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Summary .  The countable state space of a Markov chain whose stationary transition proba- 
bilities satisfy the continuity condition (1.5) is eompactified to get a state space on which the 
corresponding processes can be made right continuous with left limits, and strongly Markovian. 
There is a form of quasi left continuity, modified by the possible presence of branch points. Ex- 
cessive functions are investigated. 

1. Introduction 

Let (Pij(.)) be a stationary- Markov chain transition function and let p ( . , . )  
be a corresponding absolute probabili ty function, both on the parameter  interval 
(O, co). That  is 

p~j(t) ~ 0 ,  ~p~j(t) : 1,  p t j ( s + t )  = ~pi~(s)p~l( t )  (1.1) 
i k 

and 
p ( t , i ) ~ O ,  ~ p ( t , i ) = l ,  p ( s q - t ) , j ) =  ~ .p ( s , i ) p i j ( t ) .  (1.2) 

i i 

Here the indices i, j range through the set of integers and s, t are strictly positive 
real numbers. Then there is a Markov process {x (t), t ~ 0} with state space the 
set of integers, for which 

(1.3) P {x(t) = i} = p(t, i) 

and, if p (s, i) > 0, 

(1.4) P {x(s q- t) = ]] x(s) = i} = p~l(t) . 

In  the following we shall always accept the standard continuity condition 

(1.5) lim Pii (t) = 1 
t--+0 

for all i, which implies that  the functions Pt1(.) and p ( . ,  i) are continuous for 
all i, ?" and tha t  

(1.6) p l i m x ( t )  : x ( s ) ,  s > O. 
t'-->8 

In  order to discuss sample function continuity and related properties of the 
process the standard procedure is to apply the notion of separability (relative 
to the closed sets). In  the present context this means the following. Let  K be a 
compact Hausdorff space with a countable topological basis and suppose tha t  
some countable dense subset is identified with the set of integers. That  is, the new 
state space K is a compaetification of the set of integers. Then the x (t) process 
described above is a process with state space K and there is accordingly a separable 
standard modification of the process. The new process is a Markov process with 
the same absolute probabili ty and transition functions as the old process, as 
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far as integral states are concerned. The most commonly used compactification 
is the Alexandrov one (see [1] for example) in which the set of integers is given 
the discrete topology and K is constructed by  adjoining a single point c~ with the 
usual conventions. 

To get the chains under discussion into the context of modern Markov process 
theory K should be chosen so tha t  almost all sample functions of the separable 
process can be made right continuous with left limits. In  addition the process 
should have the strong Markov property. To achieve the latter one must  have 
an extended version of the given transition matr ix  function, adapted to K. Tha t  
is one must  have a transition probabili ty p(t, ~, d~) for t > 0 (probability of a 
transition from ~ into d~ in t ime t) on K or at  least on some subset K0 so large 
tha t  i t  supports the sample functions and their left limits, satisfying the Chapman 
Kolmogorov equations, with p (t, i, ]) ---- P~I (t) for i, ] integers. I t  will be shown 
how to define a state space K with the stated properties, and p ( . , . ,  ?') (] an integer) 
will be continuous on (0, r • K0. The process need not be a 'Hunt  process', one 
satisfying 'hypothesis A' ,  because of the possible existence of branch points. Note 
also tha t  one cannot expect to have p( . . . .  ]) defined and continuous on (0, c~) • K. 
In  fact if the transition functions were tha t  smooth the series ~ p ( . , . ,  ]) would 

converge uniformly to 1 on [1, 2] • K, by Dini's theorem, whereas there is not 
uniform convergence when the matrix (P~I (t)) is the identity matr ix  for all t. 

I n  discussing any theorem involving process separability the compaetification 
must be specified and for a given process quite different compaetifications may  
be appropriate for different purposes. RAY [6] treated a certain compactification. 
His t rea tment  was corrected and developed further by  KUNITA and WATANA~ [2] 
and generalized by  MEYE~ [4]. These authors studied more general state spaces 
than countable ones and used semigroup methods. Their campactifications, like 
that  of N~v~u [5], who had a more specialized purpose, are essentially the same 
and reduce to very nearly tha t  of the present paper when the state space is 
countable. WILLIAMS [7] uses what is apparently an essentially different compactifi- 
cation in which the sample functions do not have left limits. CHu~G [1] has the 
most detailed t rea tment  for countable state spaces using the Alexandrov one 
point compactification of the state space (considered discrete). In  the present 
paper probabilistic rather than semigroup methods are used. The final process 
on K is not obtained by first finding a transition function on K and using it to 
define a process but  by  defining the process on K as a separable standard modifi- 
cation of the given process whose state space has been identified with a dense 
subset of K. Only countable state spaces are considered here but  the method 
is applicable more generally. 

