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Limit Theorems for Infinite Particle Systems* 

N. A. WEISS 

w 1. Introduction 

Let I be a countable set and suppose that at time zero a certain (possibly 
random) number Ao(x) of particles are placed at each x~I  and then they move 
independently according to some transition law. If B is a nonempty subset of I 
then some quantities of interest are A n (B)-  the number of particles in B at time n; 
Sn(B)-the total occupation time of B by time n; Ln(B)-the number of distinct 
particles in B by time n; and J, (B) - the number of particles which are in B for a 
last time at time n. 

In [-2], Derman investigated a system of this type where he proved the following: 
Suppose Ao(x ), x s I  are independent Poisson variables with means #(x) and the 
particles move independently according to the transition function P(x, y) of a 
Markov chain. Also suppose that/~ is invariant for P; that is, ~/~(x) P(x, y)=#(y) 
for all y. Then the system is in statistical equilibrium in the sense that at any time n, 
An(x ), x~I  are independent Poisson variables with means /z(x). Port further 
examined this system in [-4] under the hypothesis that P(x, y) is the transition 
function of a transient chain. Here he proved several limit theorems involving the 
aforementioned quantities. For example, he showed that S,(B)/n ~I~(B) a.s. and 
that S~ (B) is asymptotically normally distributed. 

Now, if the Poisson assumption on the initial distribution of particles is 
dropped several problems immediately arise. In the Poisson case, the random 
variables {A,(B)}, form a strictly stationary sequence and the pointwise ergodic 
theorem applies. But if the Poisson assumption is dropped, the sequence {An(B)} 
is in general not stationary. Thus different techniques must be developed and 
applied to get the strong law of large numbers for the S,(B). Another difficulty 
is met when attempting to determine the asymptotic behavior of the variance of 
Sn(B); an additional term is encountered in the non-Poisson case and the dis- 
covery of its asymptotic behavior is not only crucial for the proof of the central 
limit theorem for S,(B), but is also vital in proving the strong law for this quantity. 
Finally, in the Poisson case, the proof of the central limit theorem for S, (B) rests 
on the infinite divisibility of the Poisson distribution. Consequently, in the non- 
Poisson case some modifications must be made. 

The purpose of this paper is to establish the appropriate limit theorems for 
the particle system without the Poisson hypothesis while assuming P(x, y) is the 
transition function of a transient aperiodic random walk. As indicated above, 
some major modifications are necessary in dealing with the non-Poisson case. 

* This paper is a part of the author 's  doctoral dissertation written under the direction of Pro- 
fessor S. Port. The research was supported in part by NSF Grant  GP-8049. 
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We assume that Ao(x), x~Z  are independent nonnegative integer-valued 
random variables with finite fourth moments and that there are constants 2 > 0, v, 
and M such that 

(i) p l ( x ) ~ 2  as Ixl-+m 

(ii)/~2(x)-~v as Ixl-~oo (1.1) 

(iii) #j(x)<M 1 < j < 4 ,  x~Z  

where #~ (x) -- E (Ao (x) (A o (x) - 1)... (Ao (x) - J + 1)). 

Remark. In particular, if Ao(x), xE Z are independent and identically distrib- 
uted random variables with finite fourth moments, then (i)-(iii) will hold. 

w 2. Preliminaries and Notation 

Suppose that X,, n > 0  are independent integer-valued random variables and 
for n > l  the variables are identically distributed. Then the process {Y~; n>0} 
defined by Y,, = Xo + Xt + . . .  + X n is called a random walk. This process is a Markov 
chain with n step transition function P,(x, y) given by P,(x, y)=P(X1 +'" + Xn=y-x). 
P(x, y)-['1 (x, y) is called the transition function of the random walk. Let F,(x, y)= 
P(Y, = y; Y~ # y, 1 <_ v _< n - 1 ] Yo = x). Then the random walk is said to be recurrent 
if ~ F, (0, 0)-- 1 and transient otherwise. The random walk is called aperiodic if 
the group generated by the set O={x :  P(0, x)>0} is the group of all integers. 
The following renewal theorem will be used frequently in the sequel and can be 
found in [5]. 

Theorem. Suppose P~ (x, y) is the n step transition function of a transient aperiodic 

random walk. Let G(x, y)= ~ P,(x, y). I f  ~ Ix] P(0, x)= oo, then 
n = l  

lim G (x, y) = 0. 

