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Approximation of Local Time at Regular Boundary Points 
of a Markov Chain 

R. T. SMYTnE 

The concept of local time, well-known in the theory of diffusions, was extended 
to arbitrary standard processes by Blumenthal and Getoor [1]. Recent work 
(e. g., [5]) has shown that Markov chains can be completed in such a way that the 
resulting processes are sufficiently regular to permit employment of the theory of 
additive functionals almost as in the standard case. Thus, for example, one may 
define local time at a "regular" boundary point of a (completed) Markov chain 
([8, 9]); these local times can often be expressed in interesting ways, for example 
as weighted averages of local time at ordinary states or as limits of time spent in 
excursions. 

The purpose of this paper is to exhibit a different characterization of the local 
time at a regular boundary point x ofa  Markov chain X r Local time at x measures, 
in some sense, the time spent by the process at x. If x is semipolar, we compute 
"local t ime" at x by simply counting up the visits to x; but if x is regular, Xo (co) 
visits x infinitely often in certain finite time intervals, so this simple technique 
cannot be employed. If one conceives of the regular boundary case as some type 
of limiting phenomenon of the semipolar case (cf. the remark in the middle of 
p. 158 of [4]), one is led to approximate local time at a regular boundary point x 
by "counting visits" to x on random subsets of the time axis. At the nth stage of 
the approximation, we fix a finite subset J, of states (where JnCJn+l) and for 
each co, we divide [0, oe) into countably many disjoint half-open intervals; num- 
bered consecutively. X~ = x at the left-hand end-point of each of the even-num- 
bered intervals, and XoCJ, throughout;  on the odd-numbered intervals, X~ 
at the left-hand end-point and X.  + x throughout. For fixed t, we define K,(co) 
to be the largest integer rn such that the Lebesgue measure of the first m odd- 
numbered intervals is __< t; K,  (co)~ ov as n T oe. Multiplying by suitable constants 
C,, where C, 4 0  as n--, 0% we find that C,. K, (co) converges a.s. to local time at x. 

I. Assumptions and Notation 

1. The Process 

Let {X*;t  >0} be a Markov chain on the integers I with transition matrix 
Pij(t) (i,j~ I;  t > 0) satisfying lim Pii (t) = 1 for each i~ I. Doob [5] has shown how 

to compactify the state space I to yield a compact metric space K, such that I is 
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dense in K. He also shows that there exists a standard modification X t of X;*, 
defined for t > 0, such that: 

(a) With probability one, X t takes its values and its left limits in a G a subset 
K o of K; 

(b) X t has right continuous paths a.s.; 

(c) P ( X ~ I ) =  1 for all t>0 .  

2. The Boundary 

The points in K o - I  will be called boundary points. We denote the set of 
boundary points B. If x e B, x will be called a regu Iar boundary point if px (Tx = 0) = 1, 
where Tx=inf{ t>0:  X , = x  or X t_ =x}.  

Points x for which P~ (T~ = 0)< 1 are called branch points by Doob; it follows 
easily from the fact that the set of branch points is negligible ([5], w 8) that 
P~(T~ = 0 ) =  0 i fx  is a branch point. 

Since quasi-left continuity holds at regular boundary points ([5], w 7), it 
follows that Xrx - = x implies Xrx = x if x is regular. For regular x we may there- 
fore define 

T~=inf{ t>0:  Xt = x } .  

If x is a regular boundary point, let S~(co)={t>0: Xt(co)=x}. A regular 
boundary point is said to be recurrent if P~{SX(co) is an unbounded set}=1;  
otherwise it is called transient. 

3. Local Time at the Boundary 

A continuous additive functional At(co ) of the process X t is a local time at x if 
the measure dA. (co) has support on the closure of S x (co) with probability 1, i.e., 
A t (co) increases only when X~(co) is at x. 

The existence of local time for a regular boundary point is shown in [-8] and 
in [9] 1; it is unique up to a constant multiple. 

We note two results about A~(co), the local time at x: 

(A) If x is transient, 

EX(At)=P x [last exit from x occurs before time t]. (1.1) 

In particular, EX(A~)= 1. 

(B) If x is recurrent, 
t 

A,(co)= j" e*dBAco), 0.2) 
0 

where B t is an increasing process with EX(B~)= 1. If x is a non-regular boundary 
point, we define "local t ime" Kt(co ) at x to be the number of hits of x by X.(co) 
on (0, t]. (Usually we will normalize Kt(co ) by a constant multiple for convenience.) 
K t (co) is then an additive functional, but plainly discontinuous. 

i Both [8] and [9] employ completions of I differing somewhat  from Doob's,  but the existence 
of local time at x for the Doob boundary  is clearly implied. 
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II. The Main Approximation Theorem 

Let x be a regular boundary point, and A t (co) the local time at x. If J is a finite 
subset of I, let Tj denote the first hitting time of J. If J~ c J~ +~ for n = 1, 2, ..., and 
~J J~ = I, we shall write J~ T I. 
n 

It is convenient to consider separately the cases when x is recurrent and 
transient. 

1. The Recurrent Case 

Assume now that x is a regular recurrent boundary point. 

Proposition 1. EX(Ar~)---~0 as J T I. 
t 

Proof. Let q)z(t, co)= ~ S 1Exs=jlds" Define tpj(t, co)=At(co)+qoj(t , co). Then 
j ~ J  0 

Os (t, co) is a continuous additive functional, and if zt J denotes its inverse, X~Z is a 
Markov chain with state space d u {x}. If X~ is started at x, Arj is just the waiting 

time until the first jump. If E x (Arj) = o% then x is an absorbing state for the proc- 
t 

ess Xq, in which case Arj = oo a.s. But by remark B of I, w 2, A t (co) = ~ e S dBs (co) 
0 

where B(oo)< oo a.s.; so that Ts= oo a.s. which is impossible for J large enough. 
Hence, EX(Ar~)< oo for large J. Since it is clear that lim Ts=0 ,  and since A~ 
is continuous, it follows that E~(Ar~)~0 as J~ I .  

Corollary. Arj  is exponentially distributed and independent of  X r  . 

Proof. Ar~ is the waiting time until the first jump of X@ it is therefore ex- 
ponential and independent of the state jumped into, namely Xr~. 

For each finite subset d of I, define two sequences of stopping times as follows: 

rJ, O =0  Ss, o = Tx 

"C j, 1 = T joOsJ ,  o S j ,1 =- YxoOzj,1 

"c j,,, = Tj o Os . . . .  S j,. = Tx o 0 .. . .  . 

{" } Definition 1. Kj  (t, co) (or simply K j, t) = s u p  n :  E (S j, k - -  "C j, k) ~ t . 
k = O  

Definition 2. Aj(t ,  co)= EX(Arj) Kj( t ,  co). 

(If we think of the process Xt(co ) restricted to the intervals (zzk, Sj, k], k =  
0, 1, 2, ..., then Kj(t ,  co) is precisely the number of hits ofx by this modified process 
in t units of time. In this s e n s e  A j ( t ,  co) can be thought of as a (non-regular) "'local 
time".) 

Theorem 1. Let JnT I. Then there exists a set (2o, with PX(~20)= 1, such that for 
coef2o, Aj ,( t ,  co)--+ At(co ) for each t >=O. 

Proof. We first prove a useful lemma. (Henceforth, we assume X(o, co) to be 
started at x, so that we write Tj for zs, 1). 
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Lemma 1. Adjoin an isolated point A to K and let 

~X~j,~+s if Tj, i A v s < S j ,  i 

= ).A if zs, i+s>Szi .  

Let ~: denote the smallest a-field generated by the random variables {Ys}~=o,~ oo 
s real. Denote by J the smallest a-field generated by {Ar oOs~k} ~ o. Then if X 

, = 

and Y are real-valued functions on f2 with X 6 ~,  Y~ J,  

Ex{XYI=E~{X}E~{Y}. 

In particular, for any positive integer m and any t> O, ~ Arjo Os~,~ 1 is independent 
ofKj, t" k=l 

Proof Since X t is right continuous and K a compact separable metric space 
the random variables i co k ~ {Is }i=o, s rational, will generate ~ .  Let { i}i=~ and {li}[= 1 

S m be arbitrary sequences of integers, { j}j=~ an arbitrary sequence of rationals. 
By a standard monotone class theorem ([2], p. 6) it will suffice to prove that 

where B~j is a Borel set in K w A. Since the case when one or more of the B~j con- 
tains A presents no new difficulties, let us assume that all Bij c K, so that the left- 
hand side above becomes 

P~ {ArsoOsj,<<=xi} ~ ~Xr , +~ eB~j, rg,~+s~<Sj,1,}. 
i i=1  i = l  ' 

By repeated application of the strong Markov Property at the times Sj,j, it will 
suffice to prove that 

P~{AroOsj, <y; X~s,k+t+sjr T~oO .. . . .  , > S j }  
(,) 

=px{Ar  oOs~, <y } P~{X~,~+,+~jeBk+~,j; 7~o0~j,~+,>sj}. 

Conditioning the left-hand side above by gfs~,~ yields 

pX{Ar~<Y; XT~+~jeBk+I,j; T~~ 

Conditioning now on 2r j  and using the corollary to Proposition 1, this becomes 

~pX{ATj<=y; XT:=j; PJ[X,yBk+,,j; s i<TxJ} 
j e J  

= ~ PX[AT. < y ] PxfXT. =j; PJ {XsflB~ +,, fi sj<g~}J 
j~.] 

= P~[AT~,< y] Px[XT~+s, eB~+~,j; Tx~ SjJ, 

which equals the right-hand side of (,), by another application of the strong 
Markov property. 
10" 
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Definit i~ 3" a j(t '  co)= Lebesgue measure { [O' t] c~ @ [zJ'k' SJ'k) 

As(t, co)= t - a  j(  t, co). 

Lemma 2. As(t, co)~O a.s. as aT1. 
t 

Proof  A j (t, co) + a j (t, co) = t. Since aa (t, co) > 5 l[x,~jlds and the latter expression 
o 

increases to t as J T I, it follows that As (t, co)--+ 0 a.s. as JTI. 

Definition 4. t3s(t, co) (or/~a,,)=inf{s>0: as(S , co)> t}. 

By construction of/~J,t, it follows that 

K j ,  t 

At ,  o Os,,~_ ~ = A (fij,,) (1.3) 
k=l 

(where we have used the fact, established in [8], that A r + R = A T + A R o O r  for T 
optional, R measurable). Since aa, , T t as J T I by Lemma 2, we have fia, t + t as J ~ I. 
Hence by the continuity of A. (co), it follows from (1.3) that 

K j ,  t 

AT oOs~,~_ ~ JtI~ At(co) a.s. (1.4) 
k = l  

Hence if we can show that 

K j ,  t 

~, ATjOOsj, k_~-A j ( t ,  co) J**, 0 
k = l  

a . s . ,  

the proof will be complete. 
We first show that 

K j ,  t 

AT oOs~,~_~ - A j ,  t ~  0 in L2(p~'). 
k=l  

We have 

K j ,  t F K J ,  r 2 

By an obvious use of the strong Markov property, the Arj o Osj,~ are independ- 
ent, identically distributed random variables. Hence, if Yk denotes Aro  Os~ . . . .  - 
EX(Ar~), we have 

EX t ~1 Yk) =n=l ~ Ex gk ; Kj(t, co)=gl 

= EX Yk px {gj, t = rt} (by Lemma 1) (1.5) 
n = l  

= ~ 17 Ex(yk)2pX{Kj, t= n} =VarianceX(Arj) �9 EX(Kj, t). 
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Since AT) is exponentially distributed, Varx(ATj)= [EX(ATs)] 2 so that 
[Kj,~ 

- A j ,  t] =EX(AJ, t) EX(Ars) �9 
2 

E x [ ~ AT,~ .. . .  �9 (1.6) 

[ Kj, t 
But EX(AJ't)=E~(Arj)E~(KJ't)=E~[ ~l ArOOsj.k_,) 

by Wald's equation (if E~(Kzt)< oe) and the latter expression is just E~(Aa~.t). 
Since Apj.~ decreases as J T I, it will follow from (1.6) and Proposition 1 that 

fK,I, t }2 
E x ~ • A r o  Os,,k_,-Aj,, ---~0 

k 1 

as J T I, provided E x (As, t) < oo for large enough J, i.e., provided E ~ (Ks, t) < o0. It is 
easily seen using the strong Markov property that P~{Kjt>n}<(1,  - -Pt)"-l ,  
where Pt = px { Tx o Or ~ > t} ; we show Pt > O. 

We can find a neighborhood Nj of each j~J, and a neighborhood N of x, such 
that Njn N = 0  for a l l jeJ .  Setting H=Nc~  I, p,=0  would imply npj~(t+z)=O for 
all i e I, e > 0, and some j e J, where nPs~ is the transition probability with H taboo 
([3], p. 188). By Theorem 4, p. 126 of [3], this implies npjj(t)-~O; this cannot be, 
since N i c~ N = 0 and lira pjj (t)= 1. Hence E x (Ks, t)< 0% and it follows that 

t ~  0 

K j, t 
~ ATjoOso, k_ -As ,  t ~ 0 in L2(PX). 

k = l  

k t ~  In particular, if d~ ]" I, there is a subsequence {nk} k= 1 on which Aj,~ , A t a. s. 
From the L 2 convergence we will now deduce a.s. convergence. By Lemma 2, 

we have/~s,t,[ t as J T I; it then follows by the continuity of A. (co) that 

Kn, t 
AroOs.,~_,=A(fl.,t(co),co) . ,oo At(co) a.s. (1.7) 

(where we have written K.,t, ft.,t, AT. for Kj.,t, flJ.,t, ATj. resp.). 

Let G. denote the Borel field generated by the random variable K.,t; let 
n 

V G~ be the smallest Borel field containing G~, G 2 . . . . .  G.. 
i = 1  

Lemma 3. E A(fl,,,t(co), co) =Aj.(t, co). 
i 

n 
Proof The a-field V G~ is generated by the countable partition 

i = 1  

Akl, k~ ..... k. where Ak~,k~ ..... k. ={co: Kl,t=k2; K2.t=k2; ...; K. , t=k.} .  

By definition, 

[ FK,.~ 
1 [~Akl, k ...... k~[~l Z T . ~  1Akl k2 kn (co) = ~  P(Ak,,k ...... k,) ' '"" 
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(where we have written S.,k_ ~ for Sj.,~_~), the sum being taken over all n-tuples 
(kl, k2, ..., k.) of positive integers. Consider 

E ~ A%oOs.,~ ~; Kt t=kl;  K2,,---ka; ...; 

Lemma 1 assures us that any function measurable in the field W there con- 
k~ 

structed is P~-independent of ~AroOs..k_ ~. If the sets {Ss, k--ZS,,k<--_y} are ~ -  
1 

measurable for i=  1, 2, ..., n - 1 ,  k arbitrary, then it will follow that the sets 
{K~.t=-k~} are W-measurable for i=  1, 2, ..., n - 1 .  This can easily be shown by 
an argument which is as straightforward as it is tedious. 

Therefore, 

so that 

Kn, t 

EX ~ {AT.~ Ak~,g2 ..... k.}----k.E~(AT.)P~{Ak~,k2 ..... k.} 
1 

E {A(fl.,t(o)),co) i~= G~}(co)=~,k.E~(Ar.)lAkl,k., k2 (co) (1.8) 

where again the last sum is over all n-tuples (kl,  k2, . . . ,  kn) of positive integers. 
But 

k,E~(AT.) lx~l,k2, _~ (CO)= ~ kEX(Ar,,)lit . . . .  kt(c~ = As,(t, co), 
k = l  

proving the lemma. 

Now by Lemma 3 and a lemma of Hunt ([6], p. 47) it follows that as n T c~, 

Aj.(t, Co,=E [A(fl,,,(co), co)i=V Gi]---'E [At(co ) i=V Gi] a.s. 

But we have already proved that Aj.k(t, co)--, At(co) a.s. for some subsequence 
co 

n oo { k}k= 1, SO it follows that At(co ) is measurable in the field V G i. We therefore con- 
i = l  

clude that As.(t, co)--*A,(co) a.s. Denoting by t2r the set of probability one on 
which As.(t, co)--+At(co ), let f2o= ~ 2  ,. For coef2 o, As.(r, co) --* A~ (co) for all 

t r a t  

rational r. Since A. (co) is continuous and As(., co) non-decreasing, the property 
extends by standard arguments to all t>0 .  Hence for e)~2o, As.(t, co)--*At(co) 
for all t > 0, and Theorem 1 is proved. 

2. The Transient Case 
The transient case presents no new difficulties; indeed, it is simpler in most 

respects. If x is transient, then by (1.3) of Part I, EX(AT~) has a convenient inter- 
pretation as W {X.o OT~ does not hit x}. If x is transient, however, one of the SZk 
may be infinite with positive probability, since x need not be hit from J, In this 
case A t (co) will simply be "flat" from z z k (co) on. 



Approximation of Local Time at Regular Boundary Points of a Markov Chain 141 

3. Approximation in 

It may be objected that the above approximation of At(m ) makes use of in- 
formation not contained in the field ~,  and that ideally At(co ) should be approxi- 
mated within ~,  since A t ~ ~ .  We now indicate how this may be done. 

Definition 5. Ns(t , co) = sup {n: zj,~(co) =< t}. 

Lemma 4. Kj(t,  co)--Ns(t, co)---+O a.s. W as J'F I. 

Proof. W { Kj, (t, co) - Nj, (t, co) > 0 i. o. } < px {X (., co) hits x in (t, fij., t] i.o.}. As 
J, ' f l ,  by Lemma2  aa.(t, co)Tt a.s. so fls,(t, co)+t a.s. Hence, if X(., co) hits x in 
(t, fls,(t, co)) infinitely often, we must have Xt(co)=x. Therefore, W{Ks, ( t ,  co ) -  
Nj,(t, co)>0 i . o . } < W { X t = x  } =0, so that Ks.(t , co)-Nj.(t ,  co) decreases to 0 a.s. 
From Theorem 1 we conclude that 

Nj(t, CO)E~(ATj) J~1) At(og) a.s., 

and clearly Nj (t, co) e ~ .  

IlL Inverse Local Time as a Limit of  Compound Poissons 

Let us denote by a t the inverse local time of A, i.e., at(co)=inf{s>0: A~(co)> t}. 
~t is known to be infinitely divisible ([2], p. 218). We can now exhibit a sequence 
of compound Poisson random variables which converge a.s. to a t on {at< ~} .  

Fix t>0 .  

Defini t ionl .  Ws(t, co)=Ws, t(co)=su p n: Ar~,oOs+,~_ <t  . Since At, ' is ex- 

ponential, Wj(t, co) is Poisson with mean t/EX(Ar+). 

Wj, t 
Theorem2. ~ T~oO~,~ JtL at(co ) a.s. on { a t < ~  }. 

k = l  

Proof. 
/ Wa, t Wj, t ) 

k = l  

where m=  Ws(t , co). But 

We show that 
VloOss.~ JTX 0 a.s. on {a,< oo}. 

We, t 
~, TjoOs~,.k_ ' J+I 0 a.s. on {at<oo }. 

k = l  

Wj, t ~ [wj ,  t ) 

k = l  N = 0  k 

<= ~, A j ( N + I ,  CO)I[N<~t<N+I ] s*I}0 a.s. 
N=O 

on {a,< ~ } ,  
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by Lemma2 and the fact that Asn(N+l, co ) decreases as n---~,  for all N ~ 0 .  
Hence wj, t 

ZTo0 , j . ~  J'z, c~, a.s. on {er 
1 

Now by Lemma 1 it follows that each Txo 0 .... is independent of each A r o  Osj,~_, 
and that Ws, t(co ) is independent of the TxoO .... ; and clearly the TxoO~,~ are ln- 

WJ,t 
dependent and identically distributed. Hence ~ T~o 0,~,~ is a compound Poisson 

1 

random variable and converges to e, (co) a.s. on {c~ t < oe } as J T I. 
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