Markov operators in 
El(X, ~,/z), and dual Markov operators in E~(X, ~,/~) (we shall denote by 
dq;/d/z the Radon-Nikodym derivative of ~ with respect to /z  and by CA the char- 
acteristie function of the set A). 

(1) A~o(A)=yP(x,A)q~(dx)  fora l l  ~ a J r a n d a l l A a ~ ;  
X 



Conservative Parts of the Markov Processes Induced by a Measurable Transformation 167 

dq~ dA 9) 
(2) L d/~ -- d/~ 

~(A) = ~l(~)~(d~) 
A 

(2') Aq)(A) = .~L/(x) t t (dx  ) 
A 

(3) . [ / L * g d #  --  ~ g L / d t t  
X X 

(4) P(. ,  A) = L'CA 

for all ~0 ~ ~5~; 

for all ~o ~ q5 u (or, equivalently, 
for all / e gl  (X, N, ~)) and all A ~ N; 

for all / ~ gt (X, ~, #) 
and all g ~ s (X, ~,/z) ; 

for all A ~ ~. 

Notice in particular that  the conditions imposed on a bounded operator 
L* in ~ ( X ,  ~, #) as in definition 4 guarantee that  its adjoint L** in ~*(X,  91,#) 
leaves the subspace ~i (X, }~,/t) invariant and there induces a Markov operator L. 
Hence every dual Markov operator L* in ~ (X, }R, #) is the adjoint of a uniquely 
determined Markov operator L in ~1 (X, ~, #) (this fact has already been mentioned 
e.g. in [2] p. 2). 

Combinations of (2), (3), and (4) lead to the further relations 

(5) ] P ( x , A ) / ( x ) # ( d x )  = ~L/ (x) t t (dx)  f o r a l l A s 9 1  
x A and all ] e ~1 (X, iR, #) ; 

f L*  g (x) ~ (dx) = f g (x) Acp (dx) for all ~ e qS. 
x x and all g e g~ (X, ~, #) .  

w 3. The Transition x --> T x  

Let T be a measurable transformation in (X, ~, #) which is negatively non- 
singular (i .e. /~(T-1A) = 0 for all r null sets A ~ ~). As already done in [10] w 6 
we define a ~t-measurable Markov process P '  (x, A) by 

P'  (., A)  = C~-IA for all A E 9t. 

This definition agrees with the fact that  under the transition from x to T x  the 
probability of entering the set A ~ ~ is 1 or 0 according to whether x does or does 
not belong to the set T - 1 A .  

By (1) the corresponding Markov operator A'  in ~5r is given by 

A'qg(A) = fcT_l ~ (x)qg(dx) = q)(T-1A)  for all ~0 E r  and all A e ~ .  
X 

Relation (4) yields that  for every A e N the corresponding dual Markov operator 
L' * satisfies 

L'*CA -~ CA o T 

from which we deduce that  the dual Markov operator L'* is given by 

L ' * g = - g o T  fora] l  g e ~ ( X , ~ , / ~ ) .  

In order to obtain a satisfactory formula also for the corresponding Markov 
operator L' in ~1 (X, ~ , / t )  we have to impose on T the extra condition T X  e 
which, incidentally, is equivalent to the condition T T -z iR c ~. The following 
lemma is an easy consequence of the fact that  a T-1 !R-measurable function is 
constant on every set T -z (x} for x e TX.  

12" 
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Lemma 1. Let g be a T - l  ~-measurable /unction on X and suppose T X ~ ~. 
I /  T - i x  denotes any element o/the set T - l  {x} /or x ~ T X,  then the relation 

g o T - ~ ( x ) = g ( T - l x )  /orall  x ~ T X  

unambiguously de/ines a ~-measurable /unction g o T -1 on T X.  
dA" lz 

Definfl~g s : ~ f i - w e  have s ~ ~1 (X, ~, #), s ~ 0, and 

(6) ]u(T-1A)----SCA(Tx)/~(dx)----ScA(x)s(x)t~(dx ) foral l  A e ~ .  
x x 

In particular, for A -~ X \ T X we get 

(7) o = S s (x) ~ (dx), 
X \ T X  

hence s (x ) -~  0 for /~-almost all x ~ X \  T X .  Moreover, from (6) we derive via 
monotone approximation 

(s) Sg (Tx)~ (dx) = Sg (x)s (x)~ (dx) 
x x 

for all !)t-measurable functions g satisfying gs ~ ~I(X,  ~, tt) (or, equivalently, 
g o T G ~1 (X, ~,/~)). 