On the other hand, if ~ Ixl P(0, x)< oo and ~ xP(0, x)=m then 

lim G (x, y) = 0 
x ~ o o  

lim G (x, y) = m - 1 
x ~  - c o  

/ f ro>0  and if m<O 
lim G(x, y)=(-m) -1 

x ~ o o  

lira G (x, y) = 0. 
x ~  - -oo  

Let {Y,; n>0} be a transient random walk with n step transition function 
P,(x, y). Also let B be a finite nonempty subset of the integers. The following 
notation will be employed 

P~ (x, B) = ~ P~ (x, y); 
y ~ B  

6.(x, B)= ~ ~(x, B); 
k = i  

VB=inf{n> 1; Y,,eB} 

r {y})= p.(x, y) 

k = l  

(=oo if Y~B V n > l ) .  
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On { VB < oo }, we define 
T~= sup {n> 1: Y, eB} 

and T B is undefined otherwise. 1B (x) = 1 if x e B and equals 0 otherwise. Z = integers, 
J f  = positive integers, IBI = cardinality of B. 

w 3. Statement of Results 

Suppose at time zero we place Ao (x) particles at xE Zwhere A0 (x) are independ- 
ent random variables satisfying (i)-(iii) of w 1. The particles are then assumed to 
move independently according to the transition function P(x, y) of a transient 
aperiodic random walk { II,}. More precisely, we assume that the random variables 
X ~  ), for n6~,, k6~,, x 6 Z  are independent and identically distributed with 
P(X~)=y)=P(O,y). It is also assumed that the variables Ao(x) and X ~  ) are 
independent. Then the process {Y,(k~)},~= o defined by Yo(kz)=z and Y,(~)=z+ 

1,~ + ' " +  for n > l  is a random walk with transition function P(x,y) and 
represents the position of the k-th particle starting at z at time n. 

Throughout B will denote a finite nonempty subset of Z. Our first result gives 
the asymptotic behavior of the variance of S, (B). Results in [4J along with some 
theorems in [6] lead to the conjecture that Var S, (B) %n [2 ]BI + 2)o ~ G(y, B)]. 

y e B  

It turns out, suprisingly enough, that although this is correct in the case 
[xl P(0, x )=  0% it is not correct when ~ [xt P(0, x )<  oe. 

Theorem l. Let S,(B) denote the total occupation time of B by time n. I f  
Ix[ P(O, x)= oo then 

lim Var S,(B) - 2  ]B[ + 2 2  ~, G(y, B). (3.1) 
n ~  oo n y~B 

On the other hand if ~ I xl P(0, x) < oo and ~, x P(O, x) = m then 

v-,~ 2 
lira Vat S,(B) - 2  [BI + 2 2  ~ G(y, B ) + ~ -  ]BI 2. (3.2) 
n ~ m  n y e B  

Using the fact that the variance of S,(B) grows like n along with a fourth 
moment argument, we get the strong law of large numbers for the S,(B). 

Theorem 2. Let the notation be as above. Then with probability one 

lira S, (B)/n =)o ]BI. (3.3) 
n ~  oo 

Notice that (3.3) shows that the number of particles per unit time in B equals 2 [B]. 

The next theorem shows that S, (B) is asymptotically normally distributed. 

Theorem 3. Let 

7 *  

[A, IBI + 2 2  ~ G(y, B) 

r (B) = { Y~" v - 2 2 
/ 2 IBI +2)~ ~ G(y, B ) + ~ - I B I  z 

y e B  

/f ~,IMP(0, x ) = ~  

if ~ x P ( 0 ,  x )=m.  
(3.4) 
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Then for all u6R  
( S , (B) -ES , (B)  ) 

! i fnP  [nrrZ(B)j�89 < u  =~(u)  (3.5) 

where cb is the standard normal distribution. 

The investigation of the system continues with the study of the number of 
distinct particles which enter B by time n which we denote by L,(B). The first 
result for L,(B) gives the behavior of the variance of L, (B) for large n. 

Theorem 4. Let C ( B ) = y" Py ( Vz = oo). I f  ~, Ix[ P ( O, x)=  0% then 
yr 

lira VarL,(B) 2 C(B). (3.6) 
n ~ o o  n 

On the other hand, if ~ I xl P(O, x) < oo and ~ x P (0, x) = m then 

r V--A 2 ] 
lira Var L,(B) _ C(B) [ 2 + ~ -  C(B) . (3.?) 
n ~ o o  n 

With the aid of Theorem 4 we show that the number of new particles in B per 
unit time is 2 C (B) and that L, (B) is asymptotically normal. 

Theorem 5. Let 

z ~ [2 C(B) if ~ Ixl P(0, x)= oo 

(B)=[C(B)U~+(v-22)lm] -1C(B)] if  y~xP(O,x)=m.  
(3.8) T 

I f  z 2 (B) > O, then for all u �9 R 

( L , ( B ) - E L , ( B )  ) 
]irn P In z 2 (B)] 4 =< u = (b (u) (3.9) 

and with probability one 
lira L,(B)/n = 2 C(B). (3.10) 
t l ~ o o  

Similar theorems to the one above are proved in [4]. But the proofs there 
depend heavily on the Poisson nature of the system. So, as for the S,(B), we are 
forced to develop new techniques for dealing with L,(B) in the non-Poisson case. 
The study of the system terminates with the investigation of the quantity d, (B ) -  
the number of particles which are in B for a last time at time n. 

