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1. The Minimum of an Additive Process and Its Location 

Let {X(t), t >0} be a real-valued additive process with no negative jumps, right- 
continuous sample paths with left limits, and such that P[X(t)<O]>O for all 
t > 0. Define 

Mr= inf X (u), 
O<u<t  

and 

r,=inf{u: inf X(y)=Mt}. 
O<y<u 

In this section we shall determine the joint distribution of (T~, Mr). [-The marginal 
distributions of T t and M t for an additive process with no positive jumps, zero 
Gaussian component, and with positive drift have already been determined by 
Shtatland (1965, 1966). The distribution of Mt with no negative jumps is well- 
known, see e.g. Takacs (1967). 

We first recall some well-known properties of the process {X(t)}. Its Laplace 
transform is 

E exp ( -  4X(t)) = exp (tA (~)), Re ~ > 0, 

where 

0"242 r [ fexp ~u 
A ( 4 ) = - m 4 + - - ~ - - +  J ( - ~ u ) - l + l ~ u 2 ]  1+u2 G(du) 

(0, o~) 

and G is a finite measure. If we denote by PF(_ v) the (possibly defective) distribution 
of the first-passage time F ( - v )  of {X(t)} through the negative level ( - v )  then, 
as was shown by Borovkov (1965), the Laplace transform of PF(v) is 

Eexp(-~F(-v))=exp(-vfl(4)), 4>0,  
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where fl(~) is the unique root with real part greater than 0 of the equation 

=A(fl). 

In particular F ( -  v) is finite with probability exp ( - v  fl (0 + )). 

Theorem 1. For all Borel subsets A of [0, oo) x [0, oo), 
oo 

exp ( - ~  t)P[(Tt, IMtl)~A] dt=4--lfl(4) ~ exp(-~u)Pv(_~)(du)dv, 4 > 0 .  
0 A 

Proof. The strong Markov property of {X(t)} yields the relation 

P[Tt<u, M t < - v ]  = ~ PITt s<u-s]PF(_~)(ds), O<-u<_t,v>O, 
[O, u] 

from which it follows after some straightforward manipulations that 
oo 

S e x p ( - ~ t ) E e x p [ - p T t - O l M t l  ]dt= fl(P+4) ! Eexp(_4t_pTt )d t ,  
o o+fi~o+4) 

p > 0 ,  0>0,  3>0.  

The integral on the right is equal to lira 0,(4, P) where 
n - ~  co 

~,(~, p )=  S E exp [ - 4 t - p T t  (")] dt 
o 

and 

TtI')=inf{u: inf X(y)=-n-l[nlMtl]} ,  n = l , 2 , . . . .  
O < y < u  

To determine ~, we condition on the time of first passage of {X(t)} through level 
( - n  -~) to obtain the equation, 

E exp [ - p Tt (")] = P IF( - 1/n) > tJ + ~ E exp [ - u - Ttl"),] Pv(-1/,)(du). 
[O, t] 

This equation gives 

1 - exp ( - fl(4)/n) ~,,(4, p)= 
4 [1 - exp ( -  fl(~ + p)/n)]' 

whence 
o~ 

Eexp [ - 4  t -  p TJ dt=4--l fl(~)/fl(4 + p). 
0 

Substituting this in the earlier expression for the joint Laplace transform we obtain 
c~  

exp ( - 4 t )  E exp [-(pTt+OlMt[)] dr=4 ~ fl(4) [O+fl(P+~)] -~, 
o 

p, 0>0,  4>0,  

which is equivalent to the assertion of the theorem. 
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Corollary 1. I f  fi(O + ) >0 then (T~, Mr) .... -, (T, M) as t --~ o% where 

(a) (T, [MI) has distribution fl(O +)Pv(_~)(du)dr, u, v >0; 

(b) IMI has distribution fl(O+ )exp ( -v f i (O+ ))dv, v>O; 

(c) T has distribution fi(O+) ~ P~(_~i(du)dv, u>=O. 
v=O 

I f  f l (0+)=0  then (Tt, Mr) .... , (+  0% - oo). 

Corollary 2. For Browian motion with EX( t )=# t  and VarX( t )=t ,  fl(~)= 
[(#2 + 2 ~)1/2 + #3 and F( - v) has density 

fv(_~)(u)=Jv] u-3/2qb(vu-a/Z+#ul/2), u > 0 ,  

where (J is the standard normal density. In this case the Laplace transform in Theorem 1 
can be inverted explicitly to give the joint density 

fr~,,Md(U, V)=(2Z~)-I/2 fF(_~)(U) [2#(2~)1/2I(0,~)(#)+ S y- 3/2 e~2'/2 dy],  
t--tl 

v>0,  0 < u < t .  

I f  fi(O+ )>O, i.e., #>0 ,  then (T, [M[) has joint density 

fT, p:~l(u,v)=2#fvl ~(u), u, v>0. 

Corollary 3. I f  X(t) = - c t + A(t) where c > 0 and {A(t)} is a stable additive process 
with E exp [-- 2A(t)] = exp [ -  t 2i/2], 2> 0, then fl(~) = (2c2) - 1 [(1 + 4 c 4) 1/2 + 1 +2c~] 
and F ( - v )  has density 

V 
fF<_~I(U)=tV I [4Z~(CU_V)3] 1/2 exp [--uZ/(4(cu--v))], 0 < - < u .  

r 

In this case application of Theorem 1 gives 

fr~, IM~ I( u, v) = (4~c3) - 1/2 fv(_ ~>(u)[2 (~/c) 1/2 + S y-  3,,2 e- Y/(4~>dy], 
t -  u 

and 0 < v/c < u < t 

P[Tt = t, IM, l<-_v]=c -1 ~ fv~_y)(t)dy. 
o 

We conclude this section with some remarks on the special case when 
X(t)=B(t)+Ot where B(t) is a standard B.M. and 0>0. 

Remark 1.1. It follows from the law of iterated logarithm that 

lira infX(t) = + oo a.s. 
t - "  CO 

and in view of the sample-path continuity properties this implies that almost all 
paths attain their respective minima on [0, c~). 

Remark 1.2. For each K, let C~ be the set of all co for which the minimum of 
X(t, co) on [0, K] is nonunique. Then 

C K c ~ {col min X(t, co) = min X(t, ~o)}. 
0 _ _ < r < s ~  K O _ t _ r  s<=t<=K 

r ,  s r a t i o n a l  
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Write 

Zrs = min X ( t ) -  min X(t)=om<~nr[B(t)-B(r)+Ot ] 
O_<t_<r s < _ t < _ K  _ _ 

+[B(r)-B(s)]  - min [B(t)-B(s)+Ot] = I71 + Y2+ Y3, say. 
s = t = K  

Then Y1, Y2, I13 are mutually independent random variables and Y2 is absolutely 
continuous. Hence Zrs is absolutely continuous for all rational r<s in [0, K], 
which makes P(Cr)=0 .  Thus for each K, almost all paths of X(t) have unique 
minima on [0, K] and therefore, also have unique minima on [0, oe). 

In view of these remarks we can write M(co) = rain X(t, co) and define T(co) 
by the equation X(T(co), co)=M(co), t>_o 

Remark 1.3. For X(t)=B(t)+ O t, the joint distribution of (T, M) given in Corol- 
lary 2 can be obtained directly by a completely different method. We give an 
outline of this alternate derivation omitting the computational details. For t, 
u > 0, consider the event E(t, u)= {colM(co)< -u ,  T(co)< t}. Then the distribution 
function of (T, M) is F(t, m)= P[E(t, -m)].  To obtain P[E(t,u)], divide E(t,u) 
into disjoint events 

E, j(t, u)= {co I - u,, j+ 1 < rain X(s, co)_<_ - u  n j, rain X(s, co)> min X(s, co)}, 
' s < t  ' s > t  s < t  

j = 0 ,  1, 2 . . . .  for each positive integer n where Un,~=u+jn -1. Each En, j(t, u) can 
be approximated from below and from above by 

A.,j(t, u)= {col-u~,j+l <rain X(s, co)<-_ -u . , j ,  min X(s, co)> - u~, j} 
s < t  s > t  

and 

B. j(t, u)= {col--bln, j+ l <rain X (s, co)<- -u . . j ,  min X (s, co)> --Un, j+ l } 
' s < t  - -  s > t  

respectively. The conditional probabilities of these events given X(t )=y  can be 
obtained explicitly using the following results due to Doob (1949) and T.W. Ander- 
son (1960): 

(i) P[B(s) touches a+bs  for some s ]=exp  [ - 2 a b ] ,  a, b>0 .  