In  the following sections if #n and # are measures of Borel subsets of a metric 
space, lim/zn = / z  will always mean tha t  lim f ]d~un = f / d #  for every bounded 

n---> o o  n - - >  o o  

continuous function on the space. We shall use the fact tha t  if  K0 is a Borel 
subset of a metric space K and if/~n and/z  are supported by  K0 then lira/Zn = # 

n---> OO 

in the sense of convergence of measures on K0 if and only if the limit relation 
is true in the sense of convergence of measures on K. The 'if' follows from the 
fact that  i f / i s  a bounded continuous function on K0, / has both an upper semi- 
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continuous and a lower semicontinuous bounded extension to K;  the 'only if '  
is trivial. 

Let ~ aij be a convergent series of positive terms and suppose that  lim a~1 = aj 
j i - ~ c o  

and lim ~ aij ----- ~. a I. Then we shall frequently use the fact (with a justification 
i - ~ c o  j j" 

containing the words 'uniform summabili ty ')  that  ~ all converges uniformly as i 
J 

varies and therefore tha t  ff sup lbjl < ~ then lira ~ a i j b j =  ~ ajb~. 
i - + o o  ~ i 

For any function q(. ) from the integers to the positive reals we define 
q(A)  = ~ q(i) for any set A of integers (or, ff the set of integers is immersed in 

a metric space, for any Borel set A). I f  / is a function on the integers (or on the 
larger metric space) we define 

q( / )  = ~ ] ( V ) q ( d v )  = ~ q ( ] ) / ( g ) "  

2. Compaetiflcation of the Set of Integers 

Define r/j(~) for ~ > 0 by 
o o  c o  

(2.1) rij(~) ~ C~ ~ e - ~ t  p~j(t) dt =- :r f e -~t d~( t ,  i, ]) 
o o 

where 
t 

(2.2) x (t, i, i) --= f Pij (s) d s .  
0 

Let U be the class of functions i -'~ rtj (~) for fixed j, ~ with ~ rational and 
strictly positive. Then i ~* {u (i), u E U} maps the set of integers into the product 

space /~: [0, 1] • [0, 1] • . . . .  This product space in one of the usual metrics 
A 

is compact. Let  K be the closure in K of the image of the set of integers. I f  i, k 

go into the same point of K, 
Oo c o  

e -~t p~j (t) d t =  ~ e -~t pgj (t) dt 
o o 

for all ] and for every strictly positive rational ~. There is therefore equality for 
strictly positive real ~ and P/j (t) = p~j (t) for all t > 0. Hence i = k because of 
(1.5). That  is we have mapped the set of integers univalently onto a dense subset 
of the compact metric space K. The space K is the desired compactifieation and 
the integers will be identified with their images in K. Since the coordinate functions 

on /~  separate this space their restrictions to K separate K. Each such restriction 
~ r~j (e) (~, cr fixed, ~ rational) is a continuous extension of the corresponding 

function i ~* r~ i (:r I f  ~ ~ K 
c o  

(2.3) re~(e)  rej(fi) _-- lim (e -c~ - -  e-~0 Pij (t) dt <--__ 1 _ f l  (0 < ~ < ~) 

for rational e and/5. Hence i-'-~ rt3' (e) has a continuous extension to K for all 
real strictly positive ~. 

CHUte [I] introduced a 'fine' topology on the integers. M ~ u  [4] introduced 
a compactifieation of the integers (closely related to the one used in this paper) 
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involving a topology whose restriction to the integers he showed to be C~uNG's 
fine topology. We shall show tha t  the restriction to the integers of of our K topology 
is also C~uNG's fine topology. M~YE~ showed tha t  for fixed ] and strictly positive 
t the function i -*  ptj (t) is continuous in CHUNG'S fine topology. Our corresponding 
result (see Theorem 5.3) is tha t  i f  p ( t , . ,  j) is the extension to K0 of p.j(t), the 
function (t, ~) ~'~ p (t, ~, ]) (fixed j) is continuous at each point (t, ~) with t > 0 
and ~ in K0. 

3. Sample Function Properties 

Suppose that  {x (t), t > 0} is an integer valued Markov process determined by  
the given transition matr ix  function and some absolute probabili ty function. 
Then a trivial calculation derives the well known fact that  for any integer ?" and 
strictly positive ~ the process 

(3.1) {e-~ rz(~)j (~), t > 0} 

is a positive not necessarily separable supermartingale. We shall suppose frcm 
now on tha t  the x (t) process, considered as a process with the state space K, has 
been made separable by  a standard modification. Since ] (.) -= r.j (e) is continuous 
on K, the supermartingale (3.1) is now separable. Therefore almost no sample 
function of this supermartingale has an oscillatory discontinuity and almost every 
sample function has a limit at  0. Since the countable class of functions / with 
rational separates K, almost every sample function of the x (t) process has right 
limits on [0, oo) and left limits on (0, c~). In  view of (1.6) 

(3.2) P{x ( t  @) = x(t) = x(t  --)} ---- 1 

for all t > 0. Defining x(0) as x ( 0 + )  and replacing x(t) by x( t~-)  we have now 
proved the following theorem, in which we use the standard convention tha t  a 
stochastic process is said to be right continuous [have left limits] if almost every 
sample function has this property at  all points. 