Let E~_,~ be the conditional expectation operator with respect to the a-algebra 
T - z ~  (cf. e.g. [12], IV. 3).In view of (7) for every / ~ ~z(X, ~,/~) we shall define 

s(X)ET_~S~/(T-lx)-~O for all x e X \ T X .  

For every / ~ ~1 (X, ~,/~) and every A E ~ we then obtain 

f s (x) ET-,~ f ( T -1 x) # (dx) : f s (x) cA (x) ET-, ~ / ( t '  -1 x)/1 (dx) 
A X 

-~ ~cA(Tx)ET-~,a/(x)#(dx) (by (8)) 
x 

: ~cA(Tx) / (x) tz(dx ) (s incecAoTisT-l~-measurable)  
x 

= f P' I~, A) I (x) ~ (dx). 
x 

Comparing this with (5) we see that  the Markov operator L' in ~1 (X, ~,/~) 
is given by 

L'/----s[(ET-~u/)o T -z] for all /E~z(X,  ~ , # ) .  

We collect the results in a theorem: 

Theorem 1. Let T be a negatively non-2ingular measurable trans/ormation in 
(X, ~,/~). Then 

P ' ( . , A ) : c ~ - ~  /orall A e  

de/ines a/~-measurable Markov process in X.  The corresponding Mar~ov operator 
A '  in ~5~ and dual Markov operator Z'* in ~ ( X ,  ~, l~) are given by 

A ' q ~ ( A ) : q ~ ( T - ~ A )  /orall q~eq)~ andatl  A e ~ ,  

L ' * g : g o T  /orall g e ~ c o ( X , ~ , # ) .  
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I / t he  trans/ormation T moreover satisfies T X  ~ 01 then the corresponding Markov 
operator L' in ~1 (X, 01,/z) is given by 

L'] = ~[(ET-~]) o T -1] /or all / ~ I ( X ,  01,/~) 

where 
dA" /~ 

s - -  el# 

w 4. The Transition x --> T -1 (x}  

Let T be a measurable transformation in (X, 01, #) which is positively non- 
singular (i.e. /z(A) = 0 for all sets A ~ 01 satisfying t t (T-1A) = 0) and satisfies 
T X ~ 0 1 .  Since T - I ( X \ T X ) = 0  we obtain t t ( X I T X ) = 0  and therefore by 
Lemma 1 for every- T -101-measarable function g the function g o T-1 is defined 
it-almost everywhere on X and 01-measurable. 

Our aim in this section is to give explicit formulas for the four objects char- 
acterizing the /~-measurable Ma.rkov process corresponding to the transition 
x--> T- l {x}  as, under slightly stronger conditions, introduced by E. t Ior~  
in [10], w 6. 

We define 

(9) P ( . , A ) = ( E T - I ~ e A ) o T  -1 fora l l  Ae01 .  

Note that  for any A e T -101 this formula reduces to 

P( ' ,  A) = eTA. 

This agrees with the fact that  under the transition x --> T -1 {x} the probability 
of entering the set A ~ T -101 is 1 or 0, corresponding to whether or not x belongs 
to TA.  

I t  is easily verified that  relation (9) indeed defines a ~-measurable Markov 
process. By (1) the corresponding Markov operator A in ~bz is then defmed by 

Aq)(A)=]Ef - lnCA(T- lx )~o(dx  ) fora l l  ~eqSz andal l  Ae01 .  
x 

Relation (4) yields for the dual 5{arkov operator L* in o~ (X, 01,/~) 

L'CA = (ET-I~CA) o T-1 for all A e 0l. 

Via monotone approximation this implies 

L*g = (Er-~g) o T-1 for all g e g~(X, 01, #) .  

In order to obtain a formula for the corresponding Marker  operator L in 
~1 (X, ~, tt) first consider the measurable space (X, T -101). Since the restriction 

of A/~ to (X, T-101) is absolutely continuous with respect to /z, the Radon- 
dv 

Nikodym-derivative r-----~-~ gl  (X, T -101,/z) exists. We obtain 

yr(~)eA(Tx)~(dx) = fr(x)~(dx)= A ~ ( T - ~ A ) = ~ ( A ) =  ~e~(d~) for all A ~ 
X T-1A X 
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and via monotone approximation 

( 1 0 )  ] r ( x ) / ( T x ) # ( d x ) = ] / ( x ) # ( d x )  forM1 / e B I ( X , N , # ) .  
x x 