(ii) The conditional distribution of ~ (s) = t- 1 (t + s) { B (t s(t + s)- 1) _ s(t + s)- 1 z}, 
0__<s< o% given B(t)=z is the same as that o fa  B.M. on [-0, oo). 

These conditional probabilities are then integrated with respect to the dis- 
tribution of X(t) to yield P[A,,j(t,u)] and P[B,,j(t,u)]. As n--~oe, 

P[A,,j(t,u)] and ~ P[B~,j(t,u)] are seen to converge to the same limit 
j=O j=0  
which is PIE(t, u)]. The distribution function of (T, M) is obtained in this way 
and its second mixed partial derivative gives the density function fr, M of Corol- 
lary 2. 

2. Detection and Estimation of Faint Signals: The Problem 

We observe random variables Y1 ("), ..., Y,~"~ where YS ") is the sum of a noise com- 
ponent XJ ") and a possible signal a} "). Suppose that for every n the noise X(I~), ..., X(, ") 
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is a sequence of iid random variables with mean IZ and variance ~r 2, X~ n~ has the 
same distribution for all n and the signal a} "~ is either identically 0 (i.e., there is no 
signal) or there are numbers 0 < 22 < 22 < 1 such that 

a},n = {0, l<=j<-[n21], [n2z]+l<=j<=n 
6Vnl ' [ n 2 1 ] + l < j < [ n 2 z  ] (1) 

where {v,} is a sequence of positive numbers tending to oo. The parameters /~, 
a 2, 6, 21, )~2 are all unknown; however, physical considerations often dictate 6 
to be positive if there is a signal. We therefore want to test the null hypothesis 
/40:a}')~0 against / /1:a}")~0 with the non-zero part being positive and we also 
want to estimate 21 and 22 when//1 holds. Since v, ~ c~, we may call the signal 
a} n) (if it is non-zero) a "faint signal". 

In the above problem fix n and consider the degenerate case that arises when 
2 z = 1 in the description of a} "~ under/ /1 .  This problem has received a great deal 
of attention in the statistical literature. For an extensive treatment of this problem 
we refer to Chernoff and Zacks (1964) who examined the problem for normally 
distributed noise from different angles though their main concern was to estimate 
EY,. For normally distributed noise, the maximum likelihood estimator (role) 
of [n.~t] (assuming that/4,  holds) is that integer r for which the absolute value of the 
statistic 

i=1  i = v + l  

is a maximum. If the value of 6 in (1) is positive, then with a high probability the 
maximum absolute value of the above statistic is attained with a negative value 
when n is large. For this reason, the role of [n21] can be defined for asymptotic 
purposes as that value of r for which this statistic attains its minimum value. 
Hinkley (1970) has studied the properties of this mle and Sen and Srivastava 
(1975) have studied the properties of tests of the hypothesis/4o of "no change in 
mean" based on the role of the change-point assuming that a change occurred 
somewhere. Hinkley's treatment of the rote of the change-point involves random 
walk arguments. The exact distribution of the mle is not given in an explicit form 
but is expressed in terms of the distribution of the maxima of two random walks. 
The asymptotic distribution is obtained from approximations of the above 
distribution and numerical studies are made. It should be noted that Hinkley 
and Sen and Srivastava have considered the case where the strength of the signal 
does not diminish with increasing n, i.e., when in (1) we have 2 z = l  and N =  l. 
In such a case not much simplification is obtained when n becomes large. 

Consider again the non-degenerate case 0<21 <22<1.  When 6>0,  the mle 
of ([n21], [n2a]) for normally distributed noise can again be obtained (for as- 
ymptotic purposes) by minimizing a statistic given in Section 3. The asymptotic 
behaviors of this and a related estimator are understood in terms of stochastic 
processes indexed by two parameters which are derived from the cumulative 
sums of the observations. These processes are defined by (5) and (6). For faint signals 
which are stronger than O(n-1/2), an almost sure invariance principle holds for 
these two-parameter processes on compact sets (Theorem 2). Using this invariance 
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principle, the asymptotic distributions of suitably normalized errors of estimating 
21 and 2z are seen to be independent of each other and each is given in terms of 
the minimum of two independent B.M.'s with positive drifts (Theorem 3). The 
final results are then obtained from Corollary 2, Theorem 1. Using a similar 
invariance principle, we obtain an asymptotic test for the hypothesis Ho (Re- 
mark 6.3). The treatment of the degenerate case differs from the non-degenerate 
case in actual details but the essential ideas are the same. Results for the degenerate 
case are stated without proof in Remark 6.2. The study of faint signals has been 
motivated by a problem of optical image analysis which is discussed in Remark 6.5. 

3. Two Estimators 

Suppose until further notice that there is a non-degenerate positive signal, i.e., 
we observe i,~ (,~ ~n~ ..., X~,~ Y~ = Xj + aj , j = I, ..., n where X~ "~, are lid random variables 
with mean # and variance 0 -2, X~ ") has the same distribution for all n and {a} "~} 
is given by (i) with 6>0  and 0<2~ <22<1.  We assume that the sequence {v,} 
in (1) satisfies 

(i) lira v ,=oo and 
n~ oo 

(ii) lim n 1/2v,=0. 
n~oo 

Let R=R(n)={(q,r2)lr~,r2 integers, l < q < n - 2 ,  q + l < r z < n - 1 }  and for 
(q, r2)e R (n ), define 

~'i r2 
Un( r l , r 2 )~ -2  yj(n)_ 2 yj(n'"}-YI--I(F2--FI)~ yj(n, (2) 

j= l  j=I j=l  

c,(rt, r2)=n{(r 2 -ra) ( n - r  2 + q)}-~/2 (3) 

and 

V,(q, r2)= c,(q, r2) U,,(rl, rz). (4) 

Then the role of ([n21], [n2z] ) for normally distributed noise is obtained by 
maximizing I V,(q, r2)1 with respect to (q,rz)eR(n). Since 6>0,  this maximum 
absolute value is attained with a negative value with high probability when n is 
large. Thus asymptotically, we are led to an estimator of ([n21], [n22] ) which is 
obtained by minimizing V,(rl, r2) with respect to (q, rz)~R(n ). In order to avoid 
the possibility of undesirable behavior of V,(q,r2) when either n Z(r2-q) or 
n-~ (n - r  2 +q)  is very small, we shall actually restrict V, t o  the subset R' =R'(n) 
of R(n) on which min { r~ -q ,  n - r g + q }  >rl l /2v  n. Instead of H1/ZVn, we could also 
have chosen any b, satisfying n 1 b,--,0 and vnZbn---,oo. This device of slightly 
restricted minimization is used here in order to avoid a technical difficulty en- 
countered in the proof of Lemma 3. Now V, may attain its minimum value for 
several (r~, r2)eR'(n ). We take this possibility into account in the following way. 

For any function f on the Euclidean plane or part thereof which attains its 
minimum, let S(f)  denote the set of points at which this minimum is attained and 
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let O(f) denote an unambiguously defined point in S(f). For example, if S(f) 
is a closed and bounded set (as will always be in the case in this paper), O(f) 
may be taken to be (t[ ~, t*) where t~' is the minimum of the first coordinates of all 
points in S(f) and t* is the minimum of the second coordinates of all points 
whose first coordinates are t*. 

The estimator of ([n21], [n22] ) arising in this manner is 

~. = ( ~ 1 . ,  ~ 2 . )  = ~ , ( v . ) .  