Theorem 3.1. There is a Marlcov process {x (t), t >= 0} with state space K,  right 
continuous with left limits, having the given transition probability ]unction and a 
speciJied absolute probability ]unction. 

Note that  x (0), unlike the other random variables of the process, is not necessar- 
ily almost surely integer valued. 

Define p(t, .) for t _--> 0 as the distribution on K of x(t), so tha t  p(t, .) is 
supported by  the integers ff t > 0. I f  / is an arbi trary bounded function on K 
the function p ( . ,  ]): 

t,-,* ~ p ( t , ] ) ] ( ] )  = S]( f l )p( t ,d~)  ( t > 0 )  
J 

is continuous (by a uniform summabil i ty argument). In  particular this means 
tha t  the function t " ~ p ( t ,  .) from (0, c~) into Borel measures on K is conti- 
nuous. Actually in view of (3.2) and the definition of x (0) as x (0 +) ,  t "~ p (t,.) is 
even continuous on [0, c~). 

Throughout this paper we shall consider processes as given by  Theorem 3.1. 
For any such process, defined on a complete measure space by hypothesis, ~-(t) 
will denote the smallest g-algebra of sets of the measure space containing the null 
sets with respect to which x(s) is measurable for s ~ t. Going to a standard 
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modification of  the process does not  change ~ (t). Hence C~VNG'S theorem [1, 
p. 166] t ha t  ~ (t) --~ ~ (t -~) is applicable. A positive extended real valued random 
variable ~ is called a stopping time if (~ ~ t} is in ~ (t) for every t and ~ (~) is 
the g-algebra of  sets whose intersection with (~ ~ t} is in ~-(t) for all t. 

4. The Support of Paths 

I f  r ( . ) ,  xc(.) are functions on (0, c~), [0, c~), with ~(0)----0 and 0 ~ u(t) 
- -  ~ (s) ~ t - -  s for s ~ t, the t ransformat ion x ~'~ r defined by  

(4.1) r(~) : ~ f e - : a d x ( t ) ,  r162 > O, 
0 

is a t ransformat ion with a single valued inverse, and in fact  the inverse is contin- 
uous in the sense tha t  ff ~n ~'~ rn and if rn -> r pointwise then some 7~ exists such 
tha t  z "~ r and ~n--~ 7~ pointwise. We conclude tha t  7~(t, . ,  j) defined by  (2.2) 
has a continuous extension (also denoted by  7~(t,., j)) to  K for every t, ?" because 
r. I (g) has such an extension for every ], ~. Moreover 

(4.2) rr (,) ----- :r f e -at dx (t, ~, j ) ,  ~ e K .  
0 

Define the lower semicontinuous function r. (~) on K by  

(4.3) r e (~r ---- ~ r~i (~) = :r f e -at d ~ 7~ (t, ~, ] ) .  
j 0 j 

Then 0 ~ r e (g) ~ 1 and r e (:r = 1 ff ~ is an integer. 

Theorem 4.1. For each ~ the/unction r e (.) is monotone decreasing and is identi- 
cally 1 i / i t  is ever 1. I n  the latter case, and only then, ~ 7t (t, ~, ]) ---- t /or  all t ~ O. 

The resolvent equation i 

(4.4)  (fl - ~) ~ r~j(/~) rj~ (~) = fi ~ (~) - ~ r~k (~) 
J 

implies t h a t  

(4.5) ( f i - -  ~ ~r~ t ( f l  )rjk(~) ~ f l r ~ ( , )  - -  ccrqk(fl) f f  ~ < fl 
i 

and therefore tha t  

(4.6) ( f l - - ~ ) r ~ ( f l ) ~ f i r ~ ( ~ ) - - ~ r e ( f i )  if g < f l .  

