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Positivity of the K-Entropy on Non-Abelian K-Flows 

G6rard G. Emch 

A non-commutative extension of certain aspects of classical probability theory is presented in such 
a manner that the notion of Kolmogoroventropy can be extended to a large class of non-classical 
dynamical systems. In particular, the generalized K-entropy so defined is shown to be strictly positive 
on the class of non-abelian K-flows. 

I. Introduction 

A classical flow {O, #, T} is usually [1, 14] defined as a Lebesgue space (f2, #) 
equipped with a one-parameter group {T(t)ltelR} of automorphisms (mod 0) 
of (f2, #), with T(t) depending measurably of t. As is well-known [1, 9], one can 
associate to every classical flow a triple {91, ~, c~} consisting of: (a) the maximal 
abelian yon Neumann algebra 91= ~~176 (O, #), the elements of which are the 
"Stochastic variables" of the theory, acting by multiplication on the separable 
Hilbert space .~ = ~ 2  (f2, #); (b) the vector t/i in .~, defined by ~(co)= 1 for all o) 
in f2; we notice that ~ is cyclic in ~ with respect to 91, and is separating for 91; 
moreover @;N)=(Nqr~,q~)=SN(co)#(dco), VNe9I defines a positive linear 

functional q~ on 91, which is normalized to 1, countably additive and faithful on 9 l ;  
in particular, for every #-measurable subset A of O, #(A)= (4>; 24) where Z~ is 
the indicator of A; finally (c): the homomorphism c~: IR~Aut(91)  defined by 
c~(t)[N](co)=N(r(t)[co]), which is continuous in the weak-operator topology, 
and leaves q5 invariant, i.e. (q~; c~(t)[N])=(qS; N )  for every N in 91 and every 
t in IR. 

Motivated to a large extend by the need to provide classical statistical mechan- 
ics with a mathematical foundation [7], the ergodic theory of classical flows has 
been successfully developped in the last forty years (see for instance [1]). The 
extension of this theory to the Situations encountered in quantum statistical 
mechanics now requires [10, 15] (for a review see for instance I-4]) substituting 
a non-abelian algebra of "non-commutative observables" to the abelian algebra 
91 of the "stochastic variables" of the classical theory. With such an extension 
in view, we concentrate our attention in this paper on the following generalization 
of a classical flow. A dynamical system is defined as a triple {91, ~, c~} consisting of: 
(a) a yon Neumann algebra 91 acting on a separable Hilbert space 9 ;  (b) a vector 

in .~, normalized to 1, cyclic in ~ with respect to 9l and separating for 91; we 
denote by q~ the faithfull normal state defined on 9l by (q~; N ) =  (N ~, ~b) for all 
N in 91; and (c) an homomorphism c~: N--,  Aut(91), continuous for the weak- 
operator topology and leaving q5 invariant, i.e. (~b; e ( t ) [N] )=(q~ ;  N )  for all 
N in 9l, and all t in IR. 
17 Z.Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 29 
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The aim of the present paper is to obtain for such dynamical systems an 
object He (c0 which generalizes the Kolmogorov-Sinai entropy [8, 1 6] of a classical 
flow [1, 12]. 

In analogy with the classical case our first step, in obtaining Ho(~), will be to 
define a conditional entropy, i.e. we will first have to prescribe a class 3 of partitions 
of the identity in 91, a class ~ of von Neumann subalgebras of 91, and a mapping 
H~: 3 x r IR + such that: 

(i) / t ,  (31 r = 0 if and only if 3 - -  r  

(ii) 31 --- 32 implies/~0 (31 [r (321r 
(iii) r - r implies/~, (3[r  > /~ ,  (31r 

A fourth property of this conditional entropy will naturally be required, 
namely that if 9l is abelian,/1~ should coincide with the classical conditional 
entropy. Intuitively, / ~ ( 3 [ ~ )  should be a measure of the information gained 
in measuring 3 when the expectations relative to r are known. 

The main tool for the present investigation will be Takesaki's theory [17] of 
Tomita algebras. We recall in this connection that if th is a faithful normal state 
on a v o n  Neumann algebra 91, there is a unique homomorphism ~ :  ~ ~ Aut(91) 
such that for every N and M in 91 there exists a function ~ ,  u (z) holomorphic in, 
and continuous on, the strip 0 < I m  (z) < fl (fl > 0) with boundary values 

(t) = (tl [M]  N ) ,  

~bas, ~ (t + i fl) = (t#; N ~a (t) [M]) .  

