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Let ~ be an Euclidean space; Y,, Z, U random vectors in 8;  h,, g, affine trans- 
formations and let ~ be a subgroup of the group ~ of all the invertible affine trans- 
formations, closed relative to ~. Suppose that g, Y, D, Z and h, y_p~D U where Z 
is nonsingular. The behaviour of 7, = h, g~-1 as n ~  ~ is discussed first. The results 
are used then to prove that if h, Yr,~] ~ Z~ ~ g for all t ~ (0, ~),  where h, e J r  and Z 1 
is nonsingular and nonsymmetric with respect to H, then 7.(t)= h , h ( . ~  7(t)eW,, 
Zts ~ for all re(0, ~ )  and 7 is a continuous homomorphism of the multi- 
plicative group of (0, o~) into W. The explicit forms of the possible 7 are shown. 

1. Introduction 

Let Y, and Z be random vectors in a k-dimensional Euclidean space ~ and let h. 
be an affine transformation. Whenever a limiting result of the form h, y_~D Z 
(as n ~ ~ )  is obtained, a natural question is then whether a functional limit theorem 
holds. Namely, does h, Y~,~I converge in distribution? And if it does, what is the 
distribution of the limit Z t, say, in terms of Z?  The present paper, which is an 
attempt to answer these questions, generalizes the results of [6] obtained for 
~ = R  1. 

Let d be the set of all affine transformations h: r We write h=(B; b) 
if hx=Bx+b ( x ~ ) ,  B a linear transformation and b ~ .  Let ~ be the group of 
all invertible (nonsingular) elements of .~ and let ~ be the identity of ~. For h,, 
hE~r hn--~ h means hnx--~ hx for each x~& This definition gives to d a topology 
under which composition is continuous. The notation h,~g. (h., g . ~ )  means 
h,g~ l--~ e. 

A random vector Z ~ g  is nonsingular if (x, Z) is a nondegenerate random 
variable for each x•0, x ~ g  (here (., .) is the inner product in g). 

In Section 2 we consider both relations 

g, y_~D Z, Z nonsingular (1.1) 
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and 

h.Y. ~  (1.2) 

and draw some conclusions about 7.---h.g2 1 and U. In Section 3 we consider the 
situation under which 

h.Y[.t]D-~.Z, Vte(0, oo). (1.3) 

Our main result is that if Z1 is nonsingular and the h, belong to some subgroup 
.~  Gad with respect to which Z1 is nonsymmetric then there exists a continuous 
homomorphism of the multiplicative group of(0,  oo)~7: (0, oo)~-,~f such that 
Z t ~ y (t) Z~. In Section 4 we show the explicit form of y (t) in matrix representation. 

2. Convergence of Types in 

For a random vector Z~6 ~ we define f~z___d to be the symmetry set of Z i.e. 
t/Z ~ Z iff t/~fr z. The following two results of Billingsley [2] are essential. 

(2.1) Theorem. I f  Z is nonsingular then ad z is a compact subgroup of ad. 

(2.2) Theorem. Suppose (1.1) and (1.2) hold where both Z and U are nonsingular. 
7hen-for sufficiently large n, h. and g, are in ad and there exist ?sad and rl, eCdz 
such that 

y . = h . g / 1  --~7 t/. (2.1) 

and 

U ~ y Z .  (2.2) 

The fact that U and Z belong to the same type (namely (2.2) holds) was proved 
earlier by Fisz [4]. 

We shall need the following result when only Z is known to be nonsingular. 

(2.3) Theorem. If(1.1) and (1.2) hold then 

(a) {7.} is relatively compact in d "  

(b) i f? is a limit point of {7.} then (2.2) holds; 

(c) U is nonsingular iff {7.} is relatively compact in fY iff {7.} has a limit point in ad. 