Hence r e (.) is monotone decreasing. I f  this function is ever 1 it is clear f rom (4.3) 
t ha t  ~ ~ (t, ~, ?') : t for t ~ 0 which in tu rn  implies tha t  r~ (cr --~ 1 for g > 0, 

as was to be proved. 
Define K0 as the set of those ~ with r e (.) = 1. Then ff ~ is in Ko,  ~ ~ (t, ~, ]) ~ t 

i 
for all t. The set K0 includes the integers ; it is a G~ subset of  K because r. (~) is 
lower semieontinuous. I f  7~ (t, ~, . ) is the Borel measure defined by  ] ^* ~ (t, ~, ~), 
(see Section 1) we shall use the fact, which follows f rom a uniform summabi l i ty  
argument,  t ha t  ff / is a bounded function on the integers the restriction to K0 
of  the function ~ ~'~ ~ x(t, ~, ~)/()') (t fixed) is continuous. This fact  implies t h a t  

the map  ~ ^* z (t, ~, . ) is continuous from K0 to the set of  Borel measures on K0. 
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Lemma 4.2. Let {yl (t), 0 ~ t < ~ } be a positive right continuous supermartingale 
/or j > 1 and let y(t) : ~yy ( t ) .  I /  ~E{y/ (0)}  < c~, the process {y(t), t > 0} is 

J J 
a right continuous supermartingale and the series o/ sample /unctions ~ y y ( . )  

almost surely converges uni/ormly on [0, oo). J 

I f m < n  the p r o c e s s / ~ y j ( t  ), t > 0  / is apos i t ive  right continuous 
t ~ 

s u p e r ' -  

t i n  l 

martingale so by a standard inequality 

(4.7) P s yi(t) ~ 1/k g k S {  yj(0)} g k  E{yl(O)}. 
m m 

Then if m --~ m~ is chosen so large that  the last term in this inequality is ~ k -2 

(4.s) P s ~ y j ( t ) > l / k  ~ - 2  
~ e  

and, applying the Borel Cantelli lemma the asserted uniform convergence is 
verified. The rest of the lemma follows trivially. 

Theorem 4.3. Almost every path, together with its le/t limits, o/ a process as 
described in Theorem 3.1 lies in Ko.  

The process 

(4.9) {e-~trx(t, (oQ, t ~ O} =- I 2 e-~trx(01 (~)' t ~ O l 
I J J 

is the sum of positive right continuous supermartingales. According to Lemma 4.2 
the sum process is then itseff right continuous and for almost every sample 
function, in view of the uniform convergence, any left limit at a point is the sum 
of the corresponding left limits. Now the sum is e -~t if and only if x(t) has its 
value in K0. Since for fixed t > 0 x (t) is almost surely an integer, the sum super- 
martingale is almost surely identically e-at for strictly positive rational parameter 
values and therefore almost surely identically e -~t for ull t ~ 0. The left limits 
of the sum, equal to the sums of the left limits for almost all sample functions, 
are almost surely e -at simultaneously for all t. That  is, x (t) and x (t--)  are almost 
surely in K0 simultaneously for all t, as was to be proved. 

5. Extension of the Transition Functions 

I f  A is a Borel subset of K, the functions 

~ ( t , . , A ) ,  ~ ( t , . , K - - A ) = t - - x ~ ( t , . , A )  

are both lower semicontinuous on K0. Hence x~ ( t , . ,  A) is continuous on K0. Since 
{Te(., ~, A), ~ e K} is equicontinuous, the function 7e( . , . ,  A) is continuous on 
[0, c~)•  K0. In particular the function (t, ~ ) ~ ( t ,  ~, .) from [0, oo)•  K0 into 
Borel measures on K (or K0) is continuous. 

Theorem 5.1..For each ~ in Ko and integer j, ~ ( . ,  ~, j) has a continuous deriv- 
ative p ( . ,  ~, ]) on (0, oo). I / ~  is a~ integer, p ( . ,  ~, j) : p~j(t). Moreover 

(5.1) p(t,~,i)>=o, ~ p ( t , ~ , / )  = 1, 
J 

(5.2) p (s + t, ~, j) = ~ p (8, ~, i) p (t, i, i) . 
i 

17 Z. W~hrseheinl ichkei ts theorie  verw.  Geb., Bd. 10 
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I /~1 ,  ~u are points o/ Ko and i / p ( . ,  ~1, .) = p ( . ,  ~2, .) then ~1 ~ ~2. 
I t  will be shown t h a t  : r ( . ,  ~, j) even has a continuous der ivat ive  on [0, oo) 

bu t  we shall define p (0, ~, j) no t  as Jr' (0, ~, ?') bu t  as the value of a certain measure  
p(0,  ~ , .  ) for the singleton (?'}. These two values will be shown to be equal 
(Theorem 6.2). 