To distinguish ~ (IR) from ~a (IR) we will refer to the former as the "true evolution", 
and to the latter as the "free evolution". Accordingly we will refer to the yon Neu- 
mann algebra 91o of the fixed points of 91 under ~a (IR) as the algebra of the "con- 
stants of the motion under the free evolution". 

It is well-known, and easy to check (see for instance [17], or [4]) that ~b is a 
fixed point of the dual action {~a(t)* I t~IR} on 91", and that q~ is a trace on 91 if and 
only if c~ p (t) is the identity automorphism of 91 for all t in IR, i.e. if and only if 
9l = 91o. This situation is in particular encountered when 91 is abelian, so that the 
occurrence of a non-trivial eP (IR) is linked to the generalization considered here, 
namely that 91 is allowed to be non-abelian. We shall implicitly assume throughout 
this investigation that 91o is "large enough" in 91, and in particular that c~(IR) 
does not act in an ergodic manner on 91 (i.e. that 91 0 4: C I). The latter assumption 
will in particular be satisfied in the case of the "non-abelian K-flows" considered 
in the last two sections of this paper: for these particular dynamical systems 
every maximal abelian yon Neumann subalgebra of 9l 0 is also maximal abelian 
in 91. In Section V we extend the classical results of Kolmogorov and Sinai, and 
show that the K-entropy /t ,(~) defined for the general dynamical systems of 
Sections I-III is strictly positive on the class of the non-abelian K-flows. 

II. The Classes ~ and 

The aim of this section is to describe the classes ~ and ~ on which the conditional 
entropy/~, :  ~ x ~ ~ IR + will be defined in the next section. 
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Throughout, (92, r denotes a pair consisting of a v o n  Neumann algebra 91 
acting on a separable Hilbert space ~; and the faithful normal state r on 91 
corresponding to a vector ~ in ~, normalized to 1, cyclic in ~5 with respect to 91, 
and separating for 91. 

We first recall that a partition ~ of the identity in 91 is, by definition, a collection 
{F~} of mutually orthogonal projectors belonging to 91 and adding up to the 
identity I on ~. We will simply denote by ~" the abelian von Neumann sub- 
algebra of 91 generated by ~. 

We next recall that a v o n  Neumann subalgebra g of 91 is said to admit a 
conditional expectation if there exists a a-weakly continuous, faithful projection 
~r (" I g) of norm one from 91 onto g such that 

( r  N)  = ( r  Nr VNe91 

(see for instance [21]; for the meaning of this definition in the framework of 
classical probability theory, see [11]). By Tomiyama's result [20], the g-con- 
ditional expectation gr with respect to r has the following properties (for 
all N in 91 and all C1, C2 in g): 

(i) 0<~r ~r 

(ii) ~r (CI N C2 l g) = C1 ~r (N I E) C2 

so that in particular: 

(iii) N1 =< N2 implies #r (N~ I g) =< gr (Nz I g); 
(iv) ( r  ClWr C 2 ) = ( r  C~NC2). 

Two important results should be mentioned here. First, Takesaki [18] proved 
that gr exists if and only if g is stable under the group eP(]R) canonically 
associated to r (see Section I). Second, Theorem 3.6 in [13], when applied to 
the situation studied here, says that the fixed point algebra 91o of 91 under eP(lR) 
is the "centralizer" of 91 with respect to r i.e. 

91o = {Xe911 ( r  X N )  = ( r  N X )  VNe91}. 

We should however notice that the existence of 8r (-] g) does not imply in general 
the existence of gr (. I ~) for an arbitrary yon Neumann subalgebra ~ of g;  this 
situation makes difficult (both conceptually and technically) a straightforward 
generalization of classical probability theory to the situation we want to study. 
Our forthcoming introduction of the classes ~ and ~ is precisely devised so as to 
bypass these difficulties (see Corollary II.1 below). 

Theorem II.1. For any abelian yon Neumann subalgebra ~ of 9l, the following 
conditions are equivalent: 

(i) for every partition ~ =  {F/} of the identity in ~, Zi2 i dpl (with 21 = (qS; Fi), and 
(4i; N)  = (0; Fi)- 1 (r Fi NFi) for every N in 91) is a convex decomposition of 0 
into states Oi on 91 with mutually orthogonal supports; 

(ii) for every B in ~ and every N in 91 ( r  BN)=((~;  N B )  ; 
(iii) ~3 ___ 91o; 

17" 
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(iv) for every yon Neumann subalgebra E~_~, the E-conditional expectation 
with respect to (o exists; 

(v) the ~-conditional expectation with respect to (o exists. 