We shall examine the asymptotic properties of this estimator. Now the function 
U. is much simpler than V~, and we shall also study the asymptotic properties 
of the estimator 

~. = (~1., ~2.) = r (U.), 

where #J denotes the above-mentioned minimization of U. over R(n). The device 
of slightly restricted minimization is not needed for U.. It will be more convenient 
to work with the following stochastic processes rather than U. and V.. Define 

~.(t~, t~)=(v.~) -~ {u.([n ;.~ + ~ t,], [n2~ +,~.~ t~]) - ~.([n.~,], [n.~])}  (5) 

and 

tin(t1, t2)=(pq) 1/2 (V. 0-) --1 { Vn([rt21 +vn 2 tl] , [n,~2-k v2 t2]) - Vn([/221], [/222])} 

(6) 

for (tz,t2) such that ([n21+v.Zta], [n22+v2. t2]) lies in R(n) in case of ~.(tl, tz) 
and in R'(n) in case of q.(ta, t2), where 

p = 2 2 - 2 1  and q = 1 - 2 2 + 2 1 .  

Then the errors of the estimators ~. and ~. for ([n)~l], [n/,2]) and the errors of the 
estimators 

"~. = ('~1 n, ~2 .)  = 12- i .~. and 2. = (2 l . ,  )~2 .)  = / 1  1 "On 

for (21,22) are given by 

v# z {('c1., ~2.)-  (In 2a], In 22])} = ~(~.) + e., (7) 

v.  2 {~1., r2.) - ([n 21], [n)~2])} = 0(rl.) + e., (8) 

n v# 2 {(#~ ,,, 22.) - (2~,)~ = ~(~.) + e., (9) 

n v2 2 {(21., 22.) - ()~1,22)} = 0(~.) + e.. (10) 

Here as well as in subsequent formulas e. is a generic symbol denoting a dis- 
crepancy depending on n. In each of the above four formulas l e.[ <2 v.  2. Since 
v. ~ 0% these e.'s can be neglected for the purpose of finding the asymptotic 
distributions of the above normalized errors of estimation. The problem, therefore, 
is to obtain the asymptotic distributions of ~(~.) and ~(r/.). This will be attempted 
in the next two sections. Though we considered normally distributed noise for 
motivating these estimators, their asymptotic properties do not depend on such 
an assumption. 
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4. Almost Sure Invariance Principles for ~. and q. on Compact Sets 

Let Bll,  B12, B21 and B22 denote four independent standard B.M.'s on [0, co). 
The stochastic processes 

Bi(t)=~Bil(-t), t < 0  
~ Bi2(t), t_>0' i = 1 , 2  (11) 

are independent B.M.'s on ( -  co, co). We shall refer to these as two-sided standard 
B.M.'s so as to distinguish them from standard B.M.'s on [0, co). Define two 
functions 

f_(-pt, t < 0  {ptqt, t < 0  
gl (t) = g2 (t) = gl ( -  t) = (12) 

f qt, t>O' t>O 

where p---5[2-5[ 1 and q = 1 - 2 2 + 2 1  as before. In this section almost sure in- 
variance principles will be established for ~n and 71,. It will be shown that on 
compact sets, 4, can be uniformly approximated by 

{B1 (tl) + 0 gl (tO} + {82(t2) + 0 g2(t2)} 

and ~/, can be uniformly approximated by {Bl(tl)+�89189 
where B1, B2 and gl, g2 are given by (11) and (12) and 0 = c5 a -  1. 

We first compute the limiting values of E~,(q, t2) and E/%(q, t2) in the following 
two lemmas. 

For each n, let Ii(n), I2(n) and I3(n ) denote the sets of integers {1, ..., [n21]}, 
{[n21] + 1 . . . . .  [n22]} and {[n22] + 1 . . . .  , n} respectively and divide R(n) into 
disjoint parts 

Ril i2 = N i t  i2 (n) 

={(rl,r2)eR(n)lr,~Ii~(n),r2eI~:(n)}, 1 < i 1 < i 2 < 3  

and divide R' into R'~, ~2 similarly. 

Lemma 1. For U, Given by (2), 

a-iEU,(q, r2) = v.  10{h,(q, r2)+e,(r 1 , r2) } 

where 0 = c5 a- 1, 

(r2-rl) p, (rl,r2)~RllUR33 
|-npq+lr~-[n2~]lp+lr2-[n22]lq, (r~, r2)eR12 

h,,(q, r2) = ~ -npq+ln-[nR1]lp+lr2-[n22]lP, (rt,r2)eR13 
I-npq+lr~-[n21]lq+lr2-[n22]lq, (rl, r2)~R22 
[--npq+lrl--[n)q]lq+lr2--[n)~2]lp, (rl, r2)~R23, 

and l e,(rl, r2)l < 3 for all (q, r2). 

Or21 {(r-n20+e,(r)} for reI2(n) and Ovyl{n(22-21)+e,(r)} for r~I3(n) where 
le,(r)l < 1. The lemma now follows by computation. 
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Lemma 2. For 4, and tl, given by (5) and (6), the following limits hold uniformly in 
(tl, t2)~ I - K ,  K]  2. 

(a) lim E~,(q ,  tz)=O{gl(t l)+ge(tz)} ,  
n~oo 

(b) lim Etl,(tl ,  t2)=�89 I l-k-Itzl). 
n~oo 

Proof Fix K. Make n large enough so that for Iq]< K, [n21 + v, 2 tl] is either in 
11 (n) or in/2 (n) and for [tel < K, [n 22 + v, a tel is either in I2 (n) or in/3 (n). Now apply 
Lemma 1 for (q,  r2) in R12, R13, R22 and R23 to obtain 

('gn 0") -1 EU,([n21 + v 2 t l ]  , [-nJ~ 2 + 1) 2 t 2 ]  ) 

= 0 { - n v,- 2p q + gl (tl) + g2 (t2) + e,(tl ,  t2)} (13) 

where [e , ( t l , t e ) [<Klv#  2 for all ( t l , @ ~ [ - K , K ]  2. This proves (a). Recall 
c,(q,  r2) given by (3). It is easy to see that  

c.([n)~l + v. ~ tl 2, [n ;~e + v. ~ t23) 
=(pq)-X/2{1 1 2 1(q-1 + g v ,  n-  _ p - l )  (t 2 _ t l ) + e n ( t l  ' t2)} (14) 

where l e,(t I , te) [ < K2 n - t + K3 v 4 n -  2 for all (tl, t2) e [ - K, K] 2. From (13) and (14), 

(p q)l/~ (v. ~)-~ Ev.([n Xl + ~.~ t~], [n ;~ + ~.~ t~]) 

=0{ - n v #  Zpq + �89 I + ltzl) + e,( q , re) } 

where l e~ (q,  tz)l < K4 v 2 n-  1 + Ks v2 2 for all (tx, te) ~ [ - K, K]  2. This proves part (b). 
We now state and prove the main result of this section. 

Theorem 2. There exist processes {~,(q, re) } and {~,,(q, re) } defined on a common 
probability space along with independent two-sided B.M.'s {Bx(t)} and {Be(t)} 
such that 

(a) for each n, {~,,(q, re} and {~,(tl, t2) } have the same distribution,{rl,(q, re) } 
and {0,(q, re)} have same distribution, and 

(b) for each 0 < K <o0 and each sufficiently rapidly increasing subsequence {n(i)}, 

sup [~.<~)(t,, t z ) -  {Bl(q)+Og1(q)  } - {B2(tz)+Og2(t2)}l--~ 0 a.s. 
(q, t z ) e [ -  K, K] 2 

sup [O,(o( t t , te ) -{Bl ( t l )+�89189 a.s. 
(ti, t2)e[--K, K] 2 

where gl and g2 are given by (12) and O=6a -1. 