The Markov operator L in Ei (X, N, #) defined by 

L / = r ( / o T )  foral l  / e ~ i ( X , N , # )  

then turns out to be the adjoint operator in s  N, #) of the dual Markov 
operator L* obtained above : for all / e B1 (X, N, #) and all g e g~ (X, N, #) we have 

f / (x) L* g (x) # (dx) = ~ / (x) ET-I~ g (T-i  x)/~ (dx) 
x x 

= ]r(x) /(Tx)ET-1~g(x)#(dx ) (by (10)) 
x 

= ]r (x) / (Tx) g (x) # (dx) (since r (/e T) is T -1 G-measurable) 
x 

= ]g(x )L / (x )#(dx) .  
x 

Again we collect the results in a theorem. 

Theorem 2. Let T be a positively non-singular measurable trans]ormation in 
(X, N, #) ~atis/ying T X  E N. Then 

P( . ,A)~- (E~- I~CA)oT - i  [orall A ~ N  

de/ines a #-measurable MarIcov process in X.  .Let ~ be the measure A #  restricted to 
dv 

(X, T - i  N) and let r = ~ ~ gi (X, T - i  N, #). Then the corresponding Marl~ov 

operators A in ~)u and L in gi(X, N,/~), and the dual Markov operator L* in 
B~ (X, ~, #) are given by 

A q~ (A) = ~ ET-I ~ CA (T - i  x) q~ (dx) /or all q~ e q5 u and all A e N,  
x 

L / = r ( / o T )  /orall / e Bi(X, N,/~), 
L*g = (ET-~g) o T - i  ]or all g e Boo(X, N, #). 

w 5. Relations between the Markov Processes Associated with the 
Transitions x - - ~  T x  and x--~ T - i  {x}  

Leg T be a (positively and negatively) non-singular measurable transformation 
in (X, N, #) satisfying T X  e N. I t  is to be expected that  the transition x--~ T - i  {x} 
followed by x ~ Tx  results in the identity transformation. In fact E. HoPF [10] 
has already pointed out that  in this case we have A ' A  = I in ~u and therefore 
also L 'L  = I (in Bi(X, N,/~)) and L*L'* = I (in Boo(X, ~, #)). 

From (6) and (10) we deduce 
# (T - i A)  = ~s(x)#(dx) = f r ( x ) s (Tx )# (dx )  for all A e N  

A T-iA 

which implies r(x)s(Tx)  = 1 for #-Mmost all x E X and therefore r (T- lx )s (x)  = 1 
for #-almost all x e X. A straightforward computation now gives, in addition to 
the above-mentioned equalities, 

L L '  = ET-~  ~ i n  B1 ( X ,  ~)~, /~) , 

L ' * L * : E T - ~  ~ in Boo(X,~,/~). 
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I f  T is also measure-preserving, then we have r ( x ) =  s(x)----1 ju-aimost 
everywhere on X and for every g e ~oo (X, 9t, #) (c ~1 (X, !}t, #)) we obtain 

L g = - - L ' * g - ~ g o  T ,  

L' g ~- L*g -~ (ET-img) o T -1 . 

Another special situation which we shall meet in the sequel and which is 
closely related to invertibility of T is considered in the following definition. 
Recall that  every subset A c X has a "measurable cover" <A> ~ ~R, uniquely 
defined up to a /~-null set by the conditions A c <A> and /~ (B) ---- 0 for every 
B e !R satisfying B c (A> \A (cf. [4]). The symbol [#] after a statement concerning 
some measurable sets will indicate that  the statement holds ff these sets are altered 
by appropriate/~-null sets. 

Definition 5. A measurable transformation T in (X, !}t,/~) is said to be essen- 
tially invertible ff the following two conditions are satisfied: 

a) ( T T - Z A > ~ - A [ # ]  for all Ae~R,  

b) T - I < T A > = A [ # ]  fora l l  Ae~R.  

Note that  in contrast to the concept of invertibi]ity, the concept of essential 
invertibility depends on the underlying measure/~. I t  follows from condition b) 
tha t  an invertible transformation is essentially invcrtible if and only if it is 
negatively non-singular. I f  T is non-singular, essentially invertible and satisfies 
T X  ~ ~t, then from T -1 ~ = ~R [#] we conclude 

L L ' - ~ I  in ~ I ( X , ~ , # ) ,  

L ' * L * :  I in ~oo(X,~R,#). 