We shall need an in tegra ted  version of the Chapman-Kolmogorov  equations : 

(5.3) ~ ( s - ~ t , ~ , j ) - - ~ ( t , ~ , ? ' ) = ~ ( s , ~ , i ) p / ~ ( t ) ,  ~ K o .  
i 

This equat ion is obviously t rue  if ~ is an integer,  and  is therefore t rue  for any  
in K0 b y  a cont inui ty  a rgumen t  using uniform summabi l i ty .  Since (5.3) is satisfied, 
i t  is known ([1], p. 204) f rom a general theorem on functional  equat ions of  this 
form t h a t  : r ( . ,  ~, j) has a cont inuous der ivat ive  on [0, cr and we denote this 
der ivat ive  on (0, cr b y  p( . ,  ~, }). According to the  same reference (5.2) is true. 
Since ~ 7~ (t, ~, i) - t for ~ in Ko, ~ p (t, ~, i) =< 1 on (0, c~), with equal i ty  (fixed ~) 

J J 
for a lmost  every  t (Lebesgue measure).  There  is equal i ty  everywhere  because b y  
(5.2) the sum in question defines a monotone  function. The last  assertion of the 
theorem is a consequence of the  fact  t h a t  ff ~1 and ~2 are points  of  K and ff 
r~l. ( . ) = r~.(. ) then  ~1 ~- ~2. 

Theorem 5.2. The sequence {~n, n > 1} in Ko converges to the integer i i/ and 
only i/ either o] the/ollowing equivalent conditions is saris/led. 

(a) There is a sequence {~n, n > 1} o/strictly positive numbers such that 

(5.4) l imSn = 0 ,  l imp(~n ,~n ,  i) -= 1. 
~ - - +  o o  n---> o o  

(b) For all t > 0 (equivalently/or arbitrarily small strictly positive values o/ t) 
and every integer ], 

(5.5) l i m p  (t, ~n, ]) = p (t, i, j) . 
n---~ r  

I f  (a) is satisfied, 

(5.6) lira p (t, ~n, ]) = l im ~ p ((Sn, ~n, k) p (t - -  5n, k, j) ~- p (t~ i, ?') 
n - - >  o o  n - - ~ c o  k 

for t > 0 and every  integer j. Hence  l im r~, j (~)-~ r/j(~) for all ~ > 0, which 
n - - ~  ~ o  

implies t ha t  lira ~n = i. Thus  condition (a) implies the s t ronger  of  conditions (b) 
n - - ~  o o  

which in tu rn  implies t h a t  lira ~n = i. Conversely lira ~n --~ i implies t ha t  
~---> o o  

l im 7~(t, ~n, i) = ~(t, i, i) 

for t > 0. Choose integers a l  < a~ < . . .  in such a way  tha t  
1/m 

(5.7) m ~ ( 1 / m , ~ n , i ) = m  ~ p ( s , ~ n , i ) d s > m z t ( 1 / m , i , i ) - -  l / m = C m  
0 

if  n > am. Then lira Cm = 1. For  n satisfying am < n < am+l choose ~n satisfying 
n - - >  o o  

0 < bn <= 1/m, P((~n, ~n, i) > Cm to get a sequence satisfying (5.4). Final ly  (5.5) 
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for  t = to and  all ] implies (5.5) for t > to and all ]. Hence  the  weaker  form of 
(b) implies the stronger.  

Theorem 5.2 implies t h a t  the  restr ict ion of the K topology to the integers is 
CHUNG'S fine topology referred to in Section 1. (See also Mv,u [4].) 

Theorem 5.3. The/unct ion p ( . , . ,  ?') is continuous on (0, c~) • Ko. 
In teg ra t ing  in (5.2) af ter  interchanging s and t we obta in  

(5.8) ~z (s § t', ~, ]) - -  ~z (t', ~, ]) ~ p (t', ~, ?') ~ (s, ], i). 

I f  (t', ~) -> (t, •), (5.8) becomes 

(5.9) ~ ( s  § t, 7,  }) - ~ (t, 7, }) --> tim sup p (t', #, }) ~ (s, ], }) 

and therefore 

(5.10) p(t, 7, i) _> lira sup p(t ' ,  ~, ]). 

Applying (5.2), if  s < t', p (s, $, ]) ~ p (t', ~, ]) / p (t' --s, ], ]), so t h a t  if  ~ < t' 

(5.11) [~z (t ' ,~, ]) -- n ( t ' - -  6 , $ , j ) ] / 6 ~ p ( t ' , ~ , ] )  sup~<~[p(s , i , j ) ] - l .  

W h e n  (t ' ,  ~) ---> (t, ~) and then  6 ~ 0 this inequal i ty  yields 

(5.12) p (t, 7, J) ~-- l im inf  p (t, ~, j), 

and  this inequal i ty  combined with (5.10) yields the theorem. 

Note added in page proof. The proofs in the following sections do not use this theorem, 
whose conclusion was strengthened from upper semieonginuity go continuity (following [5]) 
inpage proof. Some proofs, for example that of Theorem 7.1, can now be simplified, using 
p instead of ~z. 