Proof  Let Z}"~ = a -  I ( Y)") - E Y)")). Then 

(v.o-) -1 u.([n,L + v# t~], [n&+v~.t~]) 
[n~.~ + v~q ] [nZ2 + v~te] 

2 2 
j=L j - - i  1=1 

+ , . n  -1 {(t~_-tl)+ e.(t~, t~)} Z Z?' 
j=l 

~_ (v n if) L EVn([n)c 1 + V2n t l ] ,  [n,~2 ~- v2 t2]) (15) 
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where le.(t 1 , t2)l ~_~Vn 2. Hence  

([.& +vzh] [n&l "1 
~n(' l  ' t2) = Vn- 1 '~(. ' =12 gSn)--j~aSn)I 

([.)~2+v~t21 [n).21 ) 

--Yn' ~. j~=l Z5 n,- J =12 g)n)~ /2' ~ n ( t l ,  t2)  

-+-v.n -J" {(t2--tl)+en(tl, t z ) - -e , (0  , 0)} ~ Z5 n). 
j = l  

Since n 1/2 ~Z}.)=Op(1) and le.(tx, t2)l<v; z, 
j = l  

n 
sup v.n-l{(t2-q)+e.(tx,t2)-e.(O,O)}j~=lZ}") =%(1)  

(q, t2)s[ -  K, K] z I 

and by L e m m a  2 (a), 

sup Igr t2)-- 0 {gl(tl  +g2(t2)}  I =0(1) .  
(q , tz )e[ -K,K]  2 

(16) 

(17) 

(18) 

Finally, define W,(])j = - 7(,) w( , )  - 7(,) r~i(,) _ 7(.) and va/c.) - ~[n~l]--j~ ''12j--~[n~1]+j, ''21j--~[n~2]--j ''22j-- 
- Z <") ; -  1, 2, For  each n, each of  these four is a sequence of  lid r a n d o m  [nJ.2]+j, d - -  ' "' ' 
variables with 0 mean  and unit variance. Furthermore ,  the early parts of  these 
four sequences  are independent  of  each other. N o w  note  that 

-[v.2ti +.~.1 [ .&]] [ 

rt.~,+v~.,,~ t .<  ~ ~v21 ~] W~('i>j, q <0  

i i=1 - v.-~ ~ Wi(~)j, q>O 
j = l  

and 
-- [v2t2 +"~-2 ["-~2]] 

Iv 1 y, w(.) n ''21 1' t 2 < O  ([nJ.2+v2,2,2nt21 [n).21 "} j= 1 

V n l ~  2 g) ")- 2 Z}"'~=I [vzt2+n.a.2--[n22]] 
I j = l  j = l  ) I v ,  -1 2 1/17(n),, 2 2 j ,  t 2 __>0. 

j = l  

It therefore fo l lows by a w e l l - k n o w n  a lmost  sure invariance principle for r a n d o m  
walks (see Breiman (1968)) that there exist stochast ic  processes  B~ ), B~ ') and 
independent  two-s ided B.M.'s B,, B2 on an appropriate  probabil ity space such 
that for each n, 

rt,*,+,~ta t, zd 1 } 
v 2 . 1  V Z ! ' ) -  V Z ~ " ) I  I t~l < K  / ~ J r J / '  

I_ j = l  j = l  d . 

has the same  d i s tr ibut ion  as {Bln)(tl), ]til<K}, i = 1 , 2 ,  and a long  all suff iciently 
rapidly  increas ing  s u b s e q u e n c e s  

sup }B~")(ti)-Bi(ti)]--~ 0 a .s .  (19)  
Itd<K 
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From (16), (17), (18) and (19), the theorem is now proved for {.. For q., we use 
r 

(14), (15) and the fact that max n -1/2 ~ Z }  "~ =@(1) to obtain 
1 --<r~n j= 1 

[nh -- v~t~] 
(Pq)l/Z(v.~r) 1Vn([-n)ci +V2t l ] , [n '~2+vZtz] )=vf f i  Z Z] n) 

[n)'z+ vanti] j= 1 
- -vnl  2 Z}n)-}-PVn 1 ~' ,Z j (n)+e . ( t l , t2 )  

j = l  j = l  

+(p q)ilZ(vncr)-i EV.([n 2, + v 2 tl] , In2 2 + V 2 tel ) 

where 

sup [e,(q, t2) I =%(1). 
(h, t2)s[-K, KI 2 

Hence 
([nh+v2~] [n&] ") ([n~2+vZt2l [n2z] "} 

+Erl . ( t l ,  t2)+e. ( f i ,  t2)-  e.(0, 0), 

and the proof is completed in exactly the same way as for ~. by using Lemma 2 (b). 
From now on, 

( t i ,  t2) = B 1 (t 1 ) q- 0 gl  ( t l )  q- B2 (t2) q- 0 g2 (t2), (20) 

g] ( t l ,  t2) = B1 ( t l )  q- 21 Olq I + Ba(t2) +�89 (21) 

where B~, B 2 a re  independent two-sided B.M.'s and &, g2 are given by (12). 

5. Asymptotic Distributions of qt({n) and qt(qn) 

Theorem 2 suggests that n v f f  2 {(~'ln, "~2n)--(/~l, J~2)} or ~(~.) converges m law to 
~(~) =(~/'i, ~/'2) where Ti is the time at which {B;(ti)+ O g (ti)} attains its a.s. unique 
minimum and that a similar convergence in law holds for n v2 2 {(21., J~Zn) -- (21,)~2)} 
or O(t/.). Since B 1 and B2 are independently distributed, this would mean that 
for both estimators, the errors in estimating 21 an 22 are asymptotically inde- 
pendent. In order to actually obtain these results from Theorem 2, a key step is 
to  prove that the probabilities of {U.(rl,r2) } and {V.(q,r2) } attaining their 
minimum values anywhere outside the set of (rl,r2) for which [r~-[n~,i]l<_Kv 2, 
i=1 ,2 ,  approaches 0 as K ~ o o  and then n ~ o o .  The following lemma gives 
the required result. 

Let S = S 1 u $2 vo S 3 where 

Si={(r l , rz ) l [r l_[n)~t][> 2 = g  v.,  Ir2 - [n22]l < g v2.}, 

S z =  {(q , r2)llq - [ n  21][ < K v~, l r z - [ n k z ] l  > K v,,},2 

and 

$3 = {(q, r2)[I rl - In 213 [ > K v2,, I r z - In 22] I > K v 2 }. 
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1 2 Lemma 3. (a) P[  min U.(ri,r2)<U.([n21],[n22])]<C(K-l+n - v.), 
(ri, r2)~Rc~S 

(b) P[(ri rain Vn(rl, r2)~_~ lfn(~n,~l~ , ~H~2~)]~_~C(K -1 ~-n-1/2Vn) , r2)~R' cnS 

where C is a constant depending only on O, 21 and 22 . 

Proof. Let E,(q, r2) and E~(ri, r2) denote the events {U,(rl, r2)G U,([n21], [n,~2])} 
and { V,(rl, r2) <= V,([n 21], In 22])} respectively. Treating n 21 and n 22 as integers 
in order to avoid unnecessary complications, the event E,(rl, r2) is seen to be 
equivalent to 

{ri-n2il Ir2-n22[ 
2 W~(n)lkij"i" 2 l/l7(n ) , ,  2k2;'q- (p-d) Z}")>=v;lO{h,(rl,r2)+npq} (22) 

j=l  j=l  j=l  

and the event E',(rl, rz) is seen to be equivalent to 

[r~-niil Ir2-r22[ n 
1/17 (n) • 

j -1  j=l  j--1 
( n n~z ") 

+[{d(1-d)/(pq)}t/z-1]'~P Z Z} ")- Z Z}" 
[ ,i=1 j=n21 +1 

>= V; i O[hn(rl, r2) + n {d(1 - d) p q}i/2] (23) 

where k i is 1 or 2 as r~ is in Ii(n) or not, k 2 is 2 or 1 as r2 is in I3(n) or not, 
d=d,(q,rz)=n-*(rz-rO, Z}")=o-*(YS")--EYff )) and W~(7)~ etc. are the random 
variables introduced in course of the proof of 

Theorem 2. To prove the lemma, we shall decompose R into R h ~, 1 < i t < i2 < 3 
and R' into R'~,~, 1 < i~ < i2 <3 and obtain suitable bounds for the probability 
that (22) holds for some (q, rz)6R~,~ and for the probability that (23) holds for 
some (ri ,r2)ER'hi 2. First consider (22). Since Rtl~S=Rta and Ip-d]<=2 z for 
(rl, rz)~Rtl, 