Proof. Since Z is nonsingular, 7. is well defined for sufficiently large n. Suppose 
now that (a) is false. Then there exists a ~ ~ C such that the sequence of real linear 
functions 

f.~(x) = (4, y.x) (x~g)  (2.3) 

is unbounded. Let 7 .=  ( D ;  d.)  and get 

f.~ (x)= (D'. 4, x) + (4, d.) - a. (~., x) + b., (2.4) 

where D'. is the adjoint transformation of D ,  a = lID'. ~ 11, ~. = D' i/a. and b. = (~, d.). 
(Notice that /[~.ll = 1). Let ~eg  and {m} be a subsequence of {n} such that {f.,r 
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is unbounded and ~,~--+ ~ g .  By (1.1) we have 

Wm = (~,,, gm Ym) ~ (~' Z) (2.5) 

and (~, Z) is nondegenerate. But by (2.4), (2.3) and (1.2) 

a,~Wm+bm=f~r m Y,~)---(~, h m Y , , ) ~  (~, U). (2.6) 

By the convergence of types theorem in R 1 (cf. [33, p. 246) (2.5) and (2.6) imply that 
{a}  and {bm} are convergent sequences and hence bounded. Thus {fro,} is bounded 
- a contradiction. This proves (a). 

If ?= l im T,~ along some subsequence {m} then (1.1) and (1.2) imply 
hm Ym=Tmgm Y,~ v 7Z ~ U and (b) follows. 

When U is nonsingular Theorem 2.2 applies and (2.1) follows. By Theorem 2.1 
{7,} is then relatively compact in ff (i.e. all its limit points are in if). Suppose now 
that {y,} has a limit point 7 ~ ~- Then by (b) U s ~ Z and hence U is nonsingular. 

Let now H ~ f f  be a subgroup, closed relative to ft. We say that Z is non- 
symmetric with respect to H if J4 ~ ca ~z = {e}. An immediate consequence of the 
previous results is the following convergence of types theorem for d ~ 

(2.4) Theorem. Let Z be nonsymmetric with respect to .~  and suppose (1.1) and 
(1.2) hold with Z, U nonsingular and h,, g , ~ .  Then there exists a 7 ~  such that 

7 , - '  7 (2.7) 

and (2.2) holds. 

Proof We only have to prove that all the limit points of {7,} are equal. Suppose y 
and 7, are both limit points. By Theorem 2.3 both belong to ~ and hence to ~ and 
7 Z ~ 7 , Z .  This in turn implies Z ~ 7 - ~ 7 , Z  and hence y - 1 7 , ~  z. But since 
7 - ~ 7 , ~  we must have 7-~7, =e  i.e. 7 = y , .  [] 

Notice that in the classical convergence of types theorem in R ~ ([3], p. 246) 
is the group of all positive affine transformations. 

3. Convergence  to a S tochas t i c  Proces s  

In this section we shall assume throughout that 

hn y_~D Z1 ' Z~ is nonsingular, (3.1) 

where h, ~ C  and )~ ~ ~ is a subgroup, closed relative to ~. For t~(0, ~ )  we write 
7, (t) = h, h~t ~ and thus 

h, Y~,tj = 7, (t) h N Y[,~. (3.2) 

If for some t (here and in the sequel, all t are in (0, oo)) 

7, (t)~-, 7 (t) (3.3) 

then we clearly have 

h, ~,,j D, 7 (t) Zl. (3.4) 
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Let A be the set of all continuous homomorphisms of the multiplicative group 
of (0, oo) into ~ .  

(3.1) Theorem. I f  (3.3) holds for all t with 7 ( t ) e ~  then ~ A  and the convergence 
in (313) is uniform on compact subsets of (0, oo). 