Given any non-singular measurable transformation T in (X, ~R, #) it is always 
possible to enforce essential invertibility by shrinking the original a-algebra ~R 

to the a-algebra ~oo T -~ ~ (notice tha t  T -1 ~Roo !}~oo). 
k = 0  

Theorem 3. Let T be a non-singular measurable trans/ormation in (X, ~, I~). 
Then ~oo is modulo i~ the largest a-subalgebra ~ o/ ~R such that T is essentially 
invertible on (X, 6,/~). 

Proo/. Since T - I (X \TX)  = 0, it follows from the non-singularity of T that  
<TX> ---- X [#] and therefore 

< T T - 1 A > = A n < T X > = A [ / ~ ]  for all A~Roo. 

For every A ~ ~oo there exists a set B e ~oo such that  A = T -1 B, and therefore 

<TA> = ( T T - 1 B >  = B[#] ,  

T -x <TA> = T -1B  = A [/~]. 

Hence T is essentially invertible in (X, ~oo,/~). 
On the other hand, ff ~ is a g-subalgebra of i}l such that  T is essentially 

invertible in (X, | then some easy computations show that  

( T ( A > 5  = <TA> [/~] for all A c X  
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and (by induction on n) 

T -n<TnA> ~ A[#] for all A ~ |  
The set 

B=~msupT-n<TnA}= 5 0T-n<TnA} 
n--> oo k = l  n=/c  

belongs to T -~ ~ for every k >_-- 1 and therefore even to 91oo. Moreover it  satisfies 
B = A [#]. This shows ~ c !Roe [/t]. 

Let  T be a non-singular essentially invertible transformation in (X, ~, tt) 
satisfying T X  ~ ~, and let A e ~ be given. Then 

CA(X) = CT-I<TA>(X) for/ t-almost  all x e X .  

By Theorem 2 we obtain 

L* CA = (ET-I~ CT-~<TA>) 0 T-I = C<TA> 

and by induction on n 

(11) L * n  c A = C<TnA>. 

w 6. The Decompositions of (X, ~,  ~t) Corresponding to the Transitions 
x -+ T x  and x -+ T-1 (x} 

The following theorem is due to E. I-IoP~ ([10] w 6 ; cf. also [12] V.5). 

Theorem I. Let  L be a Marker  operator in ~I(X, ~, #). There exists a modulo 
# unique set C ~ ~, called the conservative part  of X with respect to L, such that  
for every non-negative function / E s (X, ~, #) one has 

o o  

a) ~ L  k / ( x ) - - 0  or oo for tt-almost all x e C ,  
k = 0  

o o  

b) ~ L k / (x) < oo for/t-almost all x e XIC.  
k = 0  

As shown by F~LDMA~ [3] the conservative part  of X with respect to L can 
also be described in terms of the dual Markov operator L* : 

Theorem II. Let  L* be a dual Markov operator in s (X, ~, / t ) .  There exists 
a modulo/ t  unique set C e ~ wit the following properties: 

a) For every measurable set A c C one has 

~ L *~ CA (x) = oo for/ t-almost  all x e A.  
k = 0  

b) Every measurable set B c X \C  of positive/t-measure contains a measurable 
subset B0 of positive/t-measure such that  

~ L*kCBo(X) < oo for/t-almost all x ~ B o .  
k = 0  

The set C coincides modulo /t with the conservative part  of X with respect to 
the corresponding Marker  operator L in gl  (X, 91,/t). 
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Recall tha t  a set W ~ ~ is said to be wandering with respect to a measurable 
transformation T in (X, ~, re) ff W n T -n W = O for all n > 1 and T is called 
conservative ff every wandering set is a re-null set. 

In [6] (cf. also [14]) the following theorem has been shown: 

Theorem III. Let  T be a measurable transformation in (X, ~, #). Then there 
exists a modulo # unique set C1 ~ 91, satisfying T -1 C1 ~ C1, with the following 
properties: 

a) The restriction of T to the measure space (C1, 91 (3 C1,/t) is conservative. 

b) The set X\C1 is a countable union of wandering sets. 

Theorem 4. Let T be a negatively non-singular measurable transformation in 
(X, ~, tt). The set C1 as defined in Theorem I I I  coincides modulo tt with the 
conservative part of X with respect to the Markov process corresponding to the 
transition x ---> T x. 

