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Complete Probabilistic Metric Spaces* 

H. SHERWOOD 

1. Introduction 

Menger [4] initiated the study of probabilistic metric spaces in 1942. A 
probabilistic metric space (briefly a PM space) is a space in which the "distance" 
between any two points is a probability distribution function. These spaces are 
assumed to satisfy axioms which are quite similar to the axioms satisfied in an 
ordinary metric space. The triangle inequality has been the subject of some 
controversy. Menger's triangle inequality was first challenged by Wald [16] who 
suggested an elegant form of the triangle inequality to replace Menger's. In [-7] 
Schweizer and Sklar provided sufficient reason to indicate that Wald's inequality 
was restrictive and returned to Menger's triangle inequality which they modified 
slightly. The subject then began to grow rapidly due to the work of Schweizer, 
Sklar, Thorp and others. In [10, 11] Serstnev introduced yet another form of 
the triangle inequality. His formulation includes Wald's and Menger's formula- 
tion but for a slight exception which at present seems to be uninteresting. For 
this reason we shall state and prove our results in the setting of Serstnev whenever 
it is appropriate. 

In Section 2 we shall do two things. First we shall briefly take note of the 
fact that the principal result of our paper on completions of PM spaces can be 
obtained under weaker hypotheses. Then we shall answer the following con- 
sistency questions: (1) Is a complete metric space obtained when a complete 
PM space is metrized? and (2) If a PM space and its completion are metrized, 
will the completions of the resulting metric spaces be isometric? 

In Section 3 contraction maps on PM spaces will be investigated. A very 
natural definition of a contraction map was introduced by Sehgal [-9]. In that 
paper he showed that every contraction map on a complete PM space satisfying 
the strongest form of Menger's triangle inequality has a unique fixed point. We 
shall give a strong plausibility argument which will indicate that this result is 
the exception rather than the rule for PM spaces. We shall prove that it is possible 
to construct complete PM spaces together with contraction maps which have no 
fixed points. In fact this will be done so that any of a very large class of triangle 
inequalities is satisfied. Finally we shall utilize the additional structure of an 
E-space to define a stronger contraction map which will have a fixed point when- 
ever the space on which it is defined is complete. 

In the last section the analogues for complete PM spaces of two other classical 
theorems for complete metric spaces will be proved. 

A few definitions and conventions will be made here to fill in some back- 
ground for the reader. 

* This research was supported by NSF grants GP-6342 and GP-13773. 
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We shall let I denote the closed unit interval [0, 1]. The letter A will denote 
the collection of nondecreasing, left-continuous functions F such that F (0 )=0  
and the range of F is a subset of I. The letter/- /will  be reserved for the function 
defined via {01:  0 H(x) = 

x > 0 .  

The letter j will denote the identity function on the reals so that j (x)= x for every 
real x. 

A triangular norm (briefly, a t-norm) is a function T mapping I x I into I 
which is associative, commutative, non-decreasing in each place, and satisfies 
T(a, 1)=a  for each ael .  A t-norm will be called an l.c. t-norm if it is left-contin- 
uous in each place. Some t-norms which will be of importance to us are the t- 
norms T,,, Prod and Min defined for each a, b~I  via 

T m (a, b) = Maximum (a + b - 1, 0), 

Prod (a, b) = a b, 
and 

Min (a, b) = Minimum (a, b). 

Let A be ordered via F__< G if and only if F(x)<= G (x) for all real x. Also F < G 
if and only if F__< G but F ~ G. A triangle function (briefly, a t-function) is a func- 
tion z mapping A x A into A which is associative, commutative, nondecreasing 
in each place and satisfies z(F, H ) = F  for each FeA.  In addition, throughout this 
paper we shall assume that all of our t-functions satisfy the following condition 

sup {z(F, f ) :  F < H} = H. (1.1) 

A t-function z will be called an I.c. t-function if it is continuous in each place 
relative to nondecreasing sequences. 

If T is an 1. c. t-norm then the function z defined via 

(F, G) (x) = sup { T(F(~ x), a (flx)): ~ +/~ = 1} (1.2) 

for all real x and for all F, GeA is an 1.c. t-function [10]. 
A probabilistic metric space (briefly, a PM space) is an ordered pair (S, ~ )  

where S is an abstract set and ~ is a mapping from S x S into A whose value 
~ ( p ,  q) at any pair (p, q)eS x S is usually denoted by Fpq and assumed to satisfy 

I. lim Fvq(x ) = 1 for all p, q~S, 

II. For  all p, qeS, Fpq=H if and only if p=q,  and 

Ill. Fpq=Fqv for all p, qeS,  and either for some t-norm T 

IVm. Fpr(x+y)>= T(Fpq(x), Fqr(y)) for all p, q, rES and all x, y > 0 ,  or for some 
t-function z 

IVs. Fp~>z(Fpq, Fq,) for all p, q, rsS.  
It should be noted that if T is an 1. c. t-norm and z is defined via (1.2), then 

(S, Y)  satisfies IVm under T if and only if it satisfies IVs under z. The inequality 
given in IVm was suggested by Menger, the one in IVs by Serstnev. 
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2. Completions of PM Spaces 
In [5] Mushtari discusses the completion of PM spaces. However in his 

treatment he does not define complete PM space nor the completion of a PM 
space. He considers a certain uniform structure which arises quite naturally on 
the PM space and defines a probabilistic metric on the uniform completion 
which is an extension of the probabilistic metric on the original space. He fur- 
ther guarantees that the extended probabilistic metric defines a uniform structure 
which coincides with the extension of the original structure. He carries out this 
procedure for two uniformities which turn out to be identical if sufficient condi- 
tions are imposed on the triangle inequality. 

Now whether a PM space is complete should be determined by the probabilistie 
metric alone and should not depend on which uniform structure one induces on 
that space. For  this reason we have defined completeness of PM spaces in terms 
of the probabilistic metric. Then we prove under certain conditions that this 
notion of completeness is consistent with the previously existing notions in uni- 
form spaces. 

In [123 we defined the concepts mentioned above in terms of the PM space 
axioms. We shall continue to use these definitions. In that paper we showed that 
every PM space which satisfies IVm under a continuous t-norm has a comple- 
tion which is unique up to an isometry. The next theorem includes this earlier 
result. 

In [14] Sibley introduced a metric ~ on A which is a modified form of the 
well-known L6vy metric for distribution functions. He shows that (A, 5~) is a 
compact metric space in which convergence is equivalent to weak convergence 
of the functions in A. It is not difficult to prove that for the 1. c. t-function r and 
for each ~>0 there exists a 6 > 0  such that ~(~(F,  G), G)<e for every GeA when- 
ever Fe A  and ~ ( F , H ) < 6 .  Having noted this fact, the proof of the following 
theorem is almost identical to the proof of the earlier result given in [12]. For  
this reason we omit its proof. 

Theorem 2.1. Any P M  space (S, ~ )  satisfying IVs under an 1.c. t-function z 
has a completion which is unique up to isometry. 

Since whenever T is an l.c. t-norm and ~ is defined via (1.2) then r is an 1.c. 
t-function we obtain the following corollary. 

Corollary. Any P M  space satisfying IVm under an I.c. t-norm has a completion 
which is unique up to isometry. 

Now we shall investigate the consistency of PM space completeness and 
metric completeness. Let (S, ~ )  be a PM space satisfying IVs under a t-function 

satisfying (1.1). For  each e, 2>0 ,  let 

U(~, 2) = {(p, q): p, q ~ S and Fpq (e) > 1 - 2}. 
The collection 

N =  {U(~, 2): e > 0  and 2>0} 

is a basis [-6, 8] for a Hausdorff uniformity ~// on S x S which we call the uni- 
formity on S generated by ~.  This uniformity is metrizable since it is Hausdorff 
and has a countable base. 
9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 20 
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It is well-known (see e.g. [2]) that if (S, d) is a metric space, then the one- 
parameter family of subsets 

~r {v(~): ~>0} 
where 

V(6)= {(p, q): p, q eS  and d(p, q)<6} 

is a basis for a uniformity ~ which we call the uniformity on S generated by d. 

Definition 2.1. Let (S, i f )  be a PM space satisfying IVs under an 1. c. t-function 
~. The metric d for S metrizes (S, ~ )  if and only if the uniformity on S generated 
by ~- is the same as the uniformity on S generated by d. 

In the interest of saving space, the proofs of the remaining theorems in this 
section are also omitted. These proofs are not difficult to reproduce. 

Theorem 2.2. Let (S, ~ )  be a complete P M  space satisfying IVs under an I.c. 
t-function ~. Let ag be the uniformity on S generated by ~ Then (S, Yl) is a complete 
uniform space. 

Theorem 2.3. Let (S, ~ )  be a complete P M  space satisfying IVs under an l.c. 
t-function ~. Let d be a metric which metrizes (S, ~ ) .  Then (S, d) is a complete metric 
space. 

Theorem 2.4. Let (S, ~ )  be a P M  space satisfying IVs under l.c. t-function z. 
Let (S*, ~ * ,  z) be the completion of(S, ~,  z); let ql be the uniformity on S generated 
by ~ ;  and let ~ be the uniformity on S* generated by ~ * .  Then (S*, ~*) is the 
completion of (S, ~li). 

Let (S, ~ )  be a PM space satisfying IVs under an 1.c. t-function z. Since (S, ~-) 
is metrizable in the sense of Definition 2.1, let d be a metric on S which metrizes 
(S, ~-). Now (S, d) has a completion (S', d'). Furthermore (S, ~ )  also has a com- 
pletion (S*, i f*)  which is metrizable by a metric d*. From Theorem 2.3 it follows 
that the metric space (S*, d*) is complete. However, since there are many metrics 
which will metrize a given metrizable uniform space, the spaces (S*, d*) and 
(S', d') need not be isometric. The following theorem provides the best result 
which can be expected along these lines. 

Theorem 2.5. Let (S, ~ be a P M  space satisfying IVs under an l.c. t-function 
z. Let (S*, ~ * )  be the completion of (S, ~,~); let the metric d on S metrize (S, ~-), 
and let (S', d') be the completion of (S, d). Then there is a metric d* on S* which 
metrizes (S*, ~ * )  such that (S*, d*) and (S', d') are isometric. 

3. Contraction Maps on Complete PM Spaces 

The following definition of a contraction map was suggested and studied by 
Sehgal in [9] where he also proved Theorem 3.1. 

Definition 3.1. Let (S, ~ )  be a P M  space. A mapping M: S ~  S is a contrac- 
tion map on (S, ~ )  if and only if there is an ~ ( 0 ,  1) such that 

FM p Mq (x) >= Fpq (x/a) 
for every p, qES. 
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Theorem 3.1. A contraction map on a PM space has at most one fixed point. 

Definition 3.2. Let M be a contraction map on the PM space (S, ~) .  Let Po E S. 

(i) The sequence of iterates of Po under M is the sequence {p,} defined induc- 
tively via p ,=Mp,_~  for every positive integer n. 

(ii) The function Gro is defined via 

Gpo (x)-- inf {Fpo p~ (z): m is a positive integer} 

for each real x where {p,} is the sequence of iterates of Po under M. 

Theorem 3.2. Let (S, ~ )  be a complete PM space satisfying IVs under a triangle 
function z satisfying (1.1). Let M be a contraction map on (S, ~) .  Then, either 

(i) M has a unique fixed point 
o r  

(ii) For every po~S, sup{Gpo(X): x is real} < 1. 

Proof Suppose there exists po~S such that sup {Gpo(X): z is real} = 1. Then if 
{p,} is the sequence of iterates of Po under M, 

(x) >__ (x/a") > Cvo (Z /a') . 

Thus, since Gpo is non-decreasing, 

lira F . + m ( x ) =  1 
n ~  PnP 

for all x > 0 independent of m, i.e., {p,} is a Cauchy sequence in (S, ~ )  which is 
complete. Consequently there is a point p*~S such that {p,} converges to p*. 
To see that Mp*--p* it suffices to notice that, for every positive integer n, 

FM p, p, (X) => z (fMp, p.,  Fp. p,) (x)  >__ z (Fp. p._~ (f la),  Fp. p,) (x) .  

Thus for all x > O, 

F~t p, p. (x) >= lim z (Fp. p._ ~ (j/a), Fp. p.) (x) > H(x) = 1. 

Hence p* is the unique fixed point of M. 

Corollary. Every contraction map on a complete PM space (S, ~ )  satisfying 
IVm under Min has a unique fixed point. 

Proof Let as(O, 1), M be a contraction map on (S, ~ )  relative to e. Let poeS 
and let {p,,} be the sequence of iterates of Po under M. Then for every positive 
integer m, 

( l - a )  (c~+a2 + . . . + a ~ ) - - a - a ' ~ + l <  1; 
whence 

F o.m (z)-> pm ( (1 -a ) (1  + a +  .-. x) 

> Min (Fpo w ((1 - a) x) . . . . .  Fpm-~ pm (am- ~ ( 1 - a) x)) 

= Fpo p~ ((1 - ~) x). 

Thus Gpo>Fpovl((1-a)j) and the conclusion now follows from the theorem. 
9* 



122 H. Sherwood: 

The result of this corollary was the principal result concerning contraction 
maps obtained by Sehgal in [9]. 

Conclusion (ii) of Theorem 3.2 is a statement concerning every point of the 
PM space. The following theorem points out that this condition is satisfied by 
some point if and only if it is satisfied by every point. 

Theorem 3.3. Let M be a contraction map on the PM space (S, ~ )  satisfying 
IVs under the triangle function z satisfying (1.1). Then for every pair Po, qo ~S, 

sup {Gpo(X): x is real} = 1 
if and only if 

sup {Gqo(x): is real} = 1. 

Proof Let P0 and qo belong to S and suppose 

sup {Gqo(X): x is real} = 1. 

Let G* denote the left-continuous function which agrees with Gqo at  its points 
of continuity. Let {p,} and {q,} be the iterates of Po and %, respectively. Then 
for some c~ with 0<  e < 1, and for every positive integer m, 

Hence for every positive integer m, 

> (F o o, (r oq , 

from which it follows that 

Gpo >  ( oqo, V.opo)), 

and the theorem is proved. 

Theorem 3.4. Let (S, J )  be a complete PM space satisfying IVs under an 1.e. 
t-function z. Suppose further that for every pair p, q~S there is a real number x 
such that Fpq(X)= 1. Let M be a contraction map on (S, ~) .  Then M has a unique 
fixed point. 

Proof For each p, q~S let 

d'(p, q)=inf{x: Fpq(x)= 1}. 

It is easy to show that d is a metric on S and that M is a contraction map on 
the metric space (S, d). Let po~S and let {p,} be the sequence of iterates of Po 
under M. The usual proof of the contraction mapping theorem for metric spaces 
shows that {p,} is a Cauchy sequence in (S, d). It is evident that {p,} is a Cauchy 
sequence in (S, W), and since (S, ~ )  is complete there is a point p eS which is 
the limit of {p,}. The proof is obviously concluded by showing that p is the unique 
fixed point of M. 

In order to state and prove the next theorem we need to introduce some new 
notation. Let r be a triangle function defined on A x A and let {F,} be a sequence 
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in A. Since z is associative the product, z"i=l F/, is well-defined for all m; and since 
~'= 1 Fi > r~'+~ F~, the limit 

lim zT= 1 Fi 
t l~oo 

always exists. This limit will be denoted by z~=~ F~. If T is a t-norm and {a,} is 
a sequence in I, we define T~"__I a i and Ti~=lai in a similar fashion. 

Theorem 3.5. Let  T be an I. c. t-norm and let z be the l. c. t-function defined via 
(1.2). There exists a complete P M  space (S, Y )  satisfying IVs under r and a con- 
traction map M on (S, Y )  which has no f i xed  point if and only if there exists a G t A  
with lim G(x)= 1 and a number at(0,  1) such that 

X ~ -t- oO 

s u p  {(Ti~176 1 a ( j / a i - 1 ) ) ( x ) "  X i s  real} < 1 .  

Proof  Suppose for every G t A  with lim G(x)= 1 and for every at(0,  1) that 
X ~  -1- oO 

sup  {(z~~ ~ G(j/ai-1))(x): x is real} = 1 

and suppose M is a contraction map on the complete PM space (S, .~) satisfying 
IVs under z. We shall show that M has a fixed point. To this end, let p o t S  and 
let {p,} be the sequence of iterates of Po under M. Then for some c~t(0, 1), 

Thus 

Gpo > z~~ a Fro m (J/ai- i); 

and it follows from Theorem 3.2 that M has a fixed point. 

Turning to the converse, suppose G t A  and at(0,  1) are such that 

sup {(vF= 1G(j/a'-~))(x): x is real} <1.  

We shall define a probabilistic distance function ~ on the collection S of positive 
integers such that (S, ~ )  is a complete PM space satisfying IVs under z and show 
that the mapping M taking n to n + 1, which obviously has no fixed point, is a 
contraction mapping. 

For any m, n t S ,  define 

Fn+m,n=~,n+m='rm=l G(j/an+i-t), 
and let 

F , , , = H .  

With this definition of o ~, I, II and III clearly satisfied. Thus we have only 
to establish that (S, ~-) satisfies IVs under ~. Case splitting shows that this will 
follow from the following three inequalities: 

(i) F,, ,+r~+k>Z(F,, ,+,,, F,+,,, ,+~,+k), 

(2) v.,.+m__> z(V.,.+m+k, V.+ m+k,.+~), 
(3) V.+,.,.+,.+k>~(F.+ . . . .  ~,.+m+k). 
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Case (1). Since z is associative, 

Fn __ ~m+k , . + m + k - - ~ , i = l  G(j/e "+i-1) 
,.cm ,rm + k = T (  i=1 G(J/~"+i-1), ~i=m+l G(J/ot"+i-1)) 

= z (F., .+m, zki=a G(j/e'+"+i-1))=z(F.,.+,.,F.+m,.+m+k). 

Case (2). For any F, GsA, F=z(F, H)>z(F~ G); also z is associative. Thus 

Fn, n+m=Tim-_l G ( j / e  n + i - 1 )  

m . n + i - - 1  m + k  >_z(zi= 1 G(J/e ), zi=.,+ 1 G(j/e'+i-')) 
__ m+k �9 n + i - - 1 _  - 'ci=l G(j/e )-F.,.+m+~>=~(F.,.+m+k,F.+,.+~,.+.,). 

Case (3). The proof is similar to the proof given in Case (2) and is therefore 
omitted. 

It will now be shown that (S, ~ )  is completeby showing that the only Cauchy 
sequences are those which are eventually constant. Suppose {p,} is a sequence 
in S which is not eventually constant. Then either (i) there is a positive integer 
N such that p , < N  for all n or (ii) for every positive integer k there exists a posi- 
tive integer n k such that p,~ >p,~_, where n o = 1. 

Case (i). Since {p,} is not eventually constant it follows that for every positive 
integer K, there exist m, n > K such that p,, +p,; whence 

Fpmv,(x)< Max {Fi, k(X): O< i , j< N, JOe j} <H(x) 

for some x>0.  Thus {p.} is not a Cauchy sequence. 

Case (ii). Suppose in addition that {p,} is a Cauchy sequence in (S, ~) .  It is 
easy to show by consideration of the isometric image of this sequence in the 
completion of (S, Y) that the limit function 

LmV ,,. 

is a distribution function and therefore has one as its supremum. However for 
any real x, 

lim F, p ~(x)= lim (z~2~1-' G(j/el+i-1))(x) 

= lira sup TIP=~ - 1G (fli x/el): ~ fli = 1, 0 <= fli < 1 
k~m i=1 

= lim zf="~ 1G(j/a i-j) (x/a) 
k~ oo 

- -  o(3 
- zi= 1 a (j/e i- 1) (x/a). 

The supremum of this quantity for real x is strictly less than one, and we have 
arrived at a contradiction. Thus (S, ~ )  is complete. 
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Finally, to see that the mapping M: S ~ S  defined via M ( n ) = n + l  for all 
n e S is a contraction map, it suffices to note that for n > m positive integers and 
x > 0 ,  

Fm+ i,,+ l ttx~-J-tl'c"-mi=l G(J/~ (x) 

=sup  Ti"=-~mG(fl, x/em+'): ~ /?,=1, 0</~,<1 
i = 1  

= ('c7- ~ 6 (j/o~ m+ i -  1)) ( x / o ~ )  = Frn, n (X/O~). 

Corollary 1. There is a complete P M  space (S, ~ )  satisfying IVm under T m 
and a contraction map on (S, i f )  having no f ixed point. 

Proof Let ~ be any number with 0 < ~ < 1 and let G be defined via 

~0, x ~  1/~ 2 

G(x)= ( 1 - ( I / n ) ,  (1/c~")<x< 1/c~ "+l, n >  1. 

It is easily verified that the conditions of Theorem 3.5 are satisfied. 

Corollary 2. There is a complete P M  space (S, ~ )  satisfying IVm under Prod 
and a contraction map on (S, ~ )  having no f ixed point. 

Proof The same distribution G given in the proof of Corollary 1 suffices here 
as well. 

The t-norms T m and Prod are examples of Archimedean t-norms. An exten- 
sion of Ling's results [3] yields a characterization of Archimedean t-norms which 
is useful for our purposes. A t-norm T is Archimedean if and only if there exists 
a function h which is defined, continuous and increasing on I, with h(1)= 1, and 
such that, for every (x, y )~I  x I, 

T(x, y) = h [- il (h (x). h (y)), 

where h ~-1l is the function defined on I via 

h l - l l ( x )={~ ' i ( x )  ' 
x ~ [0, h (0)], 

xeEh(O), 13. 

The function h is called a multiplicative generator for T. 

Theorem 3.6. I f  T is any Archimedean t-norm and ~ is the I.c. t-function defined 
via (1.2), then there exists a complete P M  space (S, o ~ )  satisfying IVs under ~ and 
a contraetion map M on (S, ~ )  which has no f ixed point. 

Proof Let h be the multiplicative generator for the Archimedean t-norm T. 
We shall exhibit a KEA with lim K(x)=  1 and a number c~e(0, 1) such that 

X ~  -t- oO 

sup {(~~ i K(j /e  i- 1)) (x): x is real} < 1. 

Then by Theorem 3.5 the result follows. To this end let ee(0, 1) and let G be the 
function defined in the proof of Corollary 1 to Theorem 3.5. Define K via K(x)=  
hr-ll(G(x)) for every real number x. Clearly K ~ A  and lira K(x )=  1. Let x be 

X ~  -F cO 
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any number such that G(x)>h(O) and let n be the natural number such that 
1 1 

- - <  x ___ ~-~s-- Then for i > 1, G (x/e i- 1) > h (0) so that 
(~n - -  - 

(~i~_1 K (j/ei- 1)) (x) = lim (~-1 K (j/cd- 1)) (x) 
k ~ o e "  - -  

= lim sup Ti k i K(fli x/c~i-1): ~ fl~= 1 
k ~ o o  = i = 1  

< lira k _ r~ ~ 1 K ( x / c d -  1) 
- -  k ~  oo 

k 

<_limhr-ll[I]hK(x)/~i-1)] 
- - k ~ m  i - 1  

= lim h E- ~1 h h ~- 11 G (x/e i- 1 
k ~ o o  k / = l  

k 

: h  E-11 [~im I~ G(x/cd-1)] 
i = 1  

= hE-11 [~im i_[I1 (1 

=h~- t l [  lim [ I  n + i - 2 ]  
I_k~ i=1 n + i - - l ]  

n ~k--- 1] =h[-l l  [0] =0" __= hr_ll [~im n - 1  

The desired conclusion follows. 

Every E-space is a PM space satisfying IVm under T,,; moreover the results 
of Stevens [15] concerning metrically generated spaces together with our theo- 
rem [13] that every metrically generated space is isometric to an E-space clearly 
shows that this result is best possible in the sense that if T is a t-norm stronger 
than Tm then there is an E-space which fails to satisfy IVm under that t-norm T. 
Thus in particular the corollary of Theorem 3.2 does not apply. However E- 
spaces possess additional structure not shared by PM spaces in general and 
because of this it makes sense to ask whether this additional structure is sufficient 
to guarantee that every contraction map on a complete E-space has a unique 
fixed point. To date, this is an open question: we have neither a proof nor a 
counterexample. What we can do, however is use the special properties of E- 
spaces to refine the definition of a contraction map and show that a restricted 
class of contraction maps do have unique fixed points. 

Definition 3.3. Let (S, ~ )  be an E-space over the metric space (M, d) and let 
(g2,-~r P) be the associated probability space. The mapping A: S ~ S is a strict 
contraction map on (S, ~ )  if and only if there is an c~e(0, 1) such that for every 
p, q eS and for every real x, 

{te f2: d(pt, qt)<x/~}~_{tef2: d(Apt,  Aq t )<x} .  

Notice that every strict contraction map is a contraction map. 
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Theorem 3.7. Every strict contraction map on a complete E-space has a unique 
f ixed point. 

Proof Let (S, ~ )  be an E-space over the metric space (M, d) and let (f2, s~r P) 
be the associated probability space. Let A be a strict contraction map on (S, g ) ,  
let Po ~ S and let {p,} be the sequence of iterates of Po under A. Let x > 0 be given 
and let m be a positive integer. Then 

{t~f2: d(po t, p,, t)<x}__ {t~f2: d(p o t, p~ t)+ ... +d(p,,_l t, Pm t )<x} 

_ {t sf2:(1 +c~+ . .-+c(n-l)  d(po t, Pl t )<x} 

= {t6f2:(1-c~ m) d(po t, Pl t ) < ( 1 - a )  x} 

{tel2: d(p o t, Pl t) <(1-c~) x}. 

Thus Fpopm>=Fpom((1-cQj); whence Gpo>=Fpom((1-cQj ). The result now follows 
from Theorem 3.t and 3.2. 

This result is not surprising when the strict contraction map is viewed in the 
setting of pseudo-metrically generated PM spaces which are equivalent to E- 
spaces. In that setting, A is a strict contraction map if and only if A is a con- 
traction map on each of the pseudo-metric spaces in the generating family. Thus 
in order for a map to be a strict contraction map it must satisfy a very stringent 
condition. 

4. Analogues of Two Classical Theorems 

This section is devoted to the analogues for complete PM spaces of two 
classical theorems concerning complete metric spaces. The first of these is the 
analogue of Cantor's theorem on nested sets which states that if a nested sequence 
of closed subsets of a complete metric space is such that the sequence of dia- 
meters of these subsets has limit zero then there is one and only one point in their 
intersection. In order to state this theorem the following definition, cf. [ 1], is needed. 

Definition 4.1. Let (S, i f )  be a PM space. Let A be a nonempty subset of S. 
The probabilistic diameter of A denoted by DA is the function whose value at 
any real number x is given by 

DA (x) = inf { Fpq(X): p, qEA } . 

Theorem 4.1. Let (S, ~ )  be a complete P M  space satisfying IVs under an l.c. 
t-function ~. Let {An} be a nested sequence of nonempty subsets of S which are 
closed in the e, )c-topology and such that DAn ---, H as n--* co. Then there is one and 
only one point Po EA, for every n. 

Proof Let {p,} be a sequence such that p, eA ,  for every positive integer n. 
Let e, 2 > 0  be given. Choose a positive integer N such that DA,(e)> 1--2 when- 
ever n > N. Let m > n > N. Then p,,~Amc_A, and p, eA, .  Thus 

Fp, pm(g)>inf{Fpq(e): p, qeA,}  =DA,(e) > 1--2. 

Since e, 2 are arbitrary {p,} is a Cauchy sequence in the complete PM space 
(S, ~) .  Thus there is an element po~S such that {p,} ~ P0. Since pmEA, whenever 
m>n and A, is closed it follows that PoEA, for every n. Finally, suppose there 
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is another point qo belonging to each A,. Then for each x >0, 

F~o qo(X)>-inf {Fvq(x): p, q~A,} ~ 1 

as n--+~, i.e., po=qo - 

Baire's category theorem states that a complete metric space is of second 
category. This theorem has a topological version which states that if a topological 
space (X, o) is pseudometrizable by a pseudo-metric d such that (X, d) is com- 
plete, then (X, o) is of second category. This version can be carried over immedi- 
ately to complete PM spaces. 

Theorem 4.2. A complete P M  space (S, ~ )  satisfying IVs under an I.c. t-function 
z is of second category. 

Proof The e, 2-topology [8] for (S, ~ )  is the uniform topology for the uni- 
formity generated by ~.  Thus it follows from Theorem 2.3 that the e, 2-topology 
is metrizable by a metric d such that (S, d) is complete, and this completes the 
proof. 
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