Proof (i) implies (ii). For every projector F in ~3, let ~ = {F, (1 - F)}; we have 
thus for every N in 91: (q~; N)=(~b ;  F N F ) + ( O ;  ( 1 - F ) N ( 1 - F ) ) ;  in particular 
we get, upon replacing successively N by N F  and by FN:  ((a; N F )  = (4); F N F )  = 
<qS; F N ) ;  for every finite sum SkakFk with akOE and F k projector in ~3, we have 
thus: (~b; N(XkakFk))= (~b; (XkakFk)N) since finally every B in ~3 is the weak- 
operator limit of such sums, and since q~ is a vector-state, we obtain: (qS; N B ) =  
(~b; BN) ,  which is (ii). (ii) implies (i). For any partition ~ = {F~} of the identity in ~3, 
we have (~b;N)=(q~;  (X~F~)N)=Zi((a; F~U)=Si(~b; F~NF~)=(Si2,q~i; N) ;  
hence S~2i(oi is indeed a convex decomposition of ~b; now q~ faithfull implies 
that the support of q~ is F~, thus proving that the q~i's have mutually orthogonal 
supports. (ii) and (iii) are equivalent by the result of [13] quoted above. (iii) im- 
plies (iv). E__ ~3_91o clearly implies that E is stable under ~(IR), so that the 
E-conditional expectation with respect to ~ exists by [18]. (iv) implies (v) as a 
particular case. (v) implies (iii). By [18] (v) implies that ~ is stable with respect to 
a s (IR); let thus ~o (]R) and 4o denote respectively the restrictions of ~(IR) and of 
q5 to ~3; since ~3 is abelian, ~b o is a trace on ~3 and thus a~o (IR) = id, i.e. ~3 ~_ 910, q.e.d. 

We now define the classes ~ and ~ as follows. ~ is the collection of all finite 
partitions ~ of the identity in 91 such that ~" satisfies any (and thus all) of the five 
equivalent conditions of Theorem II.1. ~ is the collection of all von Neumann 
subalgebras E of 9l such that every abelian von Neumann subalgebra ~.B___E 
satisfies any (and thus all) of the five equivalent conditions of Theorem II.1. 
When ~ (resp. E) belongs to ~ (resp. ~), we say that it is (91, (o)-admissible. The 
following results throw some useful light on the actual meaning and role of the 
concept of (91, q~)-admissibility; they are immediate consequences of Theorem II.1 
and are thus given without proof. 

Corollary ILl. For any yon Neumann subalgebra E of 91 the following conditions 
are equivalent: 

(i) E is (91, c~)-admissible ; 

(ii) E is contained in the fixed point algebra 91o of 91 under ~ (~); 

(iii) every yon Neumann subalgebra 7~ of E is (91, (~)-admissible ; 

(iv) the ~-conditional expectation g~(.] ~) with respect to c~ exists for every 
yon Neumann subaIgebra ~ of E. 

Remark. E is (9l, ~b)-admissible implies thus the existence of the conditional 
expectation ~ ( .  [E); but the converse is in general not true, as we already noticed. 

Corollary II.2. For every finite partition ~ of the identity in 91, the following 
conditions are equivalent: 

(i) ~ is (91, (~)-admissible ; 

(ii) ~ belongs to 91o; 
(iii) ~=Si2igpi, where 2 i and (a i are as in Theorem II.1 (i); 
(iv) every partition (~ of the identity, coarser than ~, is (91, c~)-admissible ; 
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(v) #.~,(. [ ~)) exists for every yon Neumann algebra 7s in 3"; 
(vi) ~ '  is (91, r 

Remark. A yon Neumann subalgebra E of 91 is thus (91, ~b)-admissible if and 
only if all finite partitions of the identity in E are (9~, ~b)-admissible. 

Corollary II.3. The following conditions are equivalent: 

(i) every yon Neumann subalgebra of 91 is (91, ~)-admissible ; 
(ii) every finite partition of the identity in 91 is (91, r ; 

(iii) the E-conditional expectation #0(.[E) with respect to ~b exists for every 
yon Neumann subalgebra E of 91; 

(iv) 91o=91; 
(v) ~ (]R) = {id}; 

, (vi) r is a trace on 91. 

Remarks. Since q~ is assumed throughout to be a faithful normal state on 91, 
the conditions of this corollary can be satisfied only when 91 is a yon Neumann 
algebra of finite type. These conditions are in particular satisfied in classical 
probability theory, in which case 91 is abelian and the concept of (91, q~)-ad- 
missibility becomes redundant. Although we do not need a further extension of the 
above framework for the purpose of the present paper, we might finally surmise 
that our assumption that q~ be a state on 9l could be relaxed to the weaker assump- 
tion that r be a "weight" [2, 17] on 91 (all other assumptions being kept the same). 