Proof. Let  C be the conservative part  of X with respect to the Markov process 
corresponding to the transition x ---> Tx.  For any measurable set A c C1 #-almost 
every point returns to A infinitely often. By Theorem 1 we obtain 

~L'*~CA(X) = CA(T~x) = c~ for/ t-almost  all x ~ A .  
k=O k=0 

Theorem I I  then implies C1 c U [~t]. 
Since XIC1 is a countable union of wandering sets, any measurable set B cX\C1 

of positive #-measure contains a wandering subset B0 of positive #-measure. 
We obtain 

~L'*,~czo(x) =~CBo(T~x)  = 1 for all x ~ B o .  
k=0 k~0 

By Theorem I I  it follows that  XIC1 c X\C[/~], and therefore C =- C1 [/~]. 

A sharpening of the requirement T -1 C1 3 C1 at a cost of a weakening of 
requirement b) in Theorem I I I  leads to a decomposition studied by CHOKSI [1] 
who proved the following theorem: 

Theorem IV. Let  T be a measurable transformation in (X, 91, #). Then there 
exists a modulo ,u unique set C2 e 9l, satisfying 2' -1 C2 = C2, with the following 
properties : 

a) The restriction of T to the measure space (C2, ~ n Cz, #) is conservative. 

b) Every invariant measurable subset of X\C2 of positive #-measure contains 
a wandering set of positive g-measure. 

As shown in [6] the set C2 may be obtained by an exhaustion procedure as 
the (modulo #) largest invariant subset of C1. This at the same time shows the 
inclusion C2 c C1 [tt]. As demonstrated in [6] (or by the example below) this 
inclusion may be strict. 

Applying Theorem I to the Marker  process associated with the transition 
x - ~  T- l{x} (el. Theorem 2) a third decomposition is obtained, implicitely 
already considered in [10] and [15] : 
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Theorem V. Let T be a positively non-singular measurable transformation in 
(X, ~R,/z) satisfying TX e ~R, and let the T -1 ~R-measurable function r be defined by 

(12) # ( T B )  = ]r (x )# (dx)  for all B e  T-X0t. 
B 

Then there exists a modulo # unique set C3 e ~ such that  for every non-negative 
function / e ~1 (X, ~, #) one has 

c o  

a) / ( x ) + ~ r ( T ~ - l x ) . . . r ( x ) / ( T ~ x ) = O  or oo for #-almost all xeC3 ,  
k - - 1  

r  

b) /(x) ~- ~ r ( T ~ - l x ) . . .  r ( x ) / (T~x)  < co for#-almost all x eX\C3. 
k = l  

The fact that  the hypotheses in the given version of Theorem V are weaker 
than in the case considered in [1] makes it necessary to reconsider the remaining 
inclusion relations between the sets C1, C9, and Ca. 

Theorem 5. Let T be a positively non-singular measurable trans/ormation in 
(X, ~, #) satis/ying T X  e ~R, and let the sets C1, C2, and C3 be de/ined as in 
Theorem I I I ,  IV ,  and V. Then T-1Ca o Ca[#] and Ca e C1[/~]. I /  T is also 
negatively non-singular, then T -1 Ca = Ca [#] and Ca c C2 [#]. 

Proo/. I f  W e ~R were a wandering set of positive #-measure contained in Ca, 
then we would get 

c o  

c w ( x ) ~ - ~ r ( T  k - l x ) . . . r ( x ) c w ( T  k x ) = l  fera l ]  x e W  
k = l  

which contradicts Theorem IIa).  We conclude Ca c C1 [#]. 
In  order to verify the inclusion T-1 Ca ~ Ca [/~] consider the function 

/ = 1 e ~1 (X, ~, #) .  
By Theorem V we have 

c o  

1 + ~ r ( T ~ - l x ) . . . r ( x )  = ~ for/z-almost all xeCa  
k = l  

and since r (x) < co /z-a. e. 
c o  

l + ~ r ( T ~ x ) . . . r ( T x ) - - - - o o  for #-almost all x e C a .  
k = l  

By Theorem V this implies Ca c T -1 Ca [#]. 
I f  T is also negatively non-singular, then by (12) r(x) > 0 #-a.e. and conse- 

quently 

1 + ~ r ( T ~ x ) . . . r ( T x )  < c~ for #-almost all x e X \ C a .  
k = l  

By Theorem V we conclude X\Ca c X \ T  -1 Ca[tt] and therefore Ca --~ T-xCa[#]. 
Using the non-singularity of T again we get 

C a = ~ ' ~  0 T-k Ca[#] 
n=l ~=n 

where the set on the right hand side is even strictly invariant. Since C2 is modulo ~t 
the largest invariant subset of C1 we conclude Ca c C2 [/z]. 