6. Transit ion and Absolute Probabili ty Functions Near t =- 0 

An absolute  probabi l i ty  funct ion on K0 is defined as a funct ion t ~-~ p(t ,  .) 
f rom (0, r into the space of probabi l i ty  measures  on K0 such t h a t  

(6.1) p ( s §  f p ( t , ~ , A ) p ( s , d ~ ) ,  O < s , t .  

But  according to (6.1) each of these measures  is suppor ted  b y  the set  of  integers 
and  we have  therefore not  effectively enlarged the  class of  absolute  probabi l i ty  
funct ions over  t h a t  considered in Section 1. As explained in Sections 3 and 4 the 
measure  p (0, . ) is defined by  lira p (t, . ) (convergence of measures  on K) and  is 

n - ~ 0  

suppor ted  b y  K0. I f  ~ is in Ko, p ( . ,  ~, . ) is an absolute probabi l i ty  funct ion and 
it  follows t h a t  l i m p  (t, ~, . ) eMsts in the sense of convergence of measures  on K 

t~>0 

and is suppor ted  b y  K0.  We define p(0,  ~, . ) as the  l imit  measure.  Then applying 
the remarks  in Section 3 on absolute probabi l i ty  functions, if  / is a bounded  
[bounded continuous] funct ion on K0 the funct ion t--~ f / 0 ] )  P (t, $, d~) ---- p (t, ~,/)  
is cont inuous on (0, c~) [[0, ~ ) ] .  I n  par t icular  for each ~ in K0 the  m a p  t ~-* p (t, ~, . ) 
f rom [0, co) into Borel measures  on Ko is continuous. 

Theorem 6.1. I / ~  is in Ko, i/ p (.,  . ) is an absolute probability/unction, and i/ 
s >= O, t >= O then 

(6.2) p ( s  § t, ~, . ) = f p ( t ,  7,  �9 ) p ( s ,  ~, d~?) 

17" 
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and 

(6.3) p(s  H- t, .) = ~p(t, ~, . )p(s ,  d~).  

I] 81, 82 are points o /Ko  and i/ p (0, 81, �9 ) = P (0, 82, �9 ) then 81 = 8~. 
Since (6.2) is a special case of  (6.3) we only consider the lat ter ,  which is a l ready 

known to be t rue  when s and  t are s tr ict ly positive. I f  [ is continuous on K,  p ( . , / )  
is continuous on [0, c~). Eq.  (6.3) can be wri t ten  in the equivalent  fo rm 

(6.4) p(s + t, 1) = ~p(t,  ~, / )  p(s, d~) 

with [ continuous on K.  When  t -+ 0 in (6.4) with s > 0 the resulting equat ion is 
equivalent  to (6.3) with s > 0, t = 0. We now use an in tegra ted  version of (6.4) : 

t 

defining ~(t,  j) = ~p(s, j) ds,  
0 

(6.5) ~ (s + t, 1) - :~ (s, l) = S ~ (t, ~, 1) p (s, d~ ) .  

When t > 0 and  s --> 0 (6.5) yields 

(6.6) ~(t ,  1) = ] z ( t ,  ~7, 1) p(0 ,  dr) , 

which implies t ha t  

(6.7) p(t , / )  = ]p( t ,  V,/)  p(O, d~),  

and this equat ion is equivalent  to (6.3) with s = 0, t > 0. When  t -> 0 in (6.7) the 
equat ion becomes equivalent  to (6.3) with s = t = 0. Final ly  i f p  (t, 81, .) ---- P (t, 8~,. ) 
when t = 0 this equat ion will be t rue  for all t b y  (6.2) ; hence 81 = 82 by  Theorem 
5.1. 
For  s = 0, (6.3) s ta tes  t h a t  every  absolute probabi l i ty  funct ion is an integral  
average of those determined b y  the t ransi t ion function. 

I f  8 E K0 and ff p(0,  8, 8) ~ 1, 8 will be called a branch point.  The set  of 
branch points  will be denoted b y  Kb.  

Theorem 6.2. Suppose that (t, ~') E [0, c~) • Ko and that (t, ~') --> (0, ~). 

(a) I] ~ ~ Ko -- Kb then l i m p  (t, ~', . ) = p (0, ~, . ) in the sense o/ convergence 
o/measures on K. 

(b) I /  $ e Ko then 

(6.8) l im p(t, ~, J) = p(O, ~, J) = lim sup p(t, ~', j) . 
t - ~ 0  

Suppose t h a t  (tn, Sn) --> (0, ~) with tn ~ 0 and ~n, ~ in K0 a~d suppose also 
t h a t  l i m p  (tn, ~n, �9 ) -----/~ exists in the  sense of convergence of measures  on K. 

n - - > ~  

In tegra t ing  in (5.2) af ter  interchanging s and t we obtain  

(6.9) ~(s + t, 8, j) --  ~(t, 8, j) = ~ ( s , v , j ) p (  , 8  d~). 