Theorem 6. Let "c2(B) be given by (3.8) and C(B) be as above. 7hen, if D,(B)= 
J1 (B) +. . .  + J, (B) we have 

lim Var D, (B)/n = z 2 (B) (3.11) 
n---r oo 

and with probability one 
lim D, (B)/n = 2 C (B). (3.12) 
n ~ o o  

Moreover, if  rZ(B)>O, then for all u~R 

D n (B)-  ED n (B) ) 
!ira P [n z 2 (B)] ~ ~ u = ~(u). (3.13) 
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As a consequence of (3.10) and (3.12), we get the fact that the number of new 
particles in B per unit time equals the number of particles per unit time which 
leave B never to return. Hence, although the system in not in general in statistical 
equilibrium, as in the Poisson case, it does have some basic properties characteristic 
of such a system. The paper concludes with several illustrative examples. 

w 4. Proof of Theorem 1 

In order to prove Theorem 1, we must first establish several lemmas. Let 
f oo { },x},= o be a random walk with Yox = x and the transition function P(y, z) which 

regulates the movement of the particles. For a finite nonempty set B let N,x(B) 
denote the number of times the process {Y,x} is in B by time n. Then 

N,~(B)= ~ 1B(Yj~ ). (4.1) 
j = l  

Z (k) B For each ne,V,, k~Y,,  x E Z  let - , x (  ) be the occupation time of B by time n of 

the k-th particle starting at x. Then (k) ~ .y(k h Z,~(B)= 18( i~, and for each nEJV" the 
)=1 

random variables {z(,k)~(B)}k,x are independent. Moreover z(,k)~(B) is distributed 
as N,~(B) for all k. Then 

Ao (x) 

S,~, (B) = • Z (k) B (= 0 if (4.2) - .x() Ao(x)=0) 
k = l  

gives the total occupation time of B by time n of the particles starting at x. Note 
that for each n the random variables {S,~(B)}x are independent and finally that 

S, (S) = ~, S,~,(B). (4.3) 
x 

We will now exhibit the first four moments of S,~(B). From the assumptions made, 
it is clear that E(S,~ (B)lAo (x)= m)= m EN, x(B) and consequently 

ES, ~ (B) =- lq (x) EN,:, (B). (4.4) 

Next we have that E(S.x(B)21Ao(x)=m)=E Z~(B)  . But 
\ k =  1 / 

m 2 m 

= Z (Z.~ (B)) + Z Ziil (B) Zi/~ (B) 
\ k = l  k = l  i ~ j  

and so using the independence of the {Z(,,k)~(B)}k we get 

ES, x (B) 2 = PI (x) EN, ~ (B) 2 + #2 (x) [EN, ~ (B)] 2. (4.5) 

Similar arguments give 

ESnx (B) 3 =/11 (x) EN n x (B) 3 + 3 ],/2 (x) ENnx (B) 2 EN n x (B) + P3 (x) [EN n x (B)J 3, (4.6) 

ES,x (B) 4 = #~ (x) EN.~ (B) 4 + 3 I~ 2 (x) [EN,~ (B) 2] 2 

+4p2 (x) EN,,~ (B) 3 EN,~(B)+ 6#3 (x) EN, x(B) 2 [EN, x(B)] 2 (4.7) 

+ #4 (x) [EN.~ (B)] 4. 
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Using (4.3)-(4.5) and the independence of {S,x(B)} x we obtain for each n e a r  

Vat S,(B) = ~ ~t 1 (x) EN, x(B) 2 + ~ (/~2 (x)-/~1 (x) 2) [EN, x(B)] 2. (4.8) 
x x 

The second term on the right in (4.8) is the additional term alluded to in the 
introduction. In the Poisson case/~2 (x)=/~1 (x) 2 and so it does not arise. It turns 
out that the second term in (4.8) is much more difficult to handle than the first and 
our first lemmas deal with obtaining its asymptotic behavior. The following fact 
will be used. 