Conservative Parts of the Markov Processes Induced by a Measurable Transformation 175 

TSV~UMI [15] has given an example of a conservative measurable transforma- 
tion in a normed measure space (X, ~,  ~u) for whic ~" ~u (C3) = 0, thereby demonstrat -  
ing tha t  the inclusion Ca c Ca [#] m a y  be strict. This inclusion has been shown 
by  C~OKSI under  the taci t  assumption of  non-singulari ty of  T. Tha t  this inclusion 
m a y  fail to  hold if T is only positively non-singular is demonst ra ted  by  the 
following example (ef. [5], p. 12): 

Let  X be the set of  all na tura l  numbers,  let iR be the a-algebra of  all subsets 
of  X, and let the normed measure # on (X, }R) be defined by  

/o # ( { n } ) =  for n = 4 ,  
2 2-n for n ~ 5 .  

Define the t ransformat ion T by  T1 = 3 and T n  - -  n - -  1 for n ~ 2. Then T is 
measurable and positively non-singular in (X, ~,  #) (the only #-null  set in T -1 
is 0). I towever,  T is not  non-singular since #({4}) = 0 bu t  # (T-1{4})  ---- ~ + 0. 
Inspect ing the a toms of  T -1 ~ and taking into account  t h a t  the funct ion r is 
T -1 !~-measurable we deduce from (12) 

Using the constant  funct ion ] - 1 we 
on the other hand  we have C2 = 0 and 

for r i G 4 ,  
for n = 5 ,  
for n ~ 6 .  

conclude tha t  Ca = {1, 2, 3, 4} [#] while 
oi = {1,  2,  

Corollary 5.1. Suppose that T is a non-singular measurable trans/ormation in 
(X, ~, #) satis/ying T X  e ~ which is either measure preserving or essentially 
invertible. Then C1 = Ca = C3 [/~]. 

Proof. I f  T is measure preserving, then we have r (x) ---- 1 #-a.e. on X. Choosing 
] = 1 we see by  Theorem V t h a t  C3 ---- X [/~]. 

I f  T is essentially invertible, let A be any  measurable subset of  C1. Since T 
restricted to C1 is conservative we have 

o o  

AcA 
n=l k = n  

(ef. [8], Satz 6) and therefore by  (11) 

~_, L *k CA (x) = C<T~A> (X) = oo for #-almost  all x e A .  
k - - 0  l ,;--o 

By Theorem I I  we conclude C1 c C~ [/~] and therefore C1 --~ C8 [#]. 

Observe t h a t  while the sets C1 and C2 are invariant  under  transit ion to an 
equivalent  normed  measure, the set C3 is not.  This again is demonst ra ted  by  
TSURUMfs example ment ioned above, where C3 = 0 while Ca = C1 = X. Since 
T s v ~ c M f s  t ransformat ion admits  an equivalent  invar iant  normed measure /~', 

t t 

for the corresponding set C 3 we get C a = C~ = CI ---- X by  Corollary 5.1. 
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w 7. The Tail-algebra Decomposition 

For a non-singular measurable transformation T in (X, ~, #) satisfying 

T X  G ~ let ~oo = ~ T -n ~R, let r be defined as in (12) and for / G s (X, ~, #) 
define n=0 

]n(x) = / ( x )  + ~ / ( T ~ x ) r ( T ~ - l x ) . . .  r(x).  
k = l  

The following theorem has been shown by PARRY [13]. 

Theorem VI. Let  T be a non-singular measurable transformation in (X, ~, #) 
f 

satisfying T X  = X.  Then there exists an invariant set Co G ~oo such that  for 
every positive function / G s (X, ~,/*) one has 

t 

lim E~:~/n (x) = oo for/ , -almost  all x G Co, 
n - - >  o o  

t 

lira E~o ~ (x) < co for/ , -almost  all x G XIC o . 
~ - - +  o o  

f �9 

Theorem 6. Let T and C o be as in Theorem VI.  The set C o coincides modulo/* 
with the conservative part Co o / X  with respect to the essentially invertible trans]orma- 
tion T in (X, ~oo, /,). 