The remainder of the present investigation will be conducted under the general 
assumptions that we are given an arbitrary yon Neumann algebra 91 acting on a 
separable Hilbert space ~;  and a vector @ in ~, normalized to 1, cyclic in ~ with 
respect to 91, and separating for 91, so that <r N > -  (N4~, ~) for all N in 91 defines 
a faithful normal state r on 91, but not necessarily a trace. The concept of (91, q~)- 
admissibility will thus be an essential tool, for our generalization to this framework, 
of the concept of conditional entropy. 

IlL Entropy of a Dynamical System 

The concept of (91, r introduced in Section II will now be used 
to establish the existence of a generalized conditional entropy in the sense of 
Section I; specifically, we will prove the following result: 

Theorem IIl.1. Let ~ and ~ be the (9~, ~b)-admissible classes defined in Sec- 
tion II, and/4~:  ~ x ~ - ~ I R  + be defined by: 

/ ~  (31E) --- inf H ~ ( 3 f ~ )  
abelian 

where for every 3 =  {F/} ~ 3, and every abelian ~ in ~: 

~(31~)-~,<r h [#~(~I~)]> 
with h: x~[0,  i]  ~-~ - x  logx. Then, ffIr has the following properties: 

(0) ~ abelian in ~ implies FIr (31~) = H4, (3] ~);  
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(i) /~e (~ [ r  if  and only if  ~c_g; 
(ii) ~1 ~ ~2 implies FIr (~11r (~2 ]E); 

(iii) e l  __ r implies/4~ (~lg~) > /~ ,  (~ ] r 

Since the assumptions of our theory are such that it reduces to classical 
probability theory exactly when 9t is abelian, we should recall (see Section II) 
that in this particular case every (abelian !) yon Neumann subalgebra of fit is 
(9~, ~b)-admissible; it is then easy to verify that ou r /~ ,  reduces in this case to the 
classical conditional entropy (defined for instance in [1] and [12]). The aim of 
Theorem III.1 is thus to provide a generalization of the latter concept, which we 
will then use to define the entropy of a general dynamical system. 

To prove the theorem, we need the following generalization of the classical 
Jensen's inequality [12]: 

Lemma lII.1. Let A be a self-adjoint element in 9t, with O<_A <_I; ~B be an 
abelian yon Neumann subalgebra of 9~, stable with respect to the automorphism 
group ~#(]R) canonically associated to ~; and h: x~[O, 1 ]~ -* -x logx .  Then 
8~(h [A] [ ~3)__< h [8~ (A I ~B)]. 

Proof. To adapt the classical proof (see for instance [12]) to the present case, 
we first recall that ~3 abelian implies (see for instance [3]) that there exists: a locally 
compact space Z; a positive measure v on Z, with support Z; and an isometric 
isomorphism g from the involutive normed algebra ~B onto the involutive normed 
algebra ~q~oo (Z, v). We first prove the lemma for the particular case where the 
spectrum of A is discrete and finite, i.e. where A admits the spectral resolution 
A n = Si= ~ aiEi. In this case we thus have to prove: 

Z" S"~=1 h (ai) Bi < h [ i= 1 ai Bi] (*) 

where {a i [ i= l ,2  . . . . .  n } c [ 0 , 1 ]  and {Bi-rg~,(Ei[~B)[i=l, 2 , . . . ,n} .  From the 
defining properties of the conditional expectation ge(.l~B) we have: Bie~B; 
Bi>_0; and ZT=IBi=I. Consequently the n(Bi)Ec~cP~176 satisfy (v-almost 
everywhere): ~(Bi)(()>O and Z~=lzc(Bi)(()=l. We can therefore use the con- 
cavity of h to conclude: 

(Z~ h (a~) B~)(~) = Z~ h (ai) ~z (S~)(~) 

<= h [Xi ai  n (Bi) (()] = h In (Zi ai Bi) (()] 

= zr (h [Siai Bi])((), 

where the last equality follows from the continuity ofh on [0, 1] and the fact that n 
is an isometric isomorphism. We have thus established (.), and thus the validity 
of the lemma in the particular case where A has a finite discrete spectrum. We next 
remark that an arbitrary A in ~R, with 0--G A __G I, can be written as the limit, in the 
normtopology, of an increasing sequence {An I n ~ ~ + } of mutually commuting A,, 
each of which satisfies the assumptions of the particular case in which we just 
established the lemma. Since the mapping de(. ]~3): 9t--* ~3 is order preserving 
and of norm 1, {o~ (A~ [~3)[n e 7Z +} is an increasing sequence of positive operators, 
uniformly bounded by I, and converging to 6~(A [~B) in the norm topology. 
The continuity of the function h: [0, 1 ] ~ I R  + implies thus the convergence, 
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in the norm topology, of h [g~ (A, [ ~B)] to h [g~ (A I ~3)]; of h [An] to h [A], and thus 
of 8~(h[A.] 1~3) to 8~(h[A] 1~3). Consequently, the validity of the lemma follows 
from its validity for the particular case considered in the first part of this 
proof, q.e.d. 

Lemma III.2. Let ~ be a finite partition {F~} of the identity in 91; E be a (91, (o)- 
admissible yon Neumann subalgebra of 91; and fB be an arbitrary abelian yon Neu- 
mann subalgebra of E. Then: Ho(~[~)>__Xi<4); h [d~(Fi[E)]). 

Proof. 0 <= F~ <= I and ~ (-[ E) order preserving imply 0 < g~ (F/] E)__< I. We have 
thus from Lemma III.l: 

The uniqueness of the conditional expectation implies that g , (g r  
Nr for all N in 9l whenever I)___E. We can therefore rewrite the above 
inequality as: 

~ ( h  [~(F~I E)] [ ~3)< h [g,(F~l~3)]. 
Consequently: 

22 i <qS; ggo(h [g~ F~ ] E)] I ~3)> ~ i  <~b; h [g4, (F~ ] ~B)] >. 

The RHS of this inequality is precisely H,(~I~3), whereas its LHS is indeed 
X~<q~; hE~(F~IE)]>, q.e.d. 

Lemma III.3. Let F be an operator on gO, with O<_F <_I. Then h[F] =0  if and 
only if F is a projector. 

Proof. Let ~3 be the abelian von Neumann algebra generated by F. With the 
same construction as that used to prove Lemma 1, we have 0 __< z~ (F) (()__< 1 v-almost 
everywhere. Now, to say that F = F 2 is equivalent to saying that rc (F)(()2= rc (F)(() 
v-a.e., and thus re(F)(()=0 or 1 v-a.e. This in turn is equivalent to saying that 
h[rc(F)(()]=0 v-a.e., i.e. rc(h[F])(()=0 v-a.e., i.e. h [ f ] = 0 ,  q.e.d. 

Lemma III.4. Let F be a projector in 91, and E be a yon Neumann subalgebra 
of 91, stable under cd ~ OR). Then ~,  (Fie)  is a projector if and only if F belongs to E. 

Proof. Since ~ ( - IE )  is a projection from 91 to E we clearly have g,  ( F i e ) =  F 
when F belongs to E, so that in this case ~,  (F I E) is evidently a projector. Suppose 
now that ~ (Fie)  is a projector, and form the positive operator 

X = g ~ ( F I E ) ( I -  F)g4(FIE). 

We have then 8~(XIE)=~,(FIE)-~,(FIE) 3. Since g~(-lE) is faithful, we have 
then X = 0 i.e. g~ (F] E) = ~ (F [ E) Fg~ (F [ E) which is to say that the operator 
F-W~(F[E) is positive. We can thus use the fact that ~b is faithful to conclude, 
from <~b; F -  ~,  (F [ E)) = 0, that F = ge (FI E), which is to say that F belongs 
to E, q.e.d. 

Proof of Theorem III.1. Property (0): Let ~B be a (91, q~)-admissible abelian 
subalgebra of 91, and ~3o be a yon Neumann subalgebra of ~3. From Lemma III.2 
we conclude that H~(~[~3o)_>_H~(~I~B ) for all finite partitions of the identity 
in 91. Hence, with ~3 denoting the class of all abelian (91, ~b)-admissible yon Neu- 
mann subalgebras of 91,/t~ is well defined on q~ x ~,  and is equal to Ho, thus 
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proving property (0). We should further remark here that for every finite partition 
3 =  {F~} of the identity in 91, 0<F~<I for all i= 1, 2, ..., n implies 0<g0(F~[E)< I 
for every von Neumann subalgebra E in 91, stable under eP OR). Consequently 
h [g0 (Fi[ ~)] are positive and thus Si (~b; h [g0,(Fi [ E)]) is positive. We can therefore 
conclude from Lemma 2 that at fixed 3 in 3 and E in E, the family {H0(31~3)}, 
obtained when ~3 runs over all abelian von Neumann subalgebras of E, is bounded 
below by a positive number, so that/t0 (3 [ g) is indeed well-defined for every 3 in 

and every E in ~, and takes its values in IR +. To prove property (i) we first 
notice that if 3 ~ E there exists an abelian von Neumann algebra ~ with 3 ~ ~ - E- 
We have therefore g0 (F~[~3)= Fi for all Fi~ 3; and thus by Lemma III.3, we have: 
h [g0 (Fi[ ~3)] =0 i.e. H0(3[~3)=0 and thus/~'o(31 ~)= O. Conversely, if/to(3[ ~)=0 
we have by Lemma III.2 Si (q~; h [go (Fil E)]) = 0. Since all the terms in this sum 
are positive, and since q6 is faithful, we conclude that h [g0 (FilE)] =0, and thus, 
by Lemma Ill.3, go (Fil ~) are all projectors. This implies, by Lemma Ill.4, that all 
F[s belong to ~, i.e. 3 - E ,  thus concluding the proof of property (i). From t h e  
definition of/10 it is clear that the validity of property (ii) follows immediately 
from its validity on ~ x ~. Let thus ~B be an abelian (91; ~b)-admissible von Neu- 
mann subalgebra of 91. By the technique used in Lemma 1, one checks easily 
that for every finite family {Bi} of positive elements in ~3 with SiBi<l ,  one has 
h(z~iBi)<z~ih(Bi). Let now 31={F/(1)IiEI} and 32={Fj(2)lj~J} be two finite 
partitions of the identity in 91. 3 1 -  32 amounts to saying that there exists a 
partition {JiliE 1} of J such that E (1) - ~  F ~2) for each i in I. We now have: i - -  j e J i  j 

/10 (311 ~B)= Zi <~b; ~(2) h[go(zj~,,,~ I~)3> 

which proves property (ii) for all ~B in ~,  and thus for all E in ~ ,as  we already 
noticed. Property (iii) follows trivially from the very definition of H 0 (31E) as the 
largest lower bound of the H 0 (31 ~)'s when ~3 runs over all abelian yon Neumann 
subalgebras ~3 of E, q.e.d. 

Although we do not seem to need it for the present investigation, it would  
be interesting to prove some theorems of the martingale type in the extended 
framework presented up to this point. In particular, the presentation of the theory 
would probably benefit from a theorem to the effect that given 3 and (~ (91, ~b)- 
admissible, there exists a maximal abelian von Neumann subalgebra ~3 of 
(depending on 3) such that /~0(~1~3)=/~0(31~). In the present exploratory 
investigation we however choose to concentrate instead here on the application 
of the theory to the generalization of the Kolmogorov-Sinai entropy for the 
class of dynamical systems described in Section I. To do so, we need the following 
result which we shall now prove. 

Lemma III.5. Let {91, q~, a} be a dynamical system, ~- be a subset of lR; and 
be a (91, dp)-admissible yon Neumann subalgebra of 91. Then the yon Neumann sub- 
algebra ~ (~--) of 91 generated by {~ (t) [ C] I C ~ ~, t ~ 3"-} is also (91, q6 )-admissible. 

Proof To prove that ~ (~-) is (91, ~b)-admissible is equivalent (see Corollary II.1) 
to proving that ~(f)---91o- It is therefore sufficient to prove the lemma for 
~(t) = ~(t)[r and every t in IR. To prove that ~(t) is (91, q~)-admissible, it is 
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sufficient (see Corollary ILl) to prove that a(t)[91o] is (9l, q~)-admissible, which 
we achieve by showing (see Corollary II.l) that the 9-conditional expectation 
o~( �9 19) with respect to q~ exists for every von Neumann subalgebra 9 in a (t)[91o]. 
For any such algebra ~ ( - t ) [ 9 ]  is contained in 91o, and thus the a ( - t ) [ 9 ] -  
conditional expectation go(. ] a ( - t ) [ 9 ] )  with respect to q~ exists. Straightforward 
computations show then that: 

= ~ (t) [ ~  (~ ( - t) [ ] I ~ ( - t) [9] ) ]  

satisfies: (i) ~ :  91 ~ 9 ;  (ii) ~ is a-weakly continuous; (iii) ~ is faithful; (iv) ~ (D) = D 
for every D in 9,  and thus ~ 2 = ~ ;  (v) II~l l=l ;  and (vi) <~b;X>=<q~;~(N)> 
VN in 91. Hence the 9-conditional expectation g o ( . ] 9 ) = ~  with respect to q~ 
indeed exists, q.e.d. 

Corollary. 91o is stable under a (JR). 

Proof 91o is (91, c,b)-admissible; hence a(t)[91o] is (91,~b)-admissible, i.e. 
(t) [-91o] - 91o, q.e.d. 

For any (91, ~b)-admissible partition 5, let ff~ be the (abelian) von Neumann 
algebra 5"- We denote by ~") the (not necessarily abelian !) yon Neumann algebra 
ff~({0,1 . . . .  , n - l } )  generated by { ~ ( m ) [ F J l F i ~ , m = 0 , 1  . . . . .  n - l } .  From 

(n) iS Lemma III.5 we know then that ~ . (91, q~)-admissible, so that we can now define 

(n) [5] 
Clearly / 4 4 ( a ( n ) E ~ ] [ ~ ) ) = / 4 o ( ~ l f f ~ ( { - 1 , - 2  . . . .  , -n})) ,  which by Theo- 
rem III.1 (iii) is a decreasing sequence in n, bounded below by zero. Hence 

/4~ ( ~ ] a ) -  l i m / ~  ") (~[a) 

exists; we call this quantity the entropy of ~ with respect to ~. Finally we define 
the entropy of the dynamical system {91, ~b, ~} as: 

& = sup & I 

We should notice here that in the particular case where 91 is abelian,/4e (e) 
reduces to the Kolmogorov-Sinai entropy [8, 16]. One also verifies easily that 
/t~ (~) vanishes identically if the "true" evolution a(IR) coincides with the "free" 
evolution e ~ (IR), or if ~ (IR) acts ergodically on 91 (i.e. 91o = ~ I). We shall however 
see in the last section of this paper that there exist dynamical systems where 
the following conditions are simultaneously satisfied: (i) 91 is not abelian; (ii) 91o 
is not abelian; (iii) a(IR) acts ergodically on 91; and (iv) /44(~)>0. This result 
will be obtained by considering the non-abelian generalization of the concept 
of K-flow to be introduced in the next section. To prove it, we will need the follow- 
ing preliminary result: 

Lemma III.6. Let {91, q~, ~} be a dynamical system with/ t , (~)=0; and ~ be a 
(91,0)-admissible yon Neumann subalgebra of 91. Then E(TZ~-)=(g(7/2, ) for all 
n, m in ~, where ~(~2)  denotes the yon Neumann algebra generated by 

{a(k)[~] lk~Z, k <=n}. 
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Proof It is sufficient to prove the lemma for abelian (9l, q~)-admissible von Neu- 
mann subalgebras of 91, since every von Neumann algebra is generated by its 
abelian von Neumann subalgebras, and ~3___ge~ implies ~3e~. Actually the 
same remark shows that it is sufficient to prove that ~ (Z2)= ~ (Z,7,) for every 

in ~ and every (n, m) in Z x Z. To prove this, it is clearly sufficient to prove that 
for every ~ in ~ and every n in ~ ~(292)=~(292_~),  i.e. ~ (n ) [~ (7 /o ) ]=  
e(n)[E~(~;~)];  it is thus sufficient to prove that ~ (~ f f )=E~(2g-0 .  To prove 
this, we notice that/~e (c~)= 0 implies that for every ~ in ~, 

l im/~,(~]  ~ ( { -  1, - 2 .. . .  , - n}))=0. 

Since on the other hand {@~ ( { -  1, - 2 ,  ..., -n})} is an increasing sequence of von 
Neumann algebras bounded above by @~(ZZ1), with all these algebras in ~, 
we conclude from Theorem III.l(iii) that H r  and thus, from 
Theorem 1 (i) that ~ _  ~ (2g- ~). ConsequentlY ~ (~o) c ~ (~g-- ~)___ @~ (~go), q.e.d. 

IV. Non-Abelian K-Flows 

The following generalization of the classical Kolmogorov-Sinai concept of 
a K-flow has been proposed [5]. Let {91, ~, cr be a dynamical system in the sense 
of Section I. The classical K-flow condition that there exists a "refining partition" 
is extended to the present context by the condition that there exists a yon Neu- 
mann subalgebra 9.1 of 91 such that: (i) ~(-t)[9.1] __g.91 for all t>0 ;  (ii) 91 is equal 
to the von Neumann algebra V cr (t) [-91] generated by {co(t) [A]IA e 91, t elR}; 

t e ~ .  

(iii) N [~ (t)[91] ~] = C ~, where for each t e IR, [~ (t)[91] ~] is the closed subspace 
t e l l .  

of ~ generated by {cr (t) [A] �9 I A e 91}. (A classical K-flow is then obtained in the 
particular case where 91, or 91, is abelian.) The fact that 91 is not necessarily 
abelian is compensated by imposing the condition that 91 be stable under ~P (]R) 
(a condition which is automatically satisfied in the classical theory, where 
~P (IR)= {id}). Finally, a genuine extension outside of the realm of the classical 
theory is obtained by imposing the additional requirements that: (i) q~ is not a 
trace on 91; and (ii) for every Z in 91n91' and all t in IR: ~ ( t ) [Z ]= Z .  Clearly, 
we are now in a situation where 9l cannot be abelian anymore. A dynamical 
system satisfying all the above conditions is thus called a non-abelian K-flow. 
One can prove [-5] that these systems have the following properties: (a) 91 is a 
type III factor; (b) ~r acts in an ergodic manner on 91, i.e. co(t)[N] = N  for all t 
in JR, and N in 91, imply N=eI with c in 112; (e) for any invariant mean t /on IR, 
~(IR) acts in a ~/-abelian manner on 91; i.e. for every N1, N2, Na, N4 in 91: 
~/(q~; N1 (cr (t) [N2] N3 - N3 e (t) [-N2]) N4) = 0; (d) cr (IR) is strongly mixing on 9l, i.e. 
lira (~b; ~(t)[N~] N2)=  ((b; Na)(q~; N2) for all N1, N2 in 91; (e) there exists a 
t~oO 

strongly Continuous group UOR) of unitary operators acting on ~ such that: 
(i) U ( t ) ~ = ~  for all t in IR, (ii) e(t)[N]=U(t)NU(-t) for all t in ]R and all N in 
91, and (iii) U(IR) has Lebesgue spectrum, i.e. there exists a U(lR)-invariant de- 
composition ~ = O~~ o -~(") with ~(o)= 112 r such that for every n => 1 the restriction 
Ut")(IR) of U(IR) to 5~") is unitarily equivalent to V(IR)={V(t)I teN} acting on 
2~2(1R, dx) as (V(t) 7~)(x)= ~(x-t).  One can furthermore show [5] that cr 
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commutes with e0R), and is periodic. The ergodic action of a(IR) on 91, joined 
to the latter fact, implies that we can use Takesaki's theory [19] of homogeneous 
periodic states on a yon Neumann algebra to conclude that: (i) 9/0 is a v o n  Neu- 
mann algebra of type 111 ; and (ii) every maximal abelian von Neumann subalgebra 
of 91o is also maximal abelian as a von Neumann subalgebra of 91. We have thus 
here a class of dynamical systems for which the maximal (91, q~)-admissible von 
Neumann subalgebra 91o of 91 is quite a large (non-abelian !) subalgebra of 91. 

We might mention in closing this section that the relevance of the above 
structure in the physical context of quantum transport theory has been pointed 
out in [6] where an example of a non-abelian K-flow has been explicitly con- 
structed. 

V. Entropy of Non-Abelian K-Flows 

The aim of this section is to prove the following extension of the classical 
Kolmogorov-Sinai theorem [8, 16]. 

Theorem V.1. The entropy I4r (a) of a non-abelian K-flow is strictly positive. 

Proof Since 91o is (91,~b)-admissible, we know in particular that ~('191o) 
exists. Since moreover 91o is the fixed point von Neumann algebra of 91 under 
aa 0R), and since aP (IR) is periodic (say of period T) we have (see also [19]) that for 
every N in 91: 

ec,(NI91o)-- ~ dt~P(t)[N] 
o 

(the convergence of the integral being understood in the weak-operator topology). 
Consequently, for every yon Neumann subalgebra ff of 91, stable under ~ (R), 
the image of (~ through ~,  (. 19lo) is contained in ~, i.e. ~ (ff191o)- ~. The relations: 
if4, (ffl91o)--- 91o and ~ c~ 91o-~ ff~ ((~ 191o) are trivially verified, and thus o~, (~ 191o) 
is the von Neumann algebra ff c~ 91o. In particular if {91, 4, a} is a non-abelian 
K-flow with self-refining yon Neumann subalgebra 9I (see Section IV), we denote 
by 9.I 0 the (91, ~b)-admissible von Neumann algebra 9/c~ 91o = ~ (91191o). Upon using 
the fact that the conditional expectation ~ ( .  191o) is a-weakly continuous, we 
conclude that 91o inherits from 91 the following properties: (i) a(-t)[91o]___910 
for all t_>_0; (ii) ~/a(n)[91o]=91o; and (iii) N ~(n)[91o] = r  Suppose now that 

n~Tr n~Z 
/4~ (~) were to vanish. By Lemma Ili.6, this would imply that ~ (n) [9.1o] = 91o (2~) = 
91o (~Eo)= 91o for all n in 2~ which contradicts properties (ii) and (iii) above since 
we know that 91o ~: ~ I  (actually 91o is of type II1 !). Hence/7~(a) cannot vanish, 
q.e.d. 
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