Lemma 1. Suppose for each x that {a,(x)}, is a nonnegative sequence of real 
numbers such that ~ a,(x)--+a as n ~ o v  and for each x, a,(x)~O as n-~oo. Also 

3C 

suppose that {q(x)}~ satisfies q(x)~  b as Ixl ~ oo. Then 

lim ~ q (X) a, (x) = b a. 
n ~ o o  

x 

Now, by (4.1) EN,~(B)= ~ P~(x, B)= G,(x, B), and for all n, Z EN,~(B)=n pB[. 
j = l  x 

With this in mind, we prove 

Lemma 2. Let the notation be as above and suppose that ~ [xl P(O, x) = oo. Then 

lim --1 ~ [EN, x(B)]2=O" (4.9) 
n--~ oo n 

Proof Let a,(x)= G,(x, B)/n IB] and q(x)=G(x, B). Since the random walk is 
transient G, (x, B) < G (x, B) < oo and hence a, (x) --. 0 as n --* ~ for all x s Z. Also, 
by the renewal theorem q(x)-. 0 as I xl ~ ~ since ~ I xl P(0, x) = or. Since ~ a, (x) = 1 

x 

for all n we can apply Lemma 1 to conclude ~ G(x, B)G,(x, B)/n IBI-o(1) and 
x 

(4.9) follows since EN,~ (B) = G. (x, B) < G (x, B). 
The next lemma gives the behavior of ~ [EN,~(B)] 2 in case ~ ]xl P(0, x)< oo. 

The proof in this case is much more subtle as a result of the different limiting 
values of G (x, B) when x --* oo and x --+ - oo. 

Lemma 3. Suppose ~ Ixl P(O, x)< oo and m= ~ x P(O, x). Then 

lim --1 ~ [ENnx(B)]2 - IB[ 2 (4.10) 
, ~  n . ImJ 

Proof Without loss of generality assume m>0.  Let zEB. The weak law of 
large numbers implies that ~ P,(x, z)-o 0 as n ~oo and since IB] < oo it follows 
that ~ e o 

lim n -~ Z G,(x, B)=0.  (4.11) 
.~oo x~O 

The next thing that must be done is to establish a lower bound for n -1 ~ [G,(x, B)]  2. 
x 

To do this we estimate the difference G(x, B)-G,(x ,  B) for large n. The Markov 
property and spatial homogeneity of random walks imply 

G ( -  x, B ) -  G, ( -  x, B) = ~ ~ P~ (0, y) G (y, x + z). (4.12) 
zeB y 
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Let K = 1 + G (0, 0) and Zo = max {z' z eB}. The weak law of large numbers implies 
that for given e >0, ~ P,(0, y)< e/2K [B[ for large n and the renewal theorem 

y < n ( m - e )  

implies G(0, w)< e/2 [B[ for - w  large. Using these facts, it follows that for large n 
and x<n(m-2e)-Zo 

P~(O, y) G(y, x+z)<e/[B[, zeB. (4.13) 
Y 

Using (4.12) and (4.13) we get that for large n and x<n(m-2e)-Zo 

G(-x ,  B) -  G, ( -x ,  B)<e. (4.14) 

By the renewal theorem G(0, x+B)-o m -1 ]B], as x ~ or. Hence using (4.14) we 
can choose M so that for large n and M<x<n(m-2e ) -Zo ,  G,(O,x+B)~ 
m -a ]Bl-2e.  Let A,={xeZ:  M<x<n(m-2e)-Zo} .  Then the above facts imply 
Z [Gn(x, B)] 2 ~ (  m-1 [B] -2e)  a [A,] and consequently 
x )2 

l iminfn-~2[G,(x,B)l  > ~ - - 2 e  (m-2e) .  
x 

Letting ~ $ 0 we get the desired lower bound" 

lira inf n -1 ~ [a,(x, B)] 2 > IBI2 (4.15) 
n ~  o9  x m 

To finish the proof of the lemma, note that (4.11), the renewal theorem, Lemma 1, 
and G, (x, B)__< G (x, B) imply 

lim sup n -1 ~ [G,(x, B)] z <m -11BI 2 (4.16) 
n ~  o0 X < 0  

and this along with (4.15) gives (4.10). 

We are now in a position to prove Theorem 1 : 

Simple calculations show that 
n - - 1  

Z EN.~(B) 2 =n IBI + 2  ~ Z G~(y, B). 
Consequently, y~  i= 1 

lira n -1 ~ EN, x(B) 2 = [B[ + 2 ~ G(y, B). (4.17) 
n ~  oo y e B  

It now follows from (4.17), Lemma 1, and (1.1) that 

lim n -~ ~ ~1 (x) EN, x(B) 2 = 2 [[BI + 2 ~ G(y, B)]. (4.18) 
n ~  oo 

x y E B  

Lemmas 1-3 along with (1.1) imply that 

lim n-1 Z (P2 (x) - kq (x) 2) [EN,~ (B)] z 
n ~  o9  

x 

l 0 if ~ Ix] P(0, x )=  oo 
(4.19) 

= V--j~2 2 
[ ~ -  IBI if ~ x P(0, x) = m. 

Theorem 1 now follows from (4.8), (4.18) and (4.19). 