Proo]. Let f be a positive function in s  (X, ~ , / , ) .  By induction on k we obtain 
from (10), replacing there / by/CA 

] / ( x ) / , ( d x ) - = f / ( T ~ x ) r ( T ~ - : x ) . . . r ( x ) / , ( d x )  for all A G ~ .  
A T-~A  

For every A G Woo the relation T X  = X implies Tk A  G ~oo and A = T-k TkA,  
hence 

1 (x)/, (dx) = ~ ] ( Tk x) r (T  7c-: x ) . . .  r (x)/, (dx), 
T~A A 

l imE~oo/n(x)t~(dx)= lim ~E~oo/n(x)/*(dx)= ~ f / (x) / , (dx) .  
A n - + o o  n - + o o  A k = 0  T~A 

In particular for A r ~ (~ Co and for every n > 1 we have 
c o  

A c {,.J T~A [#] 

(cf. [8], Satz 3) and therefore in case/*(A) > 0 

~ / ( x ) / * (d x )>  ~ / ( x ) # ( d x ) > O ,  ~ l imE~oo /n (x )# (dx )=oo .  
k = n  T~A A A n-->oo 

This implies Co c Co [/,]. 
On the other hand, let W G ~ be wandering. Note that  

(13) Tn W n Tm W = 0[/*] 

for all integers n, m (n * m) by non-singularity and essential invertibility of T in 
(X, i)L~,/,). We obtain 

S ~ E ~  In (~) ~ (dx) = ~ S/(~)/, (dx) ~ f/(~)/ ,  (d~) < co. 
W n - + o o  k = 0  T ~ W  X 
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Since XICo is a countable union of wandering sets in !)t~ we conclude 

lira Em~/n (x) < oo for #-almost  all x ~ XICo. 
n--C* OO 

This implies XICo c X\Co [#] and completes the proof. 

Theorem 7. Let T be a non-singular measurable trans/ormation in (X, }R, #) 
satis/ying TX  = X. Let the sets Co and C1 be defined as in Theorem 6 and Theorem 

I I I .  Then 0 T-k C1 c Co [#]. I/  T is essentially invertible or measure preserving, 
k=0 

then C1 = Co [it]. 

Pro@ Since every wandering set in C1 is a tt-null set we have C1 c Co [r 
The invariance of Co implies the first assertion. I f  T is essentially invertible, 
then we have i ra  = ~R [/~] by  Theorem 3, hence every wandering set in ~ coincides 
modulo # with a wandering set in }R~. I f  T preserves the normed measure/~,  
then Cz = Co ----- X. 

Theorem 7 together with Theorem 5 and the further remarks made in section 6 
show tha t  under the mentioned hypotheses we have 

Ca c C2 c C1 c U T-~ C1 c Co [#], 
k=0 

where the first three inclusions may  be strict. In  the next  section we shall show 
c o  

tha t  also the inclusion U T-e  C1 c C0[p] may  be strict even ff T admits an 
k=0 

equivalent invariant  a-finite measure. 

w 8. An Example 
We shall construct a a-finite measure space (X, ~, v) and a measure preserv- 

ing transformation T in (X, ~, v) such tha t  

a) X is a countable union of wandering sets, 

b) TX = X ,  

c) T is conservative in (X, ~ ,  ~). 

Replacing v by  an equivalent normed measure # we obtain a non-singular 
c o  

t ransformation T in (X, }R,/x) such tha t  C1 = QJ T-~ C1 = 0 [/t] and Co = X [/~]. 
k=0 

Define the subset X of the real plane by 
+co 

X - - - - ~ J  I s ,  
n ~  - - o o  

I~ = {(x, y): 0 < x < 1, y = n} for all integers n. 

Let  }Rn be the (r-algebra of Borel sets in Is and let vn be the Lebesgue measure 
on (In, ~n). Define 

}R= {A: A c X ,  A r 3 I n ~ n  for - - o o  < n <  + o o } ,  
+co 

v ( A ) =  ~ v n ( A n l n )  fora l l  A~9~.  
~ t ~  - - c o  
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Obviously (X, M, v) is a a-finite measure space. 

/(2x, n + 1) if 0 ~ x < � 8 9  
T ( x ' n ) = [ ( 2 x - - l , n + 2 )  if � 8 9  

The transformation T in (X, M, v) is measurable, measure preserving, and satisfies 
T X  = X and T M c M. Since every In is wandering X is a countable union of 
wandering sets. 

Let  (I, ~,  ~) be the interval [0, 1[ together with the Borel sets and Lebesgue 
measure. The projection P defined by 

P ( x , n ) = x  for all (x,n) e X  

is a measurable mapping of (X, M, v) onto (I, ~, 2) satisfying P M = ~. Moreover, 
for every A e M we have 2(PA)  = 0 if  and only ff v(A) ---- 0. 