P[R.~S ~ E"(q' r2)] =P[~a~ E~(q' r2)] <P[t_<,_<,~max j=l ~ Wl(f}i>3-1nv21Opq] 

q-P  [i  max i z  ,/=~ W2(f} ~ 3-1  nVn t Opq] 

=<9n- Zv~O-2p- 2 q- 2(n2i +nd.2 +n22)<= Cn-a Vn.2 

The case of R33 ~ S  is treated in exactly the same way. To obtain the bounds 
for Ra2c~S, R~3c~S, R22c3S and R23c~S, each of these regions is further sub- 
divided into R~ ~ c~ St, R~l ~ c~ $2 and R~I ~ c~ $3. Of these twelve cases, we shall 
only treat R12 C'/S t and Rt2 c~ $3 here. The treatments of the other cases vary 
only in details but the essential arguments are the same. 
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Since {h,(q, re) + np q}/[p - d l > p/x q for all (q, re) and since h,(q, r2) +np  q > 
I rl - n 21 [ p > p Kv 2 for all (q, r2) e R~ z c~ $1, it follows that 

[ "~'~WI]"}>3-1Opv$1 ] P[  ~) E,(rl, rz)]<P max [q-n2~l  -~.  
R12c~Sl 1 <rl <n2i -Kv2n j= 1 

+ P [  max ~ >3  aOpKv. 
Ln22--Kv2n~rz<=n22] j = l  

< ,  [K~sax x~ r -1 j=~ W1(1"} > 3 -10p v21] 

[ Nr} ] + P .  max ~ >3-10pKv. 
I-l <<-r<~Kvan j = l  

+ P O(pq) nv2 ==_3-1 1 

<90-Zip 2v2(K-av z+ ~ r-2)+p-2K-~+(pq)Zn-~v 2] 
r > Kv~ 

<C(K-a +n ~vZ.) 

by Kolmogorov's inequality and its generalization due to Hfijek and R6nyi (1955). 
Again, for (q, r2)ER12 ~ 83, h.(q, r2)+npq>max {jr 1 -n211 p, [r 2 -n2z] q}. Hence 

P[I~2~s3U E,(q,rz)]<P[LK~__<r__<,).~max r -1 j-~l Wl1(1"} >2-IOpv21] 

+P[LK~._<r_<.vmax r- l j~= l W2(~ > 2-10 q v21] 

+ P  [ j__~l Z}")>2-~O(pq)nv$1 ] 

<40-2[(P-2+q-2)vZ,(K-lvX2+ ~ r-2)+(pq)-2n-lv~] 
r> KvZ~ 

<=C(K-I+n lv2) 

and that concludes the proof of part (a) of the lemma. 
Let T1 = {n 1/2 vn ~ min (r 2 - q, n -  r2 + q) < en} = {n -1/2 v, < min (d, 1 - d) < e} 

and T2={min(r2-q ,n-r2+q)>en}={e<d<l-e  }. To prove part (b), we 
shall treat the regions R'i112 ~ T1 and R' h ~2 c~ T2 separately. For sufficiently large n, 
R'ili2c~ T1 ~S. Now for R[1 r T1, R.H.S. of (23) 

>-_nvf 10{d(1 -d) pq} 1/2 >2 -1 nvf 10(dpq) 1/2 ~ 2  -1 rl3/r Vnl/2 0(pq)l/e 
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It is enough to show that for some 0 < e <  1, 

rain Vn(rl, r2) > o(1/n) (27) 
Ri I i263Sc3T2 

for the regions R12, R13, R22 and R23. The rest will follow from part (a) of the 
lemma. First consider R12 n $1 and write 

ui=n-l(ri--n)~i), vi-=-Iuil , i=1,  2. (28) 

~- 2 Then for (rl,r2)~R12c~S1, O<v 1 --Ul~_~<)L 1 and O < v 2 = - u 2 < K n - l v , ,  so 

~n(n, r2) 

=nvn 10 p q [{(1 - (u 1 - Uz)/p ) (1 + (u 1 - Uz)/q) } 1/2_ 13 

+ nv210(1-~) (plul l+ q[u2[) 
=nv/, l Opq[{(l +(v l - v z ) /p ) (1 - (V l -V2) /q} l / ; -1 ]+nv; l  O(1-e)(pvl + qv2) 

= n v; 10p vl [(1 - ~) +f(vl  ; p)] + o(]/n) 

where 

f (v ; p) = (q/v) [{(1 + v/p) (1 - v/q) } ~/2 _ 1]. (29) 

The derivative o f f ( v ;  p) with respect to v is 

if(v, p )=qv-  2 [1 - a .m .  {v - k p  - 1  , v - q - i } / g . m .  {v+p -1, v - q - l } ] ,  (30) 

0_< v-<21, where a.m. and g.m. denote the arithmetic and the geometric means 
respectively. Hence if(v, p) <= 0 and 

min [ ( 1 - c 0 + f ( v l  ;p)] =(1 -cO+f(2~ ;p), 
0_<vi <21 

which is positive for 0 < a < 1 +f(21 ;p) and that concludes the proof for this case. 
Note that the proof for this case did not require the restriction to T2. Now 

consider R12 c~ $2 c~ T 2 and let ul, u2, vl, v2 be as in (28). Here 0 < v I = - ul < / ( n -  1 v 2 
and O<=vz=-Uz<=p. Furthermore, since (q,r2)eTz,  Vz-Vl<=p-e. Hence 
v z < p - e + K n - i v Z < p - e / 2  for large n. 

Yn(q, r2)=nv; 10qv2[(1 - ~ ) + f ( v 2  ;q)J + o(]fn) 

where f (v;  q) is obtained by interchanging p and q in (29), Again, f '(v2; q)<O as 
before, so 

rain [(1 - e ) +  f(v2 ;q)] =(1 - c O + f  (p-el2;  q), 
O<v2=p--~/2 

which is positive for O < c ~ < l + f ( p - e / 2 ;  q). That concludes the proof for this 
case. Now suppose ( r l , r 2 ) ~ R 1 2 n S 3 n T  2. Here 0--V1_~-<,~1, O<=v2<=p and 
v l - v 2 > - p + a  Let Wl = v l - v 2  and w2=pv 1 +qv 2. Then either 0 < w  1 <21 and 
Wz>=pwl, o r  - -p+8~w I ~0 and w2=> -qw~.  Now 

7,(q, r2) = n v2 a O g(wl , w2), 

where 

g(wl, Wz)=pq[{(1 +wl/p)(1 -wUq)} 1/2 - 1] +(1 - ~ )  w 2. 
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For wl > 0, 

rain g(wx, wz)=g(wl ,pwl)=gl(wl) ,  say. 
w2 ~ p "~v 1 

It is easy to see that g['(wl) <0, so 

min g(w~, w2)= min gl(wl)=min {&(0), &(21) }. 
O<wl < & , w 2 > p w l  O<wl <;tl 

Now gl (0) = 0 and 

(1) ~'1)-1 gl (~1) '=  (q/~'l) [{(1 + I~l/p) (1 -- ;h/q)} */z -- 1] + (1 -- e) 

= f ( 2 ,  ;p)+(1-c~), 

which has already been shown to be positive in the 
0<c~< 1 +f(21 ;p). Thus 

min g(wl, w2)>0 
O<wl <_~t ,w2>pwj 

for the above choice of e. Again, for wa < 0 

min g(Wl,Wz)=g(%, -qwl)=gz(WO, say. 
W2>= --qWl 

As before, g~(w~)< 0, so 

min g(%, wz)= min 
-p+e<=wl <0,  w2>= --qwl p+g<_w 1 <=0 

Again g2(0)=0 and 

{q(p_ g)}-x g2(--p+g)=f(p--g;  q)+(l  --e), 

P.K. Bhattacharya and P.J. Brockwell 

case of R~2 c~ $1 for 

g2 (Wl) = min {g2 (0), g2 ( - P + ~)}- 

which is positive as in the case of R12c~S2c~T2 for 0 < c ~ < l + f ( p - g , q ) .  Thus 

min g(%, w2) >0 
- - p §  ~ 0  W2~ --qWl 

for the above choice of c~ and that concludes the proof for the case of R12 c~ $3 c~ T z . 
The treatments of the regions R13, R22 and R23 vary only in details but the essential 
arguments are the same, so they are omitted. The proof of the lemma is now complete. 

We need one more lemma before proving the main result of this section. 
Let YK denote the set of all real-valued functions on [ - K ,  K] 2 which attain 
their minimum values and give ~K the sup norm topology. Recall that S( f )  is the 
set of points at which the minimum of f is attained and 0 ( f )  is an unambiguously 
defined point in S(f) .  

Lemma 4. O is continuous at all f ~ ~ which have unique minima. 

Proof Suppose f~Y~: has unique minimum at (Xo, Yo) and let f , ~ f  For each 
g>0 let 

6(~)= min f ( x , y ) - f ( x o ,  yo)>0. 
/[ (x- y)- (xo, yo)II >_- 

Choose n large enough such that llf.-fll <a(~)/2. Then 

11 (x, y) - (Xo, Yo)[I > e implies f.(x, y) > f.(xo, Yo). 
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Consequently, S(f,) is entirely contained in a circle of radius e centered at 
(Xo,yo)=O(f).  Hence IIr162 <e and the lemma is proved. 

Theorem 3. n v2 z {(~j., ~ z~.)-(J . ,  ,t9} ~ 0(~)=(L,  T9 ana n~,,; ~ {(.h., 2~.) 
-(21,22)}-+~e ~(t/)=(T1, T2) where ~ and tl are given by (20) and (21). 

Proof By (9) and (10), it suffices to show that r162 and (S(tl.)-*~r 
We shall prove only the former, the proof of the latter being exactly analogous. 
Let ~.,K and ~K denote respectively the restrictions of 4. to [ -  K, K] 2 and of 
to [ -  K, K]2~ Let F,,x, F,, F* a~d F* denote the distribution functions of q~(~,,~), 
0(4,), r and 0(~) respectively. It will be shown in Remark 5.3 that for each K, 
almost all sample paths of ~K have unique minima, it therefore follows from 
Theorem 2 and Lemma 4 that for each K, r ~) converges in law to r and 
by Remark 5.2, see below, r has a continuous distribution. Also, 0(~K) 
converges to 0(~) almost surely and so in law. Thus for all (q, t2) , 

lira F~,K(tl, t2 )=f~( t l ,  t2) for each K (31) 
n ~ t ~  

and 

lira F~(tl, t2) = F*(q,  t2). (32) 
K ~ z o  

Finally, since r on 

A~ ~ (co I S(~,,(', ~o))c [ -  K, K] 2} 

and since 

A~. ~: ~ {co l min U,(q, r2) < U,~([n)~], In),2])}., 
R n S  

it follows from Lemma 3 that 

]Fn, K(tl, t2)--F.(tl, t2)l = 1P[0(4., K)~(- 00, tl] x ( -  ~0, t2]; A~., K] 

--P[~(~. . )6(-  ~ ,  t,] • ( -  ~ ,  t2]: A~,,K]I <=P[A~, K] 

_< P (rain U,,(r~, r2) < U,([n )-x], [n 22])] -<_ C(K-  l + n- '  v~). (33) 
- -  ~ R c ~ S  

The theorem now follows from (31), (32) and (33) by first choosing K sufficiently 
large and then allowing n-+ oo. 

Remark 5.1. By (7) and (8), v22{('~l~,i2.)-([n21] , [n22])} ~ e  (T1, T,_)=0(~.) 
and v2 2 ((ft, ,  "CZn)-- ([n,;~-j_], [n22])} --'~(Tt, T=) = 0 (t/). 

We now derive the distributions of O(#) and r from Corollary 2. Before 
that we shall establish certain facts about ~r~, the restriction of ~ on [ - K ,  K] 2, 
that have been used in the proof of Theorem 3. 

Remark 5.2. Let T K denote the point of time at which a B.M. with positive drift 
attains its minimum on [0, K]. The law of iterated logarithm implies P(TK =0)=0 .  
By the Markov property P(TK=s)<=PiT~_~=O)=O for all 0 < s < K ;  reversal of 
the process shows that PfTK=K)=O. Thus T K is a continuous random variable. 
In proving Theorem 3 we have used the fact that r T2K) has a con- 
tinuous distribution. Because of the independence of Tl~ and T2~, it is enough 
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to show that each of these random variables is continuous�9 This follows easily 
from what we have shown in the beginning of this paragraph�9 

Remark 5.3. In the proof of Theorem 3 we have also used the fact that almost all 
paths of ~K have unique minima�9 Let X(t)=B~(t)+ 0g~(t). In view of Remark 1.2, 
it is enough to show that 

P [  rain X( t )=  min X( t ) ]=0,  i=  1,2. (34) 
-K<=t<=O O<_t<_K 

For each rational - K < r < O < s < K ,  let Z ~ =  rain X(t) -  rain X(t). Since by 
--K<_t<_r s<t<=K 

the first part of Remark 5.2, X(t) can attain neither its minimum on [ - K ,  0] 
nor its minimum on [0, K] at 0, (34) will be proved by showing that P [Z~ = 0] = 0. 
This is proved as in Remark 1.2. 

To find the distribution of ~(~), first consider { X ( t ) , - ~ < t < o o }  where 
X(t)=Xl(-t) ,  t<O and X(t)=X2(t ), t>O, {X~(t),t>O}, i = t ,  2 being inde- 
pendent standard B.M.'s with positive drifts 01 and 02 respectively. Let Mz denote 
the minimum of {Xi(t)} and T~ the time at which this minimum is attained. Define 

- T 1 if M1 <M2 
T =  T2 if M1 >M2. 

By virtue of Corollary 2, P[M1 =M2]  =0. The random variable T is therefore, 
the time at which {X( t ) , -  o o < t <  Go} attains its (a.s.) unique minimum. The 
density function of T is obtained from Corollary 2. 

Corollary 4. The density of T is, 

= ~ f ( - - t ;  0~, 02) , t < 0  
fr(t) ( f ( t ;  02,01), t > 0  

(35) 

where 

f (t; 01,02)=201[t--1/2~(01 t l / 2 ) - -01  {1 --~b(01/~1/2)}] 

--201 exp [20z(01 +02)t] 

�9 [-t t / 2 0 ( ( 0 1 + 2 0 2 ) t l / 2 ) - ( 0 1 + 2 0 2 ) { 1 - ~ ( ( 0 1 + 2 0 2 ) t l / 2 ) } ] .  

Proof. Let U~ = -M~.  The marginal distribution of Uz is easily seen to be negative 
exponential with mean (201) -1. Since (T1, U1) and (72, U2) are independent, we 
have for t > 0, 

co co 

fT(t) = ~ P[UI <u]fr2, u2(t, u)du= ~ {1-exp  [ - 2 0 1  u]} 
0 0 

�9 202ut--3/2dp(ut--1/2+Oatl/2)du-_f(t; 02,01) 

after some simplification�9 The case of t < 0 is proved similarly�9 
It is now one easy step to write down density functions of 0(~)=(7"1, T2) 

and 0(r/)=(T1, Tz). To do this, we only have to note that T1 and T 2 are inde- 
pendent, T1 has density function ft,(t) of the form (35) with 01=pO, 02=qO 
and T2 has density function fr of the form (35) with 01 =qO and 02 =pO. We 
summarize this as 
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Corollary 5. (a) The density function of ~(d.)=(T1, T2) is 

ft , ,  f~(q, t2) = ft~ (tl)ft~ (t2) 

where f? , ( t )=f f2(- t  ) is given by (35) with 01 =pO and 02=qO. 

(b) The density function of O(r/)=(T 1 , T2) is obtained as a special case of (a) 
for p=q=�89 

6. Miscellaneous Remarks 
A ^ 

6.1. A Comparison between the Estimators ('~ln, 22n) and (21,, 22, ) 

The distribution of ~(r depends on 21 and 22 only through P=)~2--21 (i.e., it 
depends on the extent of the signal but not an its actual location in the observed 
series), whereas the distribution of O(t/) is altogether independent of 21 and 22. 
For the random variable T treated in Corollary 4, a little calculation shows 
that P[T<O]=02/(OI +02). Examining Corollary 5 in the light of this fact we 
see that for p>�89 21, is more likely to overestimate 21 and  ~2n is more likely 
to underestimate 22 and for p <�89 the tendency is in the opposite direction. This 
means that longer signals will tend to be shortened and vice versa. The estimator 
(21n , 22n), however, does not suffer from this kind of bias. 

6.2. The Degenerate Case 

Suppose in the signal given by (1), 22 is known to be i and only 21 is to be estimated. 

Let U,i(r)= i Y) ")-rn-1 i Y)"), c'~(r)=n{r(n-r)} 1/2 and V~(r)=c;(r)U~(r), l<r  
j= l  j= l  

< n -  1. Then analogous estimators of the two estimators discussed in this paper 
are defined as n-1 times the values of r which minimize U~ (r) and V~' (r) respectively. 
Us is minimized over the entire range, whereas V,'(r) is minimized over 
{r]min(r,n-r)>nl/2v,}. Call these estimators i l ,  and 21, respectively. The 
following properties hold for {Us and {V'(r)} with p = l - 2 1  and q=21.  

(i) By an almost sure invariance principle on compact sets similar to Theorem 2, 

~,(t)  = (v, o)-~ { u~ (In ;ol + v. 2 t]) - u~ (In ;-1 ])} -~  B (0 + 0 gl (t) 

and 

t/, (t) = (p q)1/2 (v,, a ) - i  { V,' ([n 21 + v 2 t]) - V,' (In 21])} ---,B (t) + �89 0 I tl, 

where B(t) is a two-sided standard B.M. and gl(t) is as in (12). 

(ii) P [  rain U/,(r)<U/,([n21])]<C(K-l+n-lv 2) 
~ l r _ n 2 1 1 > K v 2  ~ -  

and 
PI- rain V/(r)<V~([n21])]<C(K l+n 1/2v~). 

L ] r _ n 2 1 [ > = K v 2  n n - -  
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6.3. An Asymptotic Test for Ho 

Consider the stochastic process 

L j = I  j = l  

where 

it can 

(i) 

(ii) 
where 

O < t < l  

n - 1  

82 = {2(n-1)} -1 ~ (Y)2)1- y),))2. Since 82 is a consistent estimator of~  2, 
j=l 

easily be seen that 

under H o, {{,(t)} converges weakly to {B*(t)}, and 
under H1, {~,(t)- 0 n 1/2 v21 g(t)} converges weakly to {B*(t)} 
{B*(t)} is a Brownian bridge on (0,1) and 

g(t) 

[ -p t ,  
=~--p)Ll +q(t--)L1), 

(p(1 --22)--p(t--)~2), 

0 < t < 2 1  

2 2 < t < 1 .  

It then follows that if {k,} is chosen such that 

lira kn= oo but limk, n-1/zv,=O, 

then a test with rejection region sup t~,(t)l>k, will have probabilities of both 
O < t < l  

types of error tending to 0 as n ~ oo. 

6.4. Estimation of the Intensity of a Signal 

Suppose a signal is detected by the test described in the last paragraph and 
([n 21 ], In)o/I) is estimated by ( h . ,  %,,). We now consider the problem of estimating 
6, the intensity of the signal. The mle of 3 for normally distributed noise is 
given by 

6.  = v~ Z (n - + + 
j = ~ l n + l  j=  j = r 2 n + l  

If 21 and 22 were known and if Zl, and %, were replaced by [n,~l] and [n)~2] 
respectively in the above formula, then n 1/2 v, 1(6,-6) would be asymptotically 
normal with mean 0 and variance ~2/(pq). It can be verified by straightforward 
analysis that even though 6, uses the estimates zl,  and z2, instead of [n,~l] and 
In 22], it still has the same asymptotic distribution. The key thing is to check that 
vi n [n All 

2 Y ) " ) - 2  Y)")=Op(v2), i= 1,2. In fact it makes no difference whether the 
j = l  j = l  

estimates zl, and z2, are the mle's of [n21] and [n22] or not, so long as they 
satisfy "cln-[n)Li]=Op(v2), i=  1, 2. A test for a specified value 6o of 6 can also be 
constructed on the basis of the statistic (nD, g!,)l/2(6,-6o)/(v,8,), where /3.= 
22 , -21 , ,  ~ . = 1 - / 3 .  and 8, is as in 6.3. 
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6.5. Application to Image Processing 

Consider a discretized picture in black and white in which the darkness Y~j at 
the (i,j)-th grid, l<-_i<j<n, is the sum of a noise Xij and a possible signal Aij. 
The simplest kind of noise consists of iid random variables Xij with find second 
moment and the simplest kind of signal is a shadow of uniform darkness, i.e., Aij 
has a constant positive value on some set S and is 0 elsewhere. Suppose n is large 
and A~ = ~ v 21 for (i, j)~S where v, satisfies the assumption of Section 2. If further, 
each row-section of S, i.e., the intersection of S with {(i,j)[j= 1 . . . . .  n} for each 
fixed i, is either empty or a set of consecutive integers { [ n 2 j + l  . . . . .  [n2~2] } 
with 0<2~1<2~2<1, then the picture can be analyzed by its row-sections by 
means of the methods discussed in this paper. By means of the test described in 
the Remark 6.3, each row-section can be first tested to determine whether it 
contains any part of the shadow. Since such a test will have both error probabilities 
quite small, this part of the problem presents little difficulty. Furthermore, most 
shadows will have non-empty intersections with a number of consecutive rows 
and this will help correcting occasional mistakes in the tests. We can then 
estimate (2il, 2i2 ) by (2~n,)Ci2n) for those i where the test rejects H o. Putting 
these row-by-row estimators together, the estimated shadow is obtained. Successful 
recognition of the shape and size of the shadow will depend on the errors of 
estimation in the different rows. Suppose a shadow becomes unrecognizable if 
either )~1 or 2~2 is estimated with an error exceeding e in absolute value in a 
proportion c~ or more of rows having a non-empty section. Then a criterion for 
successful recognition can be computed from our results. As we have mentioned 
above, most shadows will have non-empty sections in a number of consecutive 
rows. Also, the values of (2i~, 2i2) in nearby rows will frequently be close to each 
other. We can take advantage of such a situation by applying the above procedure 
on the averages of several rows in a row-wise moving average scheme. Faint 
shadows are obtained in electron microscopy, hard X-ray photography through 
bones, etc. However, our assumption that each non-empty row-section of the 
shadow should be a set of consecutive integers, is too restrictive. To adapt the 
method of this paper to situations not satisfying this condition, we note that 
if a shadow has several segments in a row-section, then with a high probability 
the stochastic process {~,(t)} for that row, given in 6.3, will have a local minumum 
near the beginning and a local maximum near the end of each segment. Thus 
the number of segments in a row-section and their approximate locations can be 
determined by a preliminary examination by analyzing {~,(t)} for tha t  row. On 
the basis of these approximate findings, the row can then be broken into several 
parts, each containing a single segment, and then the segments are more precisely 
estimated in the way discussed earlier. 

7. The Minimum Content of  a D a m  in [0, t] 

Of prime interest in storage theory is the distribution of the time taken for a dam 
to become empty for the first time. However by using the results of Section 1 we 
can derive the much more informative joint distribution of the minimum content 
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vt in [0, t] and time ~ at which this minimum value first occurs. We shall use 
the classical model of an infinite dam (see Moran (1959), Prabhu (1965)) for which 
the input in [0, t] is Z(t) where {Z(t), t>0} is an additive process with non- 
decreasing sample-paths, and for which the release rate as a function of the 
content x is r(x)= C I(o, ~)(x), c > 0. The joint distribution can be expressed quite 
explicitly if {Z(t)} is stable with index 1/2 or if we consider (as in Bather (1968)) 
the somewhat different model in which {Z(t)-ct} is a Brownian motion with 
drift. 

Suppose that at time zero the dam has content a > 0. If we define 

X(t)=Z(t)-ct ,  t>=O, 

then {X(t)} is a process of the class considered in Section 1, and if F(-v), T t and 
Mt are defined in terms of {X(t)} as before, then 

P[zt<u, vt <v ] =P[f ( -a)<min(u ,  0] 

+PITt<u, - a < M t < v - a ] ,  v>O. 

If {Z(t)} is stable with index 1/2 the right hand side can be written down quite 
explicitly using the results of Theorem 1, Corollary 3. If {X(t)} is a Brownian 
motion with EX(t)=#t and VarX(t)=t, the joint distribution of (rt, vt) can 
again be written explicitly, this time using the results of Theorem 1, Corollary 2. 
In the latter case we see in particular that the distribution of v, consists of a mass 

t 
P Iv t = 0] = S a y - 3/2 q~ (a y-  1/2 + # y l /2)  dy, 

0 

and a density, 
oo 

f~t(v) =I(0, a)(v) S Y 5/2 [y(1 - a # +  v # ) - ( a -  v) 2] (a((a- v) y-1/2 +#yl/Z) dy 
t 

+ I(o, a)(v) fl(0 +)  exp ( -  fi(0 + ) (a - v)), 

where fl(0 + ) = I(0 ' ~)(#) 2 #. 

8. The Minimum of the Integral of a Markov Chain and Its Location 

Let {Y(t), t > 0 }  be an irreducible Markov chain with state-space { # 1 , ' " ,  I/m} 

and infinitesimal generator Q = [qij]. Suppose that #i <0, i=  1, ..., n, #i >0, i>  n, 
and define a diagonal matrix, D=diag{#~}. To the version of {Y(t)} whose 
sample-paths are right-continuous step-functions there corresponds a process 

x(t)= i Y(u)du, 
0 

whose sample-paths are continuous. We shall conclude this paper by sketching 
the analogues for {X(t)} of the results obtained in Section 1 for additive processes 
with no negative jumps. 
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For v > 0 define 

E ( _ v ) = J ' + o 9  if X ( t ) > - v  for all t > 0 ,  
l inf{ t>0:  X(t)< - v }  otherwise, 

and 

F ( -  v , j ) = F ( -  v) I~y(F~_~= .j~ + oQ I~y(v(-~l~j~, 

where I A denotes the indicator function of the event A. We shall use the notation 
P/(') and E~(-) to denote probabilities and expectations conditional on Y(0)=#~, 
i=  1 . . . . .  m, and P(.), E(-) for the column vectors with components P/('), Ei(" ) 
respectively. The random variables Mt and T~ are defined in terms of the process 
{x(t)} as in Section 1. 

Let Pe(_~,j)(" l i) denote the (possibly defective) distribution of F(-v, j)  condi- 
tional on Y(0)=#~. Then from the results of Brockwell (1973) it is easily deduced 
that the matrix S (~)(~) of Laplace transforms Ei(exp-~F(-v,j)),  i,j= 1, ..., m, 
is given by 

S(-~)(~)=exp(-vA(~))S(~), v>O, ~>0,  (36) 

where 

A(~)=D 1(Q-U), 

and S(~)= [Sij(~)] is uniquely determined by the conditions 

0, j>n  
(i) Sij(~)= 6ij, i,j= 1 .... ,n, 

and 

(ii) each column of S(~) is orthogonal to the (m-n)-dimensional subspace 
of IR m associated with the (m-n)  eigenvalues of A(~) with negative real parts. 

Using the result (36) together with the equations, 

~[r,<u,  Mt < - v ]  

= ~ ~ Pj[Tt_s<u-s]Pv(_~,j)(ds[i), O<u<-t,'v>=O, 
j - -1  [0, u] 

and arguing as in the proof of Theorem 1, we obtain the following result. 
oo 

Theorem 4. Sexp( - - ( t )P [T~<u ,  IMtl<v] dt=~ 1[ I -S (~) ]1  
0 

+4 -1 ~ dy ~ exp(-~x)P~-Y)(dx)A(~)S(~)! u,v>=O,~>O, 
(0, v] (0, u] 

where Pv(-Y)(') is the matrix of measures [Pv(-y.j)(" [i)] whose Laplace transform is 
specified by Equation (36). 

Corollary 6. Let v' be the stationary distribution of the chain { Y(t)}, i.e., 2' Q =0 
and v' ! = 1. Then 
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(i) /f v ' D ! > 0  , (Tt, Mr) ~ (T,M) as t-+~, where 

P[T<~u, IMl<~v]:[I-S(O)]!+ ~ dy ~ P~( ')(dx)D aQS(O)!, 
(0, v] (O,.u] 

(ii) if ~ ' D ! < 0  , lim P [ T ~ u ,  IMt]=v]=Q. 

Remark 8.1. Explicit inversion of the Laplace transform in Theorem 4 (in terms 
of modified Bessel functions) is possible when { Y(t)} has only two states. We omit 
the details. 

Remark 8.2. Theorem 4 may be used to derive results analogous to those of 
Section 7 for the dam whose net input rate at time t (prior to emptiness) is Y(t). 
(Net input rate here means input rate minus release rate.) Defining v t and z t as 
in Section 7 we obtain in particular, 

~ exp ( -  ~ t) E exp [ -  p ~ t -  0 v~] d t = exp ( -  a 0) [I - S(~)] ! 
0 

+ [exp ( - aA(~ + p))] S(~ + p) ! 

+ exp ( -  aO) i exp [v(O- A(~+ p))] S(~+ p) A(~) S(~) 1 dr, 
0 

p, 0>0,  3>0. 

Explicit inversion is again possible if {Y(t)} has only two possible states (such 
a dam was considered by McNeil (1972)). 

Acknowledgements. Thanks are due to Peter H. Bartels for explaining the statistical nature of the 
image-processing problem which motivated the work of one of the authors and to Eugene F. Schuster 
for the proof given in Remark 1.2. 

References 

1. Anderson, T.W.: A modification of the sequential probability ratio test to reduce the sample size. 
Ann. Math. Statist. 31, 165-197 (1960) 

2. Bather, J. A.: A diffusion model for the control of a dam. J. Appl. Probability 5, 55-71 (1968) 
3. Borovkov, A, A.: On the first passage time for one class of processes with independent increments. 

Theor. Probability Appl. 100 331-334, (1965) (English translation) 
4. Breiman, L.: Probability. Reading, Mass.: Addison-Wesley 1968 
5. Brockwell, P,J.: On the spectrum of a class of matrices arising in storage theory. Z. Wahrschein- 

lichkeitstheorie verw. Gebiete 25, 253-260 (1973) 
6. Chernoff, H., Zacks, S.: Estimating the current mean of a normal distribution which is subjected 

to changes in time. Ann. Math. Statist. 35, 999-1018 (1964) 
7. Doob, J.L.: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 20, 

393-403 (1949) 
8. Hfijek, J., R6nyi, A.: Generalization of an inequality of Kolmogorov. Acta Math. Acad. Sci. 

Hungar. 6 281 283 (1955) 



Minimum of an Additive Process 75 

9. Hinkley, D.V.: Inference about the change-point in a sequence of random variables. Biometrika 
57, 1-17 (1970) 

10. McNeil, D.R.: A simple model for a dam in continuous time with Markovian input. Z. Wahr- 
scheinlichkeitstheorie verw. Gebiete 21, 241-254 (1972) 

11. Moran, P. A. P.: The theory of storage. London: Methuen 1959 
12. Prabhu, N. U.: Queues and inventories. New York: John Wiley 1965 
13. Sen, A., Srivastava, M.S.: On tests for detecting change in mean. Ann. Statist. 3, 98-108 (1975) 
14. Shtatland, E.S.: On the distribution of the maximum of a process with independent increments. 

Theor. Probability Appl. 10, 483-487 (1965) (English translation) 
15. Shtatland, E.S.: The distribution of the time the maximum is achieved for processes with inde- 

pendent increments. Theor. Probability Appl. 11, 637-642 (1966) (English translation) 
16. Takacs, L.: Combinatorial Methods in the Theory of Stochastic Processes. New York: John 

Wiley 1967 

Received June 15, 1975; in revised form March 26, 1976 