Replacing (t, 8) b y  (tn, ~n) we obtain,  when n --> c~, 

(6.10) n(s ,  ~, j) = ~ ( s ,  ~, j) ~ (d~)  

Summing over  j we find t h a t  ~ ~ (s, ~, }) : s for /~ a lmost  every  ~ and therefore 
t ha t  the sum is identically s for ~ a lmost  every  ~. T h a t  is, # is suppor ted  by  K0. 
Then (6.10) implies 

(6.11) p ( s , ~ , j ) =  ]p(s ,~ , j )#(d~?) ,  s > O ,  
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and therefore, since lim p(s, ~ , . ) =  p(0, U, .)  in the sense of convergence of 
S--+0 

measures on K whenever U is in K0, 

(6.12) p(0, r A) ---- ]p(O, ~, A) #(dr)  

for every Borel set A. To prove (a) suppose that  ~ is in K0 -- Kb and choose 
A = ($}. The left side of (6.12) becomes 1 and we conclude that  p(o, ~, ~) ~- 1, 
# almost everywhere. This is impossible unless #($) ~ 1 according to the last 
assertion of Theorem 6.1. Thus every limit measure # is supported by {~} and 
therefore (a) is true. To prove (b) choose (tn, ~n) with the additional condition 
that  lira p(tn, ~n, j) exists and is the maximum of p(0, $, ]) and the superior 

n - - > o o  

limit in (6.8). (This may require tha t  (tn, Sn) ~- (0, ~) for large n.) The fact that  
a singleton is a closed set implies that  

# (i) ~ l imp (tn, ~n, i ) ,  
~ - - > o o  

(6.13) 

(6.12) implies that  

(6.14) 

and (6.11) implies that  

(6.15) 

p(0, r j) >=~(]) 

l iminfp(t ,  r j) ~ # ( j ) .  
t - ->0  

According to these three relations 

(6.16) p(O,r ~ # ( j )  ~ l imsupp(t ,  r j) v p(O,r ~=limsupp(t ,r  
t-+O 

l iminfp(t ,  r ]) =~ #(])  
t - ->0  

from which (6.8) follows at once. 

7. The Strong Markov Property and Discontinuities at Stopping Times 

Let {x(t), ~ ( t ) ,  t =~ O} be defined as in Section 3. I f S n  is a (~-algebra, V n ~ n  
denotes the smallest a-algebra containing every Y n .  

Theorem 7.1. The process (x(t), ~" (t), t ~= O} has the strong Markov property 
in the sense that i / T  is a stopping time, i / A  is a Borel subset o /Ko ,  and i / t  ~ O, 

(7.1) P{~ < 0% x(v + t) e A  ] J ( T ) }  ---- p(t, x(z), A) 
almost everywhere where ~ ~ c~. Moreover if {~n, n ~= 1} is an increasing sequence 
o/stopping times with limit T and i / A  and t are as above, 

(7.2) P{~ < c~,x(v + t) cA[  V n ~ ( V n ) }  = p ( t , x ( ~ - - ) , A )  

almost everywhere on the set where ~n < ~ ~ c~ /or all n. 
Since the proof of the strong Markov property is standard except that  p ( . , . ,  . ) 

is replaced by z ( . , . ,  . ) in a few places, the proof is only sketched. We can assume 
that  ~ is bounded. Let  {~n, n ~ 1} be a decreasing sequence of discrete bounded 
stopping times with limit ~ and let / be continuous on K. The usual argument 
shows that  ff s > O 

1 / [ 
(7.3) E{/[x(v~ § s)] [ ~ (T~)}  = p(s, x(T~), /)  
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with probability 1 and it follows tha t  

(7.4) E{I[x(7:'~ ~- s)] [ ~ ( ~ ) }  = E{p(s,  x (~ ) ,  1) I ~(~)} 
with probabili ty 1. Then 

(7.5) E /[x(~'~ + s)]ds I ~ (~)  = E{~(t,x(~'~),/) l~(~)}  

with probabili ty 1. When n --~ co this equation becomes 

(7.6) E /[x(~ + s)]dslo~(~) ----E{~(t,x(~),/)[~(~)}=.~(t,x(~),/) 

with probabili ty 1, and on taking the derivative with respect to t we obtain an 
equation equivalent to (7.1), valid for t ~ 0. To prove (7.2) we remark first tha t  
(3.1) with t ~" 0 is a right continuous supermartingale relative to the family of 
o'-algebras {~,~(t), t ~ 0}. By a standard supermartingale stopping time theorem 

(7.7) E{e-~rrx(~)i(~) l ~ (~n)} ~ e-~r~(~)j(:r 

almost everywhere where ~n is finite. Here the obvious interpretation is to be 
made when an exponent is - -  c~. When n --~ c~ we deduce 