The projection P induces a measurable transformation To in (I, 2~, 2) defined 
by 

(14) Tox -= P T P - l x  = 2x  (mod 1). 

The eonservativity of T in (X, Moo, v) will be shown in a series of propositions. 

Proposition 1. I] A ~ Moo and v(A) > 0, then r(A) >= 1. 

Proo/. For every n ~ 0 there exists a set An e M such that  A = T - n A n .  
From (14) we conclude 

T o n ( P A n  ) = P T - n P - l ( P A n ) - ~  P A ,  

hence P A  e ~ .  I t  is well known that  ~oo = {0, I} [~], hence v(A) > 0 implies 
2(PA)  = 1 and v(A) >= 1. 

Proposition 2. I /  W e ~ is wandering and u (W) > O, then v (W) -~ 1. 

Proo[. I t  suffices to show that  the assumption v(W) > 1 leads to a contra- 
diction. 

n oo Define Wn = W n In and let ( ~}k=0 be a denumeration of the integers. 
Inductively we define 

wOo= Who , W~ -= Wn~I P - 1 P  ( D  ~ W~ /c :> 1. 
% 

\ z = o  / 
+00 

The set W 0 = 0 W~ satisfies W o c W, P W  ~ = P W ,  and P maps W 0 one-to-one 
n ~  --oo 

onto P W .  Since v(W) > 1 implies ~t(PW) = 1 we have v(W 0) = 1 and there 
exists an integer n such that  u(Wn\W ~ > O. Then also the set 

V = P - 1 p ( W n \ W ~  n W o 

has positive v-measure and there exists an integer m =~ n such that  V1 ~--- V f'~ Im 
has positive v-measure. The two measurable subsets V1 (lying on level m) and 
V2 = Wn ~ P-1PV1 (lying on level n) of W satisfy v(V1) = v(V2) > 0 and 
PV1 = PV2. Without loss of generality we assume m < n. 

Almost all points of V1 and V2 are points of density of these sets (cf. [11], w 5, 
Theorem 1). Therefore there exists a dyadic interval 

D- - - - [ "  p + l [  
2q ' 2q C I 



Conservative Parts of the Markov Processes Induced by a Measurable Transformation 179 

such tha t  
v(Vlv~ P-:tD) v(V2~ P-1D) 1 

(D) ;~(D) > 1 2~-~+t " 

Applying Tq to the sets V1 n P - 1 D  and Ve n p - 1 D  we obtain two sets A1 and 
A2, lying on intervals I~, and Ik~ such tha t  k2 - -  k~ = n - -  m and satisfying 

1 
v(A1) = v(A2) > 1 --"9~n-m+l " 

Let  

and 

['I B - ~ A I ~ P  -1 0 , ~ : ~  , 
1 

then v ( B ) >  2~-*~+*, T n - m B c I k ,  

I i 1 
v ( T n - m B )  > g ,  hence v(A2 f5 T n - m B )  > 2 2 n-m+1 > O. 

This implies ~ (Tq W ~ Tq +n-m) > 0 which contradicts (13). 

Proposition 3. T is conservative in  (X,  ~r v). 

Proo]. Suppose W E {Roo were a wandering set of  positive v-measure. Then 
there exists an integer n such tha t  v (W n In)  > 0 and a dyadic interval  

D =  2q ' 2q c I 

such t h a t  
~(Wc~Inc~P-1D)  1 

~(D) > ~"  

This implies v(Tq+l (W n I x  n P -1D) )  > 1 and v ( T q + l W )  > 1. This, however, 
contradicts  Proposit ion 2, since by  (13) Tq+l W coincides modulo v with a wander- 
ing se~ in }Roo. 

I n  [7], p. 52 and at  the colloquium on ergodie theory  in Oberwolfach (fall 1965) 
the following question has been proposed by  the first au thor :  Let  T be a measurable 
t ransformat ion in a measurable space (X, ~R) satisfying T X  = X ,  and let X be a 
countable union of  wandering sets. Does there always exist a wandering set 
W e 9l with the following properties : 

+co 
X =  ~.J T n W ,  

(15) Tm W g'~ Tn W = O for - -  oo < ra < n < -k c~ , 

T n W ~ { R  for - - o o < n  < ~ - o o .  

The present example answers this question in the negative. Indeed,  as shown 
in [7], (15) implies t h a t  W should belong to {}~, and therefore ab least one of  the 
sets T n W should have positive measure. This, however, is exluded by  Proposi t ion 3. 
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