94 N.A. Weiss: 

w 5. Proof of Theorem 2 

As pointed out in the introduction, in the non-Poisson case the sequence 
{A,(B)} is not in general stationary. Hence, by necessity, an entirely different 
method than in r4] must be used if we are to prove the strong law of large numbers 
for S,,(B) in the non-Poisson case. It turns out that a fourth moment argument 
works. We begin with 

Lemma 4. Let S,x(B ) denote the total occupation time of B by time n of the 
particles starting at x (see w 4). Then 

y .  e [ s,, ~ (B) - e s .  x (B)3 4 = o (n2). (5.1) 
x 

Proof. First of all note that (4.17), Lemma 2, and Lemma 3 imply that 
EN, x(B) 2 = O(n) and ~ [EN, x(B)] 2 = O(n). Using these facts, the fact that EN, x(B ) 

and EN, x(B) 2 are uniformly bounded in x~Z, n eY,, and G,(x, y)~G(x, y)< 
some rather lengthy calculations show that the following hold: 

~, ENnx(B) 2 ENnx(B)= O(n), (5.2) 
x 

[EN, x(B)] 3 -- O(n), (5.3) 
x 

y~ E N ,  ~ (B) 3 = O (n), (5.4) 
x 

EN.x(B) ~= O(n). (5.5) 
x 

Using the above results along with (1.1) and (4.4)-(4.7) it is not difficult to see that 

E [S.x (B)-  es ,x  (B)] 4 = O(n) (5.6) 
x 

and so in particular (5.1) holds. 
We are now in a position to prove Theorem 2. First of all we show that 

ES,(B) %n 2 IBI. (5.7) 

It follows from (4.3) and (4.4) that ES,(B)= ~ #~(x) EN,~(B). But ~ pa(x) EN, x(B) = 

E ~ (E/~l(x) Pk(x, y)) and (1.1) and Lemma 1 imply ~ #a(x) P,(x, y ) ~  2 for all y 
yEB k = l  x x 

and these facts imply that (5.7) holds. 
For brevity let A,~=S,x(B)-ESn~(B). Then the random variables {A,~}~ are 

independent for each n and EA,x = 0 while EA2x = Var S~ (B). Writing 

(~ A,x)4=~ A4,~+ 4 ~ A,a~A~y+ 3 ~ A2~A2,r 
x x x4 :y  x ~ y  

+ Y~ A,xAnyA,~ + ~ A.~A,yA,~A,~ 
x 4 - y ~ z  x ~ y ~ z : : l - w  

and using the above facts we conclude that 

E [Sn (B) -ES,(B)] 4 = ~  E [S.x(B)-ES,:,(B)] 4 
(5.8) 

+ 3 ~ Var S.x(B) Var S.y(B). 
x : l - y  
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Now, ~, Var S,x(B) Var S,,(B)<= [ ~  Var S,~(B)] 2 = [Var S,(B)] 2 %n 2 [a2(B)] 2 by 
x ~ y  x 

Theorem 1. Here a 2 (B) is given by (3.4). Using this fact, along with Lemma 4 and 
(5.8), we see that E [S, (B)- ES, (B)] 4=  O(n2). Thus for any e > 0, 

E [S.(B)-ES.(B)] 4 
n4 & < oo. (5.9) 

n ~ l  

By Chebychev's inequality 

P (S , (B) -ES , (B)  ) < E[S,(B)-ES,(B)] 4 

Using this along with (5.9) and the Borel-Cantelli lemma, we conclude that for 
any e > 0  

P ( S~ >~ i . o . )=0 .  (5.10) 

From (5.10) it follows easily that with probability one [S, (B) - ES, (B)] =o(n) and 
consequently (5.7) shows that (3.3) holds. This completes the proof of Theorem 2. 

w 6. Proof of Theorem 3 

In this section we prove that S, (B), suitably normalized, converges in distribu- 
tion to the standard normal distribution. The method of characteristic functions 
is used. In the course of the proof several error terms arise and the following 
lcmmas are necessary in order to deal with these terms. 

Lemma 5. With the notation as above we have 

sup Var S,x (B) = o (n) (6.1) 
x 

and 
sup E ]S,~(B)-ES=~(B)J 3 = o(n~). (6.2) 

x 

Proof By the renewal theorem sup G(x,B)<~.  From this it follows that 
x 

Var N~x(B), EN~(B), EN, x(B) 2, and EN,~(B) a are uniformly bounded in n and x. 
Using (4.4)-(4.8) along with (1.1) and the above facts, some lengthy calculations 
show that the quantities in (6.1) and (6.2) are in fact O(1). This completes the proof 
of the lemma. 

Lemma 6. Let the notation be as above. Then 

E IS, x(B)-ES,~(B)I 3 = o(n~). (6.3) 
x 

Proof With the aid of (4.4)-(4.6), (l.1), and (5.2)-(5.4) and some calculations 
it is not too difficult to show that ~ E I S, x (B)-ES,= (B)[ 3= O(n) and consequently 
(6.3) is valid, x 

To prove Theorem 3 first let ~b,(0) and ~,x(0) be the characteristic functions 
-�89 of [S=(B)-ES,(B)] n -~ and [S,~(B)-ES,~(B)] n , respectively. Since S,(B)= 

S,~(B) and the random variables {S,x(B)}~ are independent for each n we have 
x 

q~, (0)= [ I  ~,~(0). (6.4) 
x 
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If X is a random variable with finite third moment and f(O) is the characteristic 
function of X then (see Feller [3], p. 487) f(O) = 1 + i 0 EX - 02 EX2/2 + e (0) where 
le(0)l < [013E [Xla/3 !. Applying this to O,x(0) we get 

where 
O,~ (0) = 1 - 02 Var S,~ (B)/2 n + R,~ (0) 

IR,~(0)I ~1013 E [S,~ (B) - ES,,~(B)I3/3 t n ~. 

(6.5) 

(6.6) 

For convenience let A,x(O)=-O2VarS,~(B)/2n+R,~(O). Then Lemma5 and 
(6.6) show that sup I A,~ (0)l~ 0 as n ---, oe. For Iz[ < �89 log (1 + z)= z + e (z)]zl z where 

X 

l e (z) l < 1. Hence for large n, log (1 + A,~ (0)) = A, x (0) + A. ~ (0) I A,x (0) 12 for all x e Z, 
where IA,x(0)l< 1. Recall that Var S . ( B ) = ~ V a r  S.~(B). Then Theorem t, (6.2), 
and (6.6) imply that 

Jim ~ A,x(O)=-0 2 ~2(B)/2 (6.7) 

and 

Since 

lim sup ~ [A,~(O) I< 0 2 a 2 (B)/2 (6.8) 
n - - .  oo x 

[ ~. A.x(O) IA,~(O)12[ < [sup LA,~(O)II ~, IA,~(0)l 
X X X 

we can use (6.8) and sup IA,~(0)I--,0 to get 
X 

!im ~ A,x(O) [A,~(0)I 2--0. (6.9) 

Finally (6.4) can be written as ~b,(0)=exp [ ~  log 0,x(0)] and (6.7) and (6.9) imply 
J;  

log q/.x(0 ) --*- 0 z a 2 (B)/2 as n ~ ~ .  Theorem 3 now follows by the continuity 
X 

theorem. 

w 7. Proof of Theorem 4 

For each x let {Y,x} be a random walk with Yo~,=x and transition function 
P(y, z). Let M,x(B) be 1 or 0 according as {Y,~} does or does not visit B by time n. 

That is, M,x(B)=I  . For each neX,, ke~,, x~ Z  let U(,~)(B) be 1 if 

the k-th particle starting at x visits B by time n and 0 otherwise. Then for each n 
U,~ (B) is distributed the random variables {U(,~)(B)}k, x are independent. Moreover, (k) 

as M,~(B) for all k. It is clear that if L.x(B) is the number of distinct particles 
starting from x which hit B by time n, then for each n the random variables 
{L,x(B)}~ are independent and 

Ao(x) 

L.~(B)= ~ U(,~)(B) (=0  if Ao(x)=0), (7.1) 
k = l  

L, (B) = ~ L,:, (B). (7.2) 
3r 
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Note that EM, x(B)=P~(VB<n). With this in mind arguments as in w give the 
following: 

EL.x (B) = Pt (x) P~ ( V B < n), (7.3) 

EL,  x (B)2 = #l (x) P~ ( V8 < n) + #2 (x) [ P~ ( V~ < n)] 2, (7.4) 

EL, x (B) 3 = Pl (x) P~ (VB < n) + 3 P2 (x) [P~ (V B <-<_ n)] 2 + P3 (x) [Px (V R =< n)] 3, (7.5) 

EL.x ( B) 4 = #1 (x) P~ ( VB < n) + 7 P2 (x) [P~ ( V B < n)] 2 
(7.6) 

+ 6 Ps (x) [P~ (V~ < n)] 3 + P4 (x) [P~ (V8 < n)] 4 

and it follows immediately from (7.2), (7.3) and (7.4) that 

VarL , (B)=~pl (x )P~(V~<n)+~(#2(x ) -p l (X)2)[P~(VB<n)]  2. (7.7) 
x x 

In the Poisson case/b/2 (X)= ~I(X) 2 and consequently the second term on the right 
of (7.7) does not have to be contended with. As in the case of S,(B), it turns out 
that this second term is more difficult to handle than the first. As before the 
renewal theorem does the trick. 

Lemma 7. I f  the random walk is such that ~ Ix] P(0, x)= ~ ,  then 

lim P~(V~< oo)=0. (7.8) 
I~[~ 

On the other hand if ~ Ix[ P(0, x) < oo and ~ x P(O, x) = m, then 

lim P~(VB< oo)=0 
x ~  ao 

(7.9) 
lim P~(V~< oo)=m -1 C(B) 

if m>O and /f m < 0  
lim P~(Vs < oo) = - m -1 C(B) 

x ~ o o  

< oo)= o. 

Here C(B)= ~ Py(V B = oo). 
y e B  

Proof. Since the chain is assumed to be transient P~(TB= oo)=O and thus 

k = l  k = l  yeB 

= y G(x, y) = oo). 
y E B  

(7.10) 

Consequently, since IBI < oo the result follows from the renewal theorem. 

In order to get the asymptotic variance of L, (B) it is first necessary to determine 
the behavior of ~ [P~(VB_<n)] 2 for large n. In case ~ [x I P(0, x)=oo it is not 

x 

difficult to show that Lemma 1 and (7.8) imply ~ [P~(VB__< n)] 2 =o(n). However, if 
x 

xP(O, x ) = m  this is not the case and a bit more care must be taken. Note also 
x 
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that since the chain is transient and [BI< oe, Pr(VB= oo)>0 for some yeB and 
thus C(B)>0. Before getting the asymptotic behavior of ~ [P~(V B < n)] 2 in the 
finite mean case we first determine the behavior of EL,(B). 

Lemma 8. Let the notation be as above. Then 

EL,(B) %n 2 C(B). (7.11) 

Proof We have EL, ( B) -- ~ #1 (x) Px ( VB < n) and a last entrance decomposition 
gives x 

n 

Y, (Z l(x) 
x y e B  k= 1 x 

It follows from Lemma 1 that ~#I(X) Pk(X,y)-~2 as k - ~  and clearly 
x 

Py(VB>n)$Py(VB =GO). A summability argument now yields EL.(B) %n ~ ~Py(VB - -~)  
and thus (7.11) holds, y~B 

Lemma 9. Suppose ~ I xl P(0, x) < o0 and ~ x P(O, x) = m. Then 

n)] 2 %n Iml-1 [C(B)]2. (7.12) 
x 

Proof Without loss of generality assume m>0.  Since P~(VB<n)<G,(x,B), 
(4.11) implies that ~ P~(VB < n)= o (n). An argument similar to the one used in the 

x > 0  

proof of Lemma 8 gives ~ P~(Vn< n) %n C(B). Consequently, 
x 

Px(V, <=n) %n C(B). (7.13) 
x < 0  

For convenience, let h,(x)=-P~(VB<n) and h(X)=P_~(VB<~). It is easy to see 
that h(x)- h,(x)< G( -x ,  B) -  G, ( -x ,  B) and hence (4.14) applies to give that for 
large n and x < n ( m - 2 e ) - z  o we have h(x)-h,(x)<~. Let ~=rn -1C(B). Then 
(7.9) implies h(x)~ a as x ~ .  Hence for large n and M (independent of n) 
h , ( x ) > a - 2 e  uniformly for M<x<n(m-2e) -Zo .  Similar arguments as in 
Lemma 3 now yield 

lim i nf n -a ~ [P~ (V B < n)] 2 ~ m -~ [ C (B)] 2. (7.14) 
n-~ ct3 x 

Using (7.13), P~(Vn<n)<P~(VB<~), Lemma7,  and Lemma 1 it is not hard to 
see that 

lira sup n -1 ~ [P~(VR<n)]2<m-I[C(B)] 2. (7.15) 
11---~ Of~ X < 0  

This completes the proof of Lemma 9. 

To prove Theorem 4 first note that (7.7) and (7.3) imply Var L~(B)= EL.(B)+ 
(#2 ( x ) -  p~ (x) e) [P~(V B < n)] 2. Lemma 1 applied to (1.1) and the above results give 

x 

2 ( /12  ( X )  - -  ]-/1 ( X )  2 )  [P~(Vj3  <= n)] 2 
x 

o(n) if ~, Ix[ P(O, x)= oo (7.16) 

= n(v-22)}ml-l[C(B)]2+o(n) if ~P(O,x)=m. 

Theorem 4 now follows from Lemma 8 and (7.16). 
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w 8. Proof of Theorem 5 

To get (3.9) first note that M,~(B);=M,x(B) for all je,A# and EMn,,(B)= 
P~(V~ < n)=< 1. Using these facts and (7.3)-(7.5) some calculations show that 

sup Var L,x(B)= o(n), (8.1) 
x 

sup E [L,x (B) - EL,:, (B) r 3 = O (1). (8.2) 
x 

Also, it is not too difficult to show that E[L,x(B)-EL,~(B)[3=O(EL, x(B)) and 
consequently Lemma 8 implies 

E I L.~, (B) - E L  n~ (B) I 3 = 0 { E L ,  (B)) = o (n~). 
X 

(8.3) 

Using (8.1)-(8.3) and arguments based on characteristic functions similar to those 
which appear in the proof of Theorem 3 we are able to prove (3.9). 

In order to prove the strong law of large numbers for the quantity L,(B) 
we again turn to a fourth moment argument similar to the one used in Theorem 2. 
The essential facts needed to complete the argument are Lemma 8 and 
E[L.:`(B)-EL.x(B)] 4= O(EL.:`(B)). The last fact along with Lemma 8 implies 
that 

E [L,x (B) - EL,x (B)] 4 = o (n2). (8.4) 
X 

Armed with (8.4) and Lemma 8, arguments as in Theorem 2 yield (3.10). 

w 9. Proof of Theorem 6 

The proof of Theorem 6 can be accomplished by arguments similar to those 
used in Sections 7 and 8. Consequently, we will only formulate the problem here 
and make a few comments regarding the quantity Dn(B). Once these comments 
are made it should not be too difficult to see how the proof of Theorem 6 should 
proceed. 

Let {Y,x} be as in w Let R,x(B) equal 1 if the process {Y,~}~=I leaves B, 
never to return, by time n; and let it equal 0 otherwise. Then 

For each n, k~Y,, x e Z  let VV,(~)(B) be 1 if the k-th particle starting at x leaves B 
by time n and never returns; and let it equal 0 otherwise. Then W,(~)(B) is distributed 
as R,x(B) for all k, the random variables {W~)(B)}k,:` are independent for each n, 
and 

Ao (x) 
D-x(B)= Z W-~)(B) (=0  i fA0(x)=0 ) (9.1) 

k=l  
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represents the number of particles starting at x which by time n leave B and never 
return, Moreover, for each n, the variables {D,x(B)}~ are independent and 

D. (B) = ~ D.~(B). (9.2) 

Formulas similar to those given in (7.3)-(7.7) hold for D,x(B), with Px(VB<__n) 
replaced, by P~(Tn<n) since the latter quantity is the mean of R,~(B). Since 
P~(TB < ~ ) =  P~(VB < oo) Lemma 7 hold with Px(TB < oo) replacing P~(VB < oo). Now, 

ED,(B)=~, #~(x) Px(Ts<n)= ~ Z (~  kh(x) Pk(X, y)) Py(V8 = ~ )  
y ~ B  k =  1 x 

and so arguments as before show that 

ED. (B) % n 2 C (B). (9.3) 

Finally it is clear that P~(Tn < oo)-Px(T~<n)<G(x, B)-G,(x ,  B) and this permits 
us to get the asymptotic behavior of the quantity y~ [Px(TB<n)] z. The rest of the 

x 

details regarding Theorem 6 are left to the reader. 

w 10. Examples 

First we give some examples where (i)-(iii) hold. 

Example 1. As pointed out previously, if the random variables {Ao(x)} are 
independent and identically distributed with finite fourth moments then (i)-(iii) 
will hold. 

Example 2. Let {/x 1 (x)} be a sequence of nonnegative real numbers such that 
Ftl(x)~ 2 > 0  as txl ~ov.  Choose L so that # l ( x ) < L  for all x and let the random 
variables Ao (x), x e Z be independent and binomially distributed with parameters L 
and #l(X)/L. Then (i) holds by definition and it is easy to show that (iii) holds with 
M = L 4. Finally P2 (x) = (L - 1) #1 (x)2/L and so (ii) holds with v = ,~2 (L - 1)/L. 

Next we give an example where some of the quantities introduced previously 
are calculated. 

Example 3. Bernoulli random walk. Consider the random walk with transition 
. i  function given by P(0, 1)=p, P ( 0 - 1 ) =  1 - p  where 0 < p <  1. We assume p ~ so 

that the random walk is transient. It is well known that ~ P,(0, 0)= 11- 2p[ -a 
n = 0  

(see Chung [1], p. 23). Consequently, G (0, 0) = I1 - 2p]-1 _ 1. Now for any transient 
state of any Markov chain we have P~(V(x~= ~ ) - - [ 1  + G(x, x)] -1. In the present 
case we have C({O})=Po(V(o~=Oo)=[l+G(O,O)]-l=ll-2p]. Also, m= 

x P(0, x ) = 2 p -  1. Using these facts we get for B = {0}, 

a2 (B) =)~+ 22(J1-2p]  - 1 -  1)+ (V--2 2) 11 --2p[ -1 

Z2 (B) = [1 --2p] (2 + v-- 22). 
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