(7.8) E (e - ~  rx(~) j (o:) ] ~/ n ~ (7:n)} g e - ~  rx(~ _)j (~) 

almost everywhere on the set A where ~n ~ ~ ~ c~ for all n, tha t  is 

(7.9) E(l~< ~r~(~)i(~) [ V nJ~ (~n)~ ~ r~(~_)j(~) 

almost everywhere on A. Summing over ?" yields 1 on both sides because both 
x(T) and x ( ~ - - )  have their values in Ko. There is therefore equality almost 
everywhere on A in (7.9). The exceptional null set can be chosen to be independent 
of ~ and ?'. Hence ff ] is bounded and continuous on K0 

(7.10) E{l~<oo ~ Se-~p(s ,  ~(~),/) ds I V ~ ( ~ ) }  = ~ ~e-~p(s ,  ~(~ --), 1) ds 
0 0 

almost everywhere on A. When g --~ co in (7.10) we obtain 

(7.11) E{l~<oop(O, x(~), 1)] V n ~ ( ~ n ) }  = p(0, x(~ --),  1) 

almost everywhere on A. Since this equation is true for / continuous and bounded 
on K0 it is true for / Borel measurable and bounded on K0. I f  t ~ 0 is fixed and 
/ is replaced by  p ( t , . , / )  (7.11) becomes the same equation with 0 replaced by t. 
Finally if  in this modification of (7.11) / is replaced by the indicator function of 
a Borel set A and if (7.1) is applied we obtain the desired (7.2). 

Eq. (7.1) implies tha t  x(T ~- t) is almost surely integral valued when t ~ 0, 
and under this restriction on t the set A in (7.1) and (7.2) can be taken as an 
integer singleton without loss of force. 

According to the next theorem we can write x(~) instead of x(~ - - )  in (7.2) 
when the value of x (~ - - )  is not a branch point. 

Theorem 7.2. (Quc~si felt continuity). I /  {~n, n ~ 1} is an increasing sequence 
o/stopping times with limit ~, x(~) ~ x(~ --) almost everywhere where ~n ~ ~ ~ c o  

/or all n and x(v  --) ks not a branch point. 
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We can assume tha t  r is finite valued (or replace T by  r A C and let c -~ c~ 
later).  Le t  A0 be the set  of  points  where 3n < 3 for all n and where x ( 3 - - )  is 
not  a branch  point.  According to (7.2) if  ] is continuous on K 

(7.12) E{/[x(3)]] VnS*-(3n)} = / [ x ( 3  - - ) ]  

a lmost  everywhere  on A0. Then  [/[x(3)] - -  / [ x ( 3 - - ) ] ]  2 has integral  0 over  A0 
for every  ], and  this fact  implies t ha t  x(3) = x ( 3 - - )  a lmost  everywhere  on A0, 
as was to be proved.  

8. Branch Points 

L e m m a  8.1. The set Kb o/branch points is a Borel set and 

(8.1) p(s,  2, K~) = 0 

]or s >=O, ~ in Ko. 
The set  K0 - -  Kb is the  set  of  those points  $ in K0 for which ] (2) ---- lira p (t, 2, ]) 

t-+0 
for every  funct ion / cont inuous on K or equivalent ly  for every  / in a countable  
dense subset  of  C (K) ( supremum norm).  Hence  Kb is a Borel set. I f  ] is continuous 
on K and if {x(t), t _--> 0} is a process as in Theorem 3.1, 

(8.2) /Ix  (0)] = lim E{ / [z ( t ) ]  ] x(0)} = lim p(t, x (0) , / )  
t--~0 t-->0 

with probabi l i ty  1. Thus if  the  absolute  probabi l i ty  funct ion of the process is 
p ( . ,  $ , . )  for some ~ in K0, / ( U ) =  p(0, U,/)  p(0,  2, dlT) a lmost  everywhere.  I f  
this result  is applied to a sequence of functions / dense in C (K) we find t h a t  
p(O, 17, 17) = 1 for p(0,  2, du) a lmost  every  U, t h a t  is, (8.1) is t rue  for s = 0. 
Eq.  (6.2) with t = 0 yields (8.1) for s > 0. 

Lamina  8.2. I /  {x(t), ~'(t), t ~= O} is a process as described in Section 3 and i/ 
3 is a stopping time, x (3) (on the set where 3 < oo) is almost never in Kb. 

This fact  follows a t  once f rom (7.1) with t = 0 and A = Kb,  since the left side 
has the  value 1 a lmost  everywhere  where ~ < oo and x (3) is in Kb,  whereas the 
r ight  side is 0 when 3 < zo according to the preceding lamina. 

Theorem 8.3. