Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1976

On Convergence of Types and Processes in Euclidean Space

Ishay Weissman

Faculty of Industrial and Management Engineering, Technion, Haifa, Israel

Let \mathscr{E} be an Euclidean space; Y_n , Z, U random vectors in \mathscr{E} ; h_n , g_n affine transformations and let \mathscr{H} be a subgroup of the group \mathscr{G} of all the invertible affine transformations, closed relative to \mathscr{G} . Suppose that $g_n Y_n \xrightarrow{D} Z$ and $h_n Y_n \xrightarrow{D} U$ where Z is nonsingular. The behaviour of $\gamma_n = h_n g_n^{-1}$ as $n \to \infty$ is discussed first. The results are used then to prove that if $h_n Y_{[nt]} \xrightarrow{D} Z_t \in \mathscr{E}$ for all $t \in (0, \infty)$, where $h_n \in \mathscr{H}$ and Z_1 is nonsingular and nonsymmetric with respect to \mathscr{H} , then $\gamma_n(t) = h_n h_{[nt]}^{-1} \to \gamma(t) \in \mathscr{H}$, $Z_t \xrightarrow{D} \gamma(t) Z_1$ for all $t \in (0, \infty)$ and γ is a continuous homomorphism of the multiplicative group of $(0, \infty)$ into \mathscr{H} . The explicit forms of the possible γ are shown.

1. Introduction

Let Y_n and Z be random vectors in a k-dimensional Euclidean space \mathscr{E} and let h_n be an affine transformation. Whenever a limiting result of the form $h_n Y_n \xrightarrow{D} Z$ (as $n \rightarrow \infty$) is obtained, a natural question is then whether a functional limit theorem holds. Namely, does $h_n Y_{[nt]}$ converge in distribution? And if it does, what is the distribution of the limit Z_t , say, in terms of Z? The present paper, which is an attempt to answer these questions, generalizes the results of [6] obtained for $\mathscr{E} = R^1$.

Let \mathscr{A} be the set of all affine transformations $h: \mathscr{E} \mapsto \mathscr{E}$. We write $h = \langle B; b \rangle$ if hx = Bx + b ($x \in \mathscr{E}$), B a linear transformation and $b \in \mathscr{E}$. Let \mathscr{G} be the group of all invertible (nonsingular) elements of \mathscr{A} and let ε be the identity of \mathscr{G} . For h_n , $h \in \mathscr{A}, h_n \to h$ means $h_n x \to h x$ for each $x \in \mathscr{E}$. This definition gives to \mathscr{A} a topology under which composition is continuous. The notation $h_n \sim g_n$ ($h_n, g_n \in \mathscr{G}$) means $h_n g_n^{-1} \to \varepsilon$.

A random vector $Z \in \mathscr{E}$ is nonsingular if (x, Z) is a nondegenerate random variable for each $x \neq 0$, $x \in \mathscr{E}$ (here (\cdot, \cdot) is the inner product in \mathscr{E}).

In Section 2 we consider both relations

 $g_n Y_n \xrightarrow{D} Z$, Z nonsingular

(1.1)

I. Weissman

and

$$h_n Y_n \xrightarrow{D} U$$
 (1.2)

and draw some conclusions about $\gamma_n = h_n g_n^{-1}$ and U. In Section 3 we consider the situation under which

$$h_n Y_{[nt]} \xrightarrow{D} Z_t \quad \forall t \in (0, \infty).$$
(1.3)

Our main result is that if Z_1 is nonsingular and the h_n belong to some subgroup $\mathscr{H} \subseteq \mathscr{G}$ with respect to which Z_1 is nonsymmetric then there exists a continuous homomorphism of the multiplicative group of $(0, \infty)$ $\gamma: (0, \infty) \mapsto \mathscr{H}$ such that $Z_t \stackrel{D}{=} \gamma(t) Z_1$. In Section 4 we show the explicit form of $\gamma(t)$ in matrix representation.

2. Convergence of Types in *&*

For a random vector $Z \in \mathscr{E}$ we define $\mathscr{G}_Z \subseteq \mathscr{A}$ to be the symmetry set of Z i.e. $\eta Z \stackrel{D}{=} Z$ iff $\eta \in \mathscr{G}_Z$. The following two results of Billingsley [2] are essential.

(2.1) **Theorem.** If Z is nonsingular then \mathscr{G}_{Z} is a compact subgroup of \mathscr{G} .

(2.2) **Theorem.** Suppose (1.1) and (1.2) hold where both Z and U are nonsingular. Then for sufficiently large n, h_n and g_n are in \mathscr{G} and there exist $\gamma \in \mathscr{G}$ and $\eta_n \in \mathscr{G}_Z$ such that

$$\gamma_n = h_n g_n^{-1} \sim \gamma \eta_n \tag{2.1}$$

and

$$U \stackrel{D}{=} \gamma Z. \tag{2.2}$$

The fact that U and Z belong to the same type (namely (2.2) holds) was proved earlier by Fisz [4].

We shall need the following result when only Z is known to be nonsingular.

(2.3) **Theorem.** If (1.1) and (1.2) hold then

- (a) $\{\gamma_n\}$ is relatively compact in \mathscr{A} ;
- (b) if γ is a limit point of $\{\gamma_n\}$ then (2.2) holds;
- (c) U is nonsingular iff $\{\gamma_n\}$ is relatively compact in G iff $\{\gamma_n\}$ has a limit point in G.

Proof. Since Z is nonsingular, γ_n is well defined for sufficiently large n. Suppose now that (a) is false. Then there exists a $\xi \in \mathscr{E}$ such that the sequence of real linear functions

$$f_{n\xi}(x) = (\xi, \gamma_n x) \quad (x \in \mathscr{E})$$
(2.3)

is unbounded. Let $\gamma_n = \langle D_n; d_n \rangle$ and get

$$f_{n\xi}(x) = (D'_n\xi, x) + (\xi, d_n) \equiv a_n(\zeta_n, x) + b_n,$$
(2.4)

where D'_n is the adjoint transformation of D_n , $a_n = ||D'_n \xi||$, $\zeta_n = D'_n \xi/a_n$ and $b_n = (\xi, d_n)$. (Notice that $||\zeta_n|| = 1$). Let $\xi \in \mathscr{E}$ and $\{m\}$ be a subsequence of $\{n\}$ such that $\{f_m \xi\}$

36

is unbounded and $\zeta_m \rightarrow \zeta \in \mathscr{E}$. By (1.1) we have

$$W_m = (\zeta_m, g_m Y_m) \xrightarrow{D} (\zeta, Z)$$
(2.5)

and (ζ, Z) is nondegenerate. But by (2.4), (2.3) and (1.2)

$$a_m W_m + b_m = f_{m\xi}(g_m Y_m) = (\xi, h_m Y_m) \xrightarrow{D} (\xi, U).$$

$$(2.6)$$

By the convergence of types theorem in \mathbb{R}^1 (cf. [3], p. 246) (2.5) and (2.6) imply that $\{a_m\}$ and $\{b_m\}$ are convergent sequences and hence bounded. Thus $\{f_{m\xi}\}$ is bounded – a contradiction. This proves (a).

If $\gamma = \lim \gamma_m$ along some subsequence $\{m\}$ then (1.1) and (1.2) imply $h_m Y_m = \gamma_m g_m Y_m \xrightarrow{D} \gamma Z \xrightarrow{D} U$ and (b) follows. When U is nonsingular Theorem 2.2 applies and (2.1) follows. By Theorem 2.1

When U is nonsingular Theorem 2.2 applies and (2.1) follows. By Theorem 2.1 $\{\gamma_n\}$ is then relatively compact in \mathscr{G} (i.e. all its limit points are in \mathscr{G}). Suppose now that $\{\gamma_n\}$ has a limit point $\gamma \in \mathscr{G}$. Then by (b) $U \stackrel{D}{=} \gamma Z$ and hence U is nonsingular.

Let now $\mathscr{H} \subseteq \mathscr{G}$ be a subgroup, closed relative to \mathscr{G} . We say that Z is nonsymmetric with respect to \mathscr{H} if $\mathscr{H} \cap \mathscr{G}_Z = \{\varepsilon\}$. An immediate consequence of the previous results is the following convergence of types theorem for \mathscr{E} .

(2.4) **Theorem.** Let Z be nonsymmetric with respect to \mathcal{H} and suppose (1.1) and (1.2) hold with Z, U nonsingular and $h_n, g_n \in \mathcal{H}$. Then there exists a $\gamma \in \mathcal{H}$ such that

$$\gamma_n \rightarrow \gamma$$
 (2.7)

and (2.2) holds.

Proof. We only have to prove that all the limit points of $\{\gamma_n\}$ are equal. Suppose γ and γ_* are both limit points. By Theorem 2.3 both belong to \mathscr{G} and hence to \mathscr{H} and $\gamma Z \stackrel{D}{=} \gamma_* Z$. This in turn implies $Z \stackrel{D}{=} \gamma^{-1} \gamma_* Z$ and hence $\gamma^{-1} \gamma_* \in \mathscr{G}_Z$. But since $\gamma^{-1} \gamma_* \in \mathscr{H}$ we must have $\gamma^{-1} \gamma_* = \varepsilon$ i.e. $\gamma = \gamma_*$. \Box

Notice that in the classical convergence of types theorem in \mathbb{R}^1 ([3], p. 246) \mathscr{H} is the group of all positive affine transformations.

3. Convergence to a Stochastic Process

In this section we shall assume throughout that

$$h_n Y_n \xrightarrow{D} Z_1, \quad Z_1 \text{ is nonsingular},$$
 (3.1)

where $h_n \in \mathcal{H}$ and $\mathcal{H} \subseteq \mathcal{G}$ is a subgroup, closed relative to \mathcal{G} . For $t \in (0, \infty)$ we write $\gamma_n(t) = h_n h_{[nt]}^{-1}$ and thus

$$h_n Y_{[nt]} = \gamma_n(t) h_{[nt]} Y_{[nt]}.$$
(3.2)

If for some t (here and in the sequel, all t are in $(0, \infty)$)

$$\gamma_{n}(t) \to \gamma(t) \tag{3.3}$$

then we clearly have

$$h_n Y_{[nt]} \xrightarrow{D} \gamma(t) Z_1.$$
(3.4)

Let Λ be the set of all continuous homomorphisms of the multiplicative group of $(0, \infty)$ into \mathcal{H} .

(3.1) **Theorem.** If (3.3) holds for all t with $\gamma(t) \in \mathcal{H}$ then $\gamma \in \Lambda$ and the convergence in (3.3) is uniform on compact subsets of $(0, \infty)$.

Proof. Define $h(u) = h_{[u]}(u > 0)$ then

$$h(u) h^{-1}(ut) = \gamma_{[u]}(t) h_{[[u]t]} h^{-1}_{[ut]}.$$
(3.5)

Consider the product

$$\delta_n(t) = h_n h_{[[nt]/t]}^{-1} = \gamma_n(t) \gamma_{[nt]}(t^{-1}).$$
(3.6)

It is clear that for each $t, \delta_n(t)$ converges. In particular $\delta_n(1/2)$ converges. But $\delta_n(1/2) = \varepsilon$ if n is even and $\delta_n(1/2) = h_n h_{n-1}^{-1}$ if n is odd. Thus we have proved that

$$h_n h_{n-1}^{-1} \to \varepsilon. \tag{3.7}$$

Since $0 \leq [ut] - [[u]t] \leq t+1$ for all u > 0, (3.7) implies that $h_{[[u]t]} h_{[ut]}^{-1} \rightarrow \varepsilon$ as $u \rightarrow \infty$ and thus from (3.5) we have

$$\lim_{u \to \infty} h(u) h^{-1}(ut) = \gamma(t) \tag{3.8}$$

for all t. Thus h(u) is a regularly varying function and hence (cf. [1] Section 9) $\gamma \in \Lambda$ and the convergence in (3.3) is uniform on compact subsets.

Suppose now that

$$h_n Y_{[nt]} \xrightarrow{D} Z_t \quad \forall t.$$
(3.9)

In general the Z_t need not be nonsingular nor need (3.3) hold. Let $T \subseteq (0, \infty)$ be the set of all t for which Z_t is nonsingular. The following theorem will help us decide when $t \in T$.

(3.2) **Theorem.** Suppose (3.1) and (3.9) hold. Then

(a) for each t there exists a $\gamma(t) \in \mathscr{A}$ for which

$$Z_t \stackrel{D}{=} \gamma(t) Z_1; \tag{3.10}$$

(b) for a fixed t, $\{\gamma_n(t)\}$ has a limit point in \mathcal{H} iff $t \in T$;

(c) if t is rational then $t \in T$;

(d) (3.7) implies $T = (0, \infty)$;

(e) the existence of $t_0 \neq 1$ for which $\gamma_n(t_0) \rightarrow \gamma(t_0)$ and $\gamma_n(t_0^{-1}) \rightarrow \gamma^{-1}(t_0)$ implies (3.7);

(f) if Z_1 is nonsymmetric with respect to \mathcal{H} then (3.7) holds.

Proof. The application of Theorem 2.3 immediately implies (a) and (b). Consider now $\delta_n(t)$ defined by (3.6), and suppose that ε is a limit point (t fixed). Since $\{\gamma_n(t)\}$ and $\{\gamma_{[nt]}(t^{-1})\}$ are both relatively compact in \mathscr{A} (Theorem 2.3), there exists a subsequence $\{m\}$ along which $\delta_m(t) \rightarrow \varepsilon$ and $\gamma_m(t)$ and $\gamma_{[mt]}(t^{-1})$ both converge to $\gamma(t), \gamma(t^{-1})$ in \mathscr{A} (respectively). But by (3.6) we must have $\varepsilon = \gamma(t) \gamma(t^{-1})$ and hence $\gamma(t), \gamma(t^{-1}) \in \mathscr{H}$. Thus by (b) $t \in T$. Convergence of Types and Euclidean Space

If t is rational then $\delta_n(t) = \varepsilon$ infinitely often (i.o.) (whenever nt is integral) and thus ε is a limit point and hence (c) follows.

Suppose $h_n h_{n-1}^{-1} \to \varepsilon$. For each t, $0 \le n - [[nt]/t] \le t^{-1} + 1$ is bounded. Hence $\delta_n(t) \to \varepsilon$ for each t and (d) follows.

For every $t \neq 1$ either [[nt]/t] = n-1 i.o. or [[n/t]t] = n-1 i.o. Let t_0 satisfy the condition of (e). Thus $\delta_n(t_0) \to \varepsilon$ and $\delta_n(t_0^{-1}) \to \varepsilon$. Since at least one among $\{\delta_n(t_0), \delta_n(t_0^{-1})\}$ is equal to $h_n h_{n-1}^{-1}$ i.o. we must have $h_n h_{n-1}^{-1} \to \varepsilon$.

Suppose now that Z is nonsymmetric with respect to \mathscr{H} . Fix a rational (but not integral) t. We know that $t, t^{-1} \in T$ and hence by Theorem 2.4 $\gamma_n(t)$ and $\gamma_n(t^{-1})$ both converge in \mathscr{H} and so does $\delta_n(t)$. But $\delta_n(t) = \varepsilon$ i.o. and $\delta_n(t) = h_n h_{n-1}^{-1}$ i.o., hence $\delta_n(t) \to \varepsilon$ and (f) follows.

Notice that none of the conditions in (c)-(f) are necessary. But it is only under nonsymmetry that we can prove

(3.3) **Theorem.** Suppose (3.1) holds with Z_1 nonsymmetric with respect to \mathcal{H} . Then (3.9) holds iff there exists a $\gamma \in \Lambda$ such that (3.3) and (3.10) hold for all t.

Proof. If (3.9) holds then Theorem 3.2 (f), (d) imply that all the Z_t are nonsingular. In such a case, Theorem 2.4 applies and (3.3) and (3.10) follow; $\gamma \in \Lambda$ follows by Theorem 3.1 since (3.3) holds.

The converse follows easily by using the identity (3.2).

4. The Possible Forms of γ

The fact that $\gamma_n(t) = h_n h_{[nt]}^{-1} \rightarrow \gamma(t)$ as a result of $h_n Y_{[nt]} \xrightarrow{D} Z_t$ does not restrict the possible γ .

Fact 1. Every $\gamma \in A$ is obtained under (3.9) and (3.10) with every nonsingular Z_1 .

Proof. For given γ and Z_1 we define $Y_n \stackrel{D}{=} \gamma(n) Z_1$ and $h_n = \gamma(n^{-1})$. Then clearly $h_n Y_{[nt]} \stackrel{D}{\longrightarrow} \gamma(t) Z_1$ and $\gamma_n(t) \rightarrow \gamma(t)$ for all t.

Hence, the study of the possible forms of γ can be done without any reference to (3.1) or (3.9). We shall point out some facts which might be useful in applications. In this section, every γ is in Λ . We assume that a basis for \mathscr{E} is specified and we identify linear transformations with their matrix representations. The notation $\gamma(t) = \langle D_t; d_t \rangle$ is now replaced by the matrix notation

$$\gamma(t) = \begin{pmatrix} 1 & 0 \\ d_t & D_t \end{pmatrix} \quad (d_t, 0' \in \mathbb{R}^k, D_t \text{ is } k \times k).$$
(4.1)

Let B be a square matrix. By exp {B} we mean $\sum_{i=0}^{\infty} B^i/i!$

Fact 2. For each $\gamma \in \Lambda$ there exists a $b \in \mathbb{R}^k$ and a $k \times k$ matrix B such that

$$\gamma(t) = \exp\left\{ \begin{pmatrix} 0 & 0 \\ b & B \end{pmatrix} \log t \right\}, \quad D_t = \exp\left\{ B \log t \right\}.$$
(4.2)

Proof. Since both $\gamma(t)$ and D_t are continuous and satisfy Polya's functional equation $(\gamma(ts) = \gamma(t) \gamma(s), \gamma(1) = I)$ we must have $\gamma(t) = \exp \{C \log t\}$ and $D_t = \exp \{B \log t\}$

for some matrices C and B. The relation between C and B is determined by (4.1) and (4.2) is the result. \Box

Let ρ ($0 \leq \rho \leq k$) be the rank of *B*. Without loss of generality we can write

$$B = \begin{pmatrix} B_1 & 0 \\ B_2 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},$$

where B_1 is a regular $\rho \times \rho$ matrix, B_2 is a $(k-\rho) \times \rho$ matrix, $b_1 \in \mathbb{R}^{\rho}$ and $b_2 \in \mathbb{R}^{k-\rho}$. By straightforward calculations we thus have

Fact 3.

$$\gamma(t) = \begin{pmatrix} 1 & 0 & 0 \\ c_1 & C_1 & 0 \\ c_2 & C_2 & 0 \end{pmatrix}$$
(4.3)

with

$$C_{1} = \exp \{B_{1} \log t\}$$

$$C_{2} = B_{2}(C_{1} - I) B_{1}^{-1} \equiv B_{2} U$$

$$c_{1} = (C_{1} - I) B_{1}^{-1} b_{1} = U b_{1}$$

$$c_{2} = b_{2} \log t + B_{2} (U - I \log t) B_{1}^{-1} b_{1}.$$
(4.4)

Fact 4. If $\rho = k$ then $x_0 = -B^{-1}b$ is a common fixed point.

Proof. When $\rho = k$ we have $B = B_1$, $D_t = C_1$ and $d_t = c_1$. Thus by (4.4)

$$\gamma(t) x = D_t x + d_t = \exp\{B \log t\}(x - x_0) + x_0 \quad (x \in \mathscr{E}).$$

Suppose that $B = P \Delta P^{-1}$ where Δ is of some desired canonical form (diagonal, Jordan, triangular, etc.). Then, since $B^n = P \Delta^n P^{-1}$ we have

$$\gamma(t) = \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix} \exp\left\{ \begin{pmatrix} 0 & 0 \\ a & \Delta \end{pmatrix} \log t \right\} \begin{pmatrix} 1 & 0 \\ 0 & P^{-1} \end{pmatrix}, \quad a = P^{-1}b.$$
(4.5)

Let $\lambda_1, ..., \lambda_k$ be the characteristic roots of B and let $d_{i,i}$ and a_i be the *i*-th components of d_i and a respectively.

Fact 5. If B can be diagonalized then (under a suitable coordinate system)

$$D_{t} = \begin{pmatrix} t^{\lambda_{1}} \\ 0 \end{pmatrix} \begin{pmatrix} d_{t,i} = (t^{\lambda_{i}} - 1) a_{i} \\ \lambda_{i} \end{pmatrix} \quad \begin{aligned} & \text{if } \lambda_{i} \neq 0 \\ & = a_{i} \log t \end{pmatrix} \quad \begin{aligned} & \text{if } \lambda_{i} = 0. \end{aligned}$$

$$\tag{4.6}$$

Proof. If $\Delta = P^{-1}BP$ is diagonal then the λ_i are its diagonal elements (and can be arranged so that $\lambda_i \neq 0$, $i = 1, ..., \rho$ and $\lambda_i = 0$, $i = \rho + 1, ..., k$). To evaluate

$$\exp\left\{\begin{pmatrix} 0 & 0\\ a & \varDelta \end{pmatrix}\log t\right\}$$

we apply (4.4) with diagonal B_1 and with $B_2 = 0$.

Notice that diagonalization of B is possible e.g. when B is symmetric or when all the λ_i are distinct.

When $\mathscr{E} = R^1$, then $B = \lambda_1$ and (4.6) always holds. This case was treated in [6]. Lamperti [5] treats the case where $h_n = \langle \alpha_n I; b_n \rangle, \alpha_n \in R^1, \alpha_n \downarrow 0, b_n \in R^k, h_n Y_{[nt]} \to Z_t$ in the sense of convergence of all the finite dimensional laws and $\{Z_t\}$ is a continuous (in probability) process. In this case (4.6) automatically holds since D_t is of the form $t^{\lambda} I$.

Acknowledgement. I am indebted to A.A. Balkema for valuable discussions.

References

- 1. Balkema, A.A.: Monotone transformations and limit laws. MC tract 45, Mathematical Centre, Amsterdam (1973)
- Billingsley, P.: Convergence of types in k-space. Z. Wahrscheinlichkeitstheorie verw. Gebiete 5, 175–179 (1966)
- 3. Feller, W.: An introduction to probability theory and its applications, Vol. II. New York: Wiley 1966
- 4. Fisz, M.: A generalization of a theorem of Khintchin. Studia Math. 14, 310-313 (1954)
- 5. Lamperti, J.W.: Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, 62-78 (1962)
- Weissman, I.: On location and scale functions of a class of limiting processes with application to extreme value theory. Ann. Probability 3, 178-181 (1975)

Received December 1, 1975; in revised form May 20, 1976