Proof. Define h(u)=h[,~ (u>0) then 

h(u) h- l(u t)= 7[.] (t) h[[,] t] h[~tll �9 (3.5) 

Consider the product 

r = h.h~lt]/t] = ~.(t) 7[.t] ( t-  i). (3.6) 

It is clear that for each t, (5(t) converges. In particular ~,(1/2) converges. But 
O,(1/2)=e if n is even and 6(1 /2 )=h ,h~ l t  if n is odd. Thus we have proved that 

h,h~_ll--~ ~. (3.7) 

Since 0 < [u t] - [[u] t] __< t + 1 for all u > 0, (3.7) implies that h[[u]t] h ~  ~ e as u ~  oo 
and thus from (3.5) we have 

lira h (u) h- 1 (u t) - 7 (t) (3.8) 

for all t. Thus h(u) is a regularly varying function and hence (cf. [1] Section 9) 
TeA and the convergence in (3.3) is uniform on compact subsets. D 

Suppose now that 

h. Y[.t] - ~  Zt V t. (3.9) 

In general the Z t need not be nonsingular nor need (3.3) hold. Let T_~(0, oo) be 
the set of all t for which Z t is nonsingular. The following theorem will help us 
decide when te  T. 

(3.2) Theorem. Suppose (3.1) and (3.9) hold. Then 

(a) for each t there exists a 7(t)E~4 for which 

z,~(Oz,; (3.10) 

(b) for a fixed t, {7,(t)} has a limit point in J f  iff t~T; 

(c) if t is rational then te T; 

(d) (3.7) implies r = ( 0 ,  oo); 

(e) the existence of to=t= 1 for which ~; (to)-~7(to) and 7,(tol)--~7-1(to) implies 
(3.7); 

(t) if Z 1 is nonsymmetric with respect to ~ then (3.7) holds. 

Proof. The application of Theorem 2.3 immediately implies (a) and (b). Consider 
now (5(t) defined by (3.6), and suppose that ~ is a limit point (t fixed). Since {~,(t)} 
and {7[,t](t-1)} are both relatively compact in sr (Theorem 2.3), there exists a 
subsequence {m} along which ~(t)--~ e and ~m(t) and 7t,~](t -1) both converge to 
7 (t), 7 (t-~) in ~ '  (respectively). But by (3.6) we must have e = 7 (t) ;~ ( r  l) and hence 
7(t), ~( t -1)e~.  Thus by (b) teT. 
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If t is rational then h ( t ) =  e infinitely often (i.o.) (whenever nt is integral) and 
thus e is a limit point and hence (c) follows. 

Suppose h, h~ll --~ e. For each t, 0 < n - [I-n t]/t] < t -  z + 1 is bounded. Hence 
6 , ( t )~  ~ for each t and (d) follows. 

For every t =I = 1 either [In t]/t] = n -  1 i.o. or [[n/t] t] = n -  1 i.o. Let t o satisfy 
the condition of (e). Thus fi(to)--,e and cS,(to-~)--,e. Since at least one among 
{6,(to), 6,(tol)} is equal to h,h~J 1 i.o. we must have h, h2ll-~e. 

Suppose now that Z is nonsymmetric with respect to J{. Fix a rational (but 
not integral) t. We know that t, t - l e  Tand  hence by Theorem 2.4 7,(t) and 7,(t -1) 
both converge in ~ and so does 8,(0. But 6,(t)=e i.o. and 8 , ( t )=h ,h~ l  i.o., 
hence (3(t)--~e and (IF)follows. 

Notice that none of the conditions in (c)-(f) are necessary. But it is only under 
nonsymmetry that we can prove 

(3.3) Theorem. Suppose (3.1) holds with Z 1 nonsymmetric with respect to H. Then 
(3.9) holds iff there exists a y e a  such that (3.3) and (3.10) hold for all t. 

Proof If (3.9) holds then Theorem 3.2 (f), (d) imply that all the Z t are nonsingular. 
In such a case, Theorem 2.4 applies and (3.3) and (3.10) follow; y e a  follows by 
Theorem 3.1 since (3.3) holds. 

The converse follows easily by using the identity (3.2). 

4. The Possible Forms of 7 

The fact that y,(t)= h,h(,~ ~ y(t) as a result of h, Y ~ , ~  Z~ does not restrict the 
possible 7. 

Fact 1. Every 7eA is obtained under (3.9) and (3.10) with every nonsingular Z t. 

Proof For given Y and Z 1 we define Y,D=y(n)Z ~ and h,=7(n-1). Then clearly 
h, Yt,~U--,v-~v 7(t) Z~ and 7, (t)-* 7 (t) for all t. [] 

Hence, the study of the possible forms of y can be done without any reference 
to (3.1) or (3.9). We shall point out some facts which might be useful in applications. 
In this section, every 7 is in A. We assume that a basis for E is specified and we 
identify linear transformations with their matrix representations. The notation 
7(0= (Dr; dr) is now replaced by the matrix notation 

1 0 (d,, 0 e R ,  D, is k x k). (4.1) 
y(t)= d, D t 

Let B be a square matrix. By exp {B} we mean ~ =  o Bi/i! 

Fact 2. For each 7cA there exists a beR  k and a k • k matrix B such that 

Proof Since both 7 (t) and D t are continuous and satisfy Polya's functional equation 
(7 (t s) = ? (t) ~ (s), 7 (1) = I) we must have 7 (t) = exp { C log t} and D t = exp {B log t} 
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for some matrices C and B. The relation between C and B is determined by (4.1) 
and (4.2) is the result. 

Let p (0<  p < k) be the rank of  B. Wi thout  loss of generality we can write 

where B 1 is a regular p x p matrix, B 2 is a ( k - p )  x p matrix, b ~ R  p and b2eR k-e. 
By straightforward calculations we thus have 

Fact 3. 

?( t )=  c 1 C 1 (4.3) 

\ c  2 C 2 
with 

C 1 = exp {B 1 log t} 

C 2 = B 2 (C 1 - I) B~- 1 ___ B2 U 

c I = (C a - I) B~- ~ b 1 = U b 1 (4.4) 

c 2 = b  2 log t+B2(U  - I  log t) B[ -1 b 1. 

Fact  4. I f  p = k then x o = - B -  ~ b is a common f ixed point. 

Proof: When p = k we have B = B 1 , D r = C t and d r =-, c 1. Thus by (4.4) 

y ( t ) x = D ~ x + d t = e x p { B l o g t } ( X - X o ) + X  o ( xeg ) .  

Suppose that B = PAP-1  where A is of some desired canonical  form (diagonal, 
Jordan,  triangular, etc.). Then, since B"=  PA"P-~  we have 

y(t)=(10 0 , ) e x p { ( ;  ; ) l o g t } ( ;  O 1 ) ,  a = p - - l b .  (4.5) 

Let 21 . . . . .  Jig be the characteristic roots  of B and let dt, z and a i be the i-th 
components  of d r and a respectively. 

Fact  5. I f  B can be diagonalized then (under a suitable coordinate system) 

[ta'.. 0 ~ dt, i = ( t ~ - l ) a i / 2 ~  if 2~#0 (4.6) 
Dr=kO "t ;~k] = a i l o g t  if 21=0.  

ProoJ: If A = P -  ~ BP is diagonal  then the )o~ are its diagonal  elements (and can be 
arranged so that  2~4=0, i=  1 . . . .  , p and 2~=0, i = p +  1, .. . ,  k). To evaluate 

exp { ( :  ; )  l og t}  

we apply (4.4) with diagonal B 1 and with B 2 =0 .  

Not ice  that  diagonalizat ion of B is possible e.g. when B is symmetric or when 
all the ).~ are distinct. 
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When d~ ~, then B =  21 and (4.6) always holds. This case was treated in [6]. 
Lamperti [5] treats the case where h. = (~.  I; b. ~, ~. e R 1, ~. J.0, b. ~ R k, h. YE.tl ~ Zt 

in the sense of convergence of all the finite dimensional laws and {Z~} is a continuous 
(in probability) process. In this case (4.6) automatically holds since D t is of the 
form ?I .  

Acknowledgement. I am indebted to A.A. Balkema for valuable discussions. 
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