On Convergence of Types and Processes in Euclidean Space

Ishay Weissman
Faculty of Industrial and Management Engineering, Technion, Haifa, Israel

Let \mathscr{E} be an Euclidean space; Y_{n}, Z, U random vectors in $\mathscr{E} ; h_{n}, g_{n}$ affine transformations and let \mathscr{H} be a subgroup of the group \mathscr{G} of all the invertible affine transformations, closed relative to \mathscr{G}. Suppose that $g_{n} Y_{n} \xrightarrow{D} Z$ and $h_{n} Y_{n} \xrightarrow{D} U$ where Z is nonsingular. The behaviour of $\gamma_{n}=h_{n} g_{n}^{-1}$ as $n \rightarrow \infty$ is discussed first. The results are used then to prove that if $h_{n} Y_{[n t]} \xrightarrow{D} Z_{t} \in \mathscr{E}$ for all $t \in(0, \infty)$, where $h_{n} \in \mathscr{H}$ and Z_{1} is nonsingular and nonsymmetric with respect to \mathscr{H}, then $\gamma_{n}(t)=h_{n} h_{[n t]}^{-1} \rightarrow \gamma(t) \in \mathscr{H}$, $Z_{t} \stackrel{D}{=} \gamma(t) Z_{1}$ for all $t \in(0, \infty)$ and γ is a continuous homomorphism of the multiplicative group of $(0, \infty)$ into \mathscr{H}. The explicit forms of the possible γ are shown.

1. Introduction

Let Y_{n} and Z be random vectors in a k-dimensional Euclidean space \mathscr{E} and let h_{n} be an affine transformation. Whenever a limiting result of the form $h_{n} Y_{n} \xrightarrow{D} Z$ (as $n \rightarrow \infty$) is obtained, a natural question is then whether a functional limit theorem holds. Namely, does $h_{n} Y_{[n t]}$ converge in distribution? And if it does, what is the distribution of the limit Z_{t}, say, in terms of Z ? The present paper, which is an attempt to answer these questions, generalizes the results of [6] obtained for $\mathscr{E}=R^{1}$.

Let \mathscr{A} be the set of all affine transformations $h: \mathscr{E} \mapsto \mathscr{E}$. We write $h=\langle B ; b\rangle$ if $h x=B x+b(x \in \mathscr{E}), B$ a linear transformation and $b \in \mathscr{E}$. Let \mathscr{G} be the group of all invertible (nonsingular) elements of \mathscr{A} and let ε be the identity of \mathscr{G}. For h_{n}, $h \in \mathscr{A}, h_{n} \rightarrow h$ means $h_{n} x \rightarrow h x$ for each $x \in \mathscr{E}$. This definition gives to \mathscr{A} a topology under which composition is continuous. The notation $h_{n} \sim g_{n}\left(h_{n}, g_{n} \in \mathscr{G}\right)$ means $h_{n} g_{n}^{-1} \rightarrow \varepsilon$.

A random vector $Z \in \mathscr{E}$ is nonsingular if (x, Z) is a nondegenerate random variable for each $x \neq 0, x \in \mathscr{E}$ (here (\cdot, \cdot) is the inner product in \mathscr{E}).

In Section 2 we consider both relations

$$
\begin{equation*}
g_{n} Y_{n} \xrightarrow{D} Z, \quad Z \text { nonsingular } \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{n} Y_{n} \xrightarrow{D} U \tag{1.2}
\end{equation*}
$$

and draw some conclusions about $\gamma_{n}=h_{n} g_{n}^{-1}$ and U. In Section 3 we consider the situation under which

$$
\begin{equation*}
h_{n} Y_{[n t]} \xrightarrow{D} Z_{t} \quad \forall t \in(0, \infty) \tag{1.3}
\end{equation*}
$$

Our main result is that if Z_{1} is nonsingular and the h_{n} belong to some subgroup $\mathscr{H} \subseteq \mathscr{G}$ with respect to which Z_{1} is nonsymmetric then there exists a continuous homomorphism of the multiplicative group of $(0, \infty) \gamma:(0, \infty) \mapsto \mathscr{H}$ such that $Z_{t}{ }^{D} \gamma(t) Z_{1}$. In Section 4 we show the explicit form of $\gamma(t)$ in matrix representation.

2. Convergence of Types in \mathscr{E}

For a random vector $Z \in \mathscr{E}$ we define $\mathscr{G}_{Z} \subseteq \mathscr{A}$ to be the symmetry set of Z i.e. $\eta Z \stackrel{D}{=} Z$ iff $\eta \in \mathscr{G}_{Z}$. The following two results of Billingsley [2] are essential.
(2.1) Theorem. If Z is nonsingular then \mathscr{G}_{Z} is a compact subgroup of \mathscr{G}.
(2.2) Theorem. Suppose (1.1) and (1.2) hold where both Z and U are nonsingular. Then for sufficiently large n, h_{n} and g_{n} are in \mathscr{G} and there exist $\gamma \in \mathscr{G}$ and $\eta_{n} \in \mathscr{G} Z$ such that

$$
\begin{equation*}
\gamma_{n}=h_{n} g_{n}^{-1} \sim \gamma \eta_{n} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
U \stackrel{\underline{D}}{=} \gamma Z \tag{2.2}
\end{equation*}
$$

The fact that U and Z belong to the same type (namely (2.2) holds) was proved earlier by Fisz [4].

We shall need the following result when only Z is known to be nonsingular.
(2.3) Theorem. If (1.1) and (1.2) hold then
(a) $\left\{\gamma_{n}\right\}$ is relatively compact in \mathscr{A};
(b) if γ is a limit point of $\left\{\gamma_{n}\right\}$ then (2.2) holds;
(c) U is nonsingular iff $\left\{\gamma_{n}\right\}$ is relatively compact in \mathscr{G} iff $\left\{\gamma_{n}\right\}$ has a limit point in \mathscr{G}.

Proof. Since Z is nonsingular, γ_{n} is well defined for sufficiently large n. Suppose now that (a) is false. Then there exists a $\xi \in \mathscr{E}$ such that the sequence of real linear functions

$$
\begin{equation*}
f_{n \xi}(x)=\left(\xi, \gamma_{n} x\right) \quad(x \in \mathscr{E}) \tag{2.3}
\end{equation*}
$$

is unbounded. Let $\gamma_{n}=\left\langle D_{n} ; d_{n}\right\rangle$ and get

$$
\begin{equation*}
f_{n \xi}(x)=\left(D_{n}^{\prime} \xi, x\right)+\left(\xi, d_{n}\right) \equiv a_{n}\left(\zeta_{n}, x\right)+b_{n}, \tag{2.4}
\end{equation*}
$$

where D_{n}^{\prime} is the adjoint transformation of $D_{n}, a_{n}=\left\|D_{n}^{\prime} \xi\right\|, \zeta_{n}=D_{n}^{\prime} \xi / a_{n}$ and $b_{n}=\left(\xi, d_{n}\right)$. (Notice that $\left\|\zeta_{n}\right\|=1$). Let $\xi \in \mathscr{E}$ and $\{m\}$ be a subsequence of $\{n\}$ such that $\left\{f_{m \xi}\right\}$
is unbounded and $\zeta_{m} \rightarrow \zeta \in \mathscr{E}$. By (1.1) we have

$$
\begin{equation*}
W_{m}=\left(\zeta_{m}, g_{m} Y_{m}\right) \xrightarrow{D}(\zeta, Z) \tag{2.5}
\end{equation*}
$$

and (ζ, Z) is nondegenerate. But by (2.4), (2.3) and (1.2)

$$
\begin{equation*}
a_{m} W_{m}+b_{m}=f_{m \xi}\left(g_{m} Y_{m}\right)=\left(\xi, h_{m} Y_{m}\right) \xrightarrow{D}(\xi, U) . \tag{2.6}
\end{equation*}
$$

By the convergence of types theorem in R^{1} (cf. [3], p. 246) (2.5) and (2.6) imply that $\left\{a_{m}\right\}$ and $\left\{b_{m}\right\}$ are convergent sequences and hence bounded. Thus $\left\{f_{m}\right\}$ is bounded - a contradiction. This proves (a).

If $\gamma=\lim \gamma_{m}$ along some subsequence $\{m\}$ then (1.1) and (1.2) imply $h_{m} Y_{m}=\gamma_{m} g_{m} Y_{m} \xrightarrow{D} \gamma Z \stackrel{D}{\underline{D}} U$ and (b) follows.

When U is nonsingular Theorem 2.2 applies and (2.1) follows. By Theorem 2.1 $\left\{\gamma_{n}\right\}$ is then relatively compact in \mathscr{G} (i.e. all its limit points are in \mathscr{G}). Suppose now that $\left\{\gamma_{n}\right\}$ has a limit point $\gamma \in \mathscr{G}$. Then by (b) $U \stackrel{D}{=} \gamma Z$ and hence U is nonsingular. \square

Let now $\mathscr{H} \subseteq \mathscr{G}$ be a subgroup, closed relative to \mathscr{G}. We say that Z is nonsymmetric with respect to \mathscr{H} if $\mathscr{H} \cap \mathscr{G}_{Z}=\{\varepsilon\}$. An immediate consequence of the previous results is the following convergence of types theorem for \mathscr{E}.
(2.4) Theorem. Let Z be nonsymmetric with respect to \mathscr{H} and suppose (1.1) and
(1.2) hold with Z, U nonsingular and $h_{n}, g_{n} \in \mathscr{H}$. Then there exists a $\gamma \in \mathscr{H}$ such that

$$
\begin{equation*}
\gamma_{n} \rightarrow \gamma \tag{2.7}
\end{equation*}
$$

and (2.2) holds.
Proof. We only have to prove that all the limit points of $\left\{\gamma_{n}\right\}$ are equal. Suppose γ and γ_{*} are both limit points. By Theorem 2.3 both belong to \mathscr{G} and hence to \mathscr{H} and $\gamma Z \stackrel{\underline{D}}{=} \gamma_{*} Z$. This in turn implies $Z \underline{\underline{D}} \gamma^{-1} \gamma_{*} Z$ and hence $\gamma^{-1} \gamma_{*} \in \mathscr{G}_{Z}$. But since $\gamma^{-1} \gamma_{*} \in \mathscr{H}$ we must have $\gamma^{-1} \gamma_{*}=\varepsilon$ i.e. $\gamma=\gamma_{*} . \quad \square$

Notice that in the classical convergence of types theorem in R^{1} ([3], p. 246) \mathscr{H} is the group of all positive affine transformations.

3. Convergence to a Stochastic Process

In this section we shall assume throughout that

$$
\begin{equation*}
h_{n} Y_{n} \xrightarrow{D} Z_{1}, \quad Z_{1} \text { is nonsingular, } \tag{3.1}
\end{equation*}
$$

where $h_{n} \in \mathscr{H}$ and $\mathscr{H} \subseteq \mathscr{G}$ is a subgroup, closed relative to \mathscr{G}. For $t \in(0, \infty)$ we write $\gamma_{n}(t)=h_{n} h_{[n t]}^{-1}$ and thus

$$
\begin{equation*}
h_{n} Y_{[n t]}=\gamma_{n}(t) h_{[n t]} Y_{[n t]} . \tag{3.2}
\end{equation*}
$$

If for some t (here and in the sequel, all t are in $(0, \infty)$)

$$
\begin{equation*}
\gamma_{n}(t) \rightarrow \gamma(t) \tag{3.3}
\end{equation*}
$$

then we clearly have

$$
\begin{equation*}
h_{n} Y_{[n t]} \xrightarrow{D} \gamma(t) Z_{1} . \tag{3.4}
\end{equation*}
$$

Let Λ be the set of all continuous homomorphisms of the multiplicative group of $(0, \infty)$ into \mathscr{H}.
(3.1) Theorem. If (3.3) holds for all t with $\gamma(t) \in \mathscr{H}$ then $\gamma \in \Lambda$ and the convergence in (3.3) is uniform on compact subsets of $(0, \infty)$.

Proof. Define $h(u)=h_{[u]}(u>0)$ then

$$
\begin{equation*}
h(u) h^{-1}(u t)=\gamma_{[u]}(t) h_{[[u\} t]} h_{[u t]}^{-1} . \tag{3.5}
\end{equation*}
$$

Consider the product

$$
\begin{equation*}
\delta_{n}(t)=h_{n} h_{[[n t] / t]}^{-1}=\gamma_{n}(t) \gamma_{[n t]}\left(t^{-1}\right) \tag{3.6}
\end{equation*}
$$

It is clear that for each $t, \delta_{n}(t)$ converges. In particular $\delta_{n}(1 / 2)$ converges. But $\delta_{n}(1 / 2)=\varepsilon$ if n is even and $\delta_{n}(1 / 2)=h_{n} h_{n-1}^{-1}$ if n is odd. Thus we have proved that

$$
\begin{equation*}
h_{n} h_{n-1}^{-1} \rightarrow \varepsilon . \tag{3.7}
\end{equation*}
$$

Since $0 \leqq[u t]-[[u] t] \leqq t+1$ for all $u>0$, (3.7) implies that $h_{[[u] t]} h_{[u t]}^{-1} \rightarrow \varepsilon$ as $u \rightarrow \infty$ and thus from (3.5) we have

$$
\begin{equation*}
\lim _{u \rightarrow \infty} h(u) h^{-1}(u t)=\gamma(t) \tag{3.8}
\end{equation*}
$$

for all t. Thus $h(u)$ is a regularly varying function and hence (cf. [1] Section 9) $\gamma \in \Lambda$ and the convergence in (3.3) is uniform on compact subsets.

Suppose now that

$$
\begin{equation*}
h_{n} Y_{[n t]^{-}} \xrightarrow{D} Z_{t} \quad \forall t \tag{3.9}
\end{equation*}
$$

In general the Z_{t} need not be nonsingular nor need (3.3) hold. Let $T \subseteq(0, \infty)$ be the set of all t for which Z_{t} is nonsingular. The following theorem will help us decide when $t \in T$.
(3.2) Theorem. Suppose (3.1) and (3.9) hold. Then
(a) for each t there exists a $\gamma(t) \in \mathscr{A}$ for which

$$
\begin{equation*}
Z_{t} \stackrel{D}{\eta} \gamma(t) Z_{1} \tag{3.10}
\end{equation*}
$$

(b) for a fixed $t,\left\{\gamma_{n}(t)\right\}$ has a limit point in \mathscr{H} iff $t \in T$;
(c) if t is rational then $t \in T$;
(d) (3.7) implies $T=(0, \infty)$;
(e) the existence of $t_{0} \neq 1$ for which $\gamma_{n}\left(t_{0}\right) \rightarrow \gamma\left(t_{0}\right)$ and $\gamma_{n}\left(t_{0}^{-1}\right) \rightarrow \gamma^{-1}\left(t_{0}\right)$ implies (3.7);
(f) if Z_{1} is nonsymmetric with respect to \mathscr{H} then (3.7) holds.

Proof. The application of Theorem 2.3 immediately implies (a) and (b). Consider now $\delta_{n}(t)$ defined by (3.6), and suppose that ε is a limit point (t fixed). Since $\left\{\gamma_{n}(t)\right\}$ and $\left\{\gamma_{[n t]}\left(t^{-1}\right)\right\}$ are both relatively compact in \mathscr{A} (Theorem 2.3), there exists a subsequence $\{m\}$ along which $\delta_{m}(t) \rightarrow \varepsilon$ and $\gamma_{m}(t)$ and $\gamma_{[m t]}\left(t^{-1}\right)$ both converge to $\gamma(t), \gamma\left(t^{-1}\right)$ in \mathscr{A} (respectively). But by (3.6) we must have $\varepsilon=\gamma(t) \gamma\left(t^{-1}\right)$ and hence $\gamma(t), \gamma\left(t^{-1}\right) \in \mathscr{H}$. Thus by (b) $t \in T$.

If t is rational then $\delta_{n}(t)=\varepsilon$ infinitely often (i.o.) (whenever $n t$ is integral) and thus ε is a limit point and hence (c) follows.

Suppose $h_{n} h_{n-1}^{-1} \rightarrow \varepsilon$. For each $t, 0 \leqq n-[[n t] / t] \leqq t^{-1}+1$ is bounded. Hence $\delta_{n}(t) \rightarrow \varepsilon$ for each t and (d) follows.

For every $t \neq 1$ either $[[n t] / t]=n-1$ i.o. or $[[n / t] t]=n-1$ i.o. Let t_{0} satisfy the condition of (e). Thus $\delta_{n}\left(t_{0}\right) \rightarrow \varepsilon$ and $\delta_{n}\left(t_{0}^{-1}\right) \rightarrow \varepsilon$. Since at least one among $\left\{\delta_{n}\left(t_{0}\right), \delta_{n}\left(t_{0}^{-1}\right)\right\}$ is equal to $h_{n} h_{n-1}^{-1}$ i.o. we must have $h_{n} h_{n-1}^{-1} \rightarrow \varepsilon$.

Suppose now that Z is nonsymmetric with respect to \mathscr{H}. Fix a rational (but not integral) t. We know that $t, t^{-1} \in T$ and hence by Theorem $2.4 \gamma_{n}(t)$ and $\gamma_{n}\left(t^{-1}\right)$ both converge in \mathscr{H} and so does $\delta_{n}(t)$. But $\delta_{n}(t)=\varepsilon$ i.o. and $\delta_{n}(t)=h_{n} h_{n-1}^{-1}$ i.o., hence $\delta_{n}(t) \rightarrow \varepsilon$ and (f$)$ follows. \square

Notice that none of the conditions in (c)-(f) are necessary. But it is only under nonsymmetry that we can prove
(3.3) Theorem. Suppose (3.1) holds with Z_{1} nonsymmetric with respect to \mathscr{H}. Then (3.9) holds iff there exists a $\gamma \in A$ such that (3.3) and (3.10) hold for all t.

Proof. If (3.9) holds then Theorem 3.2 (f), (d) imply that all the Z_{t} are nonsingular. In such a case, Theorem 2.4 applies and (3.3) and (3.10) follow; $\gamma \in \Lambda$ follows by Theorem 3.1 since (3.3) holds.

The converse follows easily by using the identity (3.2).

4. The Possible Forms of γ

The fact that $\gamma_{n}(t)=h_{n} h_{[n t]}^{-1} \rightarrow \gamma(t)$ as a result of $h_{n} Y_{[n t]} \xrightarrow{D} Z_{t}$ does not restrict the possible γ.

Fact 1. Every $\gamma \in \Lambda$ is obtained under (3.9) and (3.10) with every nonsingular Z_{1}.
Proof. For given γ and Z_{1} we define $Y_{n} \stackrel{D}{=} \gamma(n) Z_{1}$ and $h_{n}=\gamma\left(n^{-1}\right)$. Then clearly $h_{n} Y_{[n t]} \xrightarrow{D} \gamma(t) Z_{1}$ and $\gamma_{n}(t) \rightarrow \gamma(t)$ for all t. $\quad \square$

Hence, the study of the possible forms of γ can be done without any reference to (3.1) or (3.9). We shall point out some facts which might be useful in applications. In this section, every γ is in Λ. We assume that a basis for \mathscr{E} is specified and we identify linear transformations with their matrix representations. The notation $\gamma(t)=\left\langle D_{t} ; d_{t}\right\rangle$ is now replaced by the matrix notation

$$
\gamma(t)=\left(\begin{array}{cc}
1 & 0 \tag{4.1}\\
d_{t} & D_{t}
\end{array}\right) \quad\left(d_{t}, 0^{\prime} \in R^{k}, D_{\imath} \text { is } k \times k\right) .
$$

Let B be a square matrix. By $\exp \{B\}$ we mean $\sum_{i=0}^{\infty} B^{i} / i$!
Fact 2. For each $\gamma \in A$ there exists $a b \in R^{k}$ and $a k \times k$ matrix B such that

$$
\gamma(t)=\exp \left\{\left(\begin{array}{ll}
0 & 0 \tag{4.2}\\
b & B
\end{array}\right) \log t\right\}, \quad D_{t}=\exp \{B \log t\}
$$

Proof. Since both $\gamma(t)$ and D_{t} are continuous and satisfy Polya's functional equation $(\gamma(t s)=\gamma(t) \gamma(s), \gamma(1)=I)$ we must have $\gamma(t)=\exp \{C \log t\}$ and $D_{t}=\exp \{B \log t\}$
for some matrices C and B. The relation between C and B is determined by (4.1) and (4.2) is the result.

Let $\rho(0 \leqq \rho \leqq k)$ be the rank of B. Without loss of generality we can write

$$
B=\left(\begin{array}{ll}
B_{1} & 0 \\
B_{2} & 0
\end{array}\right), \quad b=\binom{b_{1}}{b_{2}}
$$

where B_{1} is a regular $\rho \times \rho$ matrix, B_{2} is a $(k-\rho) \times \rho$ matrix, $b_{1} \in R^{\rho}$ and $b_{2} \in R^{k-\rho}$. By straightforward calculations we thus have

Fact 3.

$$
\gamma(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{4.3}\\
c_{1} & C_{1} & 0 \\
c_{2} & C_{2} & 0
\end{array}\right)
$$

with

$$
\begin{align*}
& C_{1}=\exp \left\{B_{1} \log t\right\} \\
& C_{2}=B_{2}\left(C_{1}-I\right) B_{1}^{-1} \equiv B_{2} U \\
& c_{1}=\left(C_{1}-I\right) B_{1}^{-1} b_{1}=U b_{1} \tag{4.4}\\
& c_{2}=b_{2} \log t+B_{2}(U-I \log t) B_{1}^{-1} b_{1} .
\end{align*}
$$

Fact 4. If $\rho=k$ then $x_{0}=-B^{-1} b$ is a common fixed point.
Proof. When $\rho=k$ we have $B=B_{1}, D_{t}=C_{1}$ and $d_{t}=c_{1}$. Thus by (4.4)

$$
\gamma(t) x=D_{t} x+d_{t}=\exp \{B \log t\}\left(x-x_{0}\right)+x_{0} \quad(x \in \mathscr{E}) .
$$

Suppose that $B=P \Delta P^{-1}$ where Δ is of some desired canonical form (diagonal, Jordan, triangular, etc.). Then, since $B^{n}=P \Delta^{n} P^{-1}$ we have

$$
\gamma(t)=\left(\begin{array}{ll}
1 & 0 \tag{4.5}\\
0 & P
\end{array}\right) \exp \left\{\left(\begin{array}{ll}
0 & 0 \\
a & \Delta
\end{array}\right) \log t\right\}\left(\begin{array}{cc}
1 & 0 \\
0 & P^{-1}
\end{array}\right), \quad a=P^{-1} b
$$

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the characteristic roots of B and let $d_{t, i}$ and a_{i} be the i-th components of d_{t} and a respectively.

Fact 5. If B can be diagonalized then (under a suitable coordinate system)

$$
D_{t}=\left(\begin{array}{cc}
t^{\lambda_{1}} & 0 \tag{4.6}\\
0 & \ddots \\
0 & t^{\lambda_{k}}
\end{array}\right) \quad \begin{array}{cl}
d_{t, i}=\left(t^{\lambda_{i}}-1\right) a_{i} / \lambda_{i} & \\
& \text { if } \lambda_{i} \neq 0 \\
=a_{i} \log t & \\
\text { if } \lambda_{i}=0
\end{array}
$$

Proof. If $\Delta=P^{-1} B P$ is diagonal then the λ_{i} are its diagonal elements (and can be arranged so that $\lambda_{i} \neq 0, i=1, \ldots, \rho$ and $\left.\lambda_{i}=0, i=\rho+1, \ldots, k\right)$. To evaluate

$$
\exp \left\{\left(\begin{array}{ll}
0 & 0 \\
a & 4
\end{array}\right) \log t\right\}
$$

we apply (4.4) with diagonal B_{1} and with $B_{2}=0$. \quad
Notice that diagonalization of B is possible e.g. when B is symmetric or when all the λ_{i} are distinct.

When $\mathscr{E}=R^{1}$, then $B=\lambda_{1}$ and (4.6) always holds. This case was treated in [6].
Lamperti[5] treats the case where $h_{n}=\left\langle\alpha_{n} I ; b_{n}\right\rangle, \alpha_{n} \in R^{1}, \alpha_{n} \downarrow 0, b_{n} \in R^{k}, h_{n} Y_{[n t]} \rightarrow Z_{t}$ in the sense of convergence of all the finite dimensional laws and $\left\{Z_{t}\right\}$ is a continuous (in probability) process. In this case (4.6) automatically holds since D_{t} is of the form $t^{\lambda} I$.

Acknowledgement. I am indebted to A.A. Balkema for valuable discussions.

References

1. Balkema, A.A.: Monotone transformations and limit laws. MC tract 45, Mathematical Centre, Amsterdam (1973)
2. Billingsley, P.: Convergence of types in k-space. Z. Wahrscheinlichkeitstheorie verw. Gebiete 5, 175-179 (1966)
3. Feller, W.: An introduction to probability theory and its applications, Vol. II. New York: Wiley 1966
4. Fisz, M.: A generalization of a theorem of Khintchin. Studia Math. 14, 310-313 (1954)
5. Lamperti, J.W.: Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, 62-78 (1962)
6. Weissman, I.: On location and scale functions of a class of limiting processes with application to extreme value theory. Ann. Probability 3, 178-181 (1975)

Received December 1, 1975; in revised form May 20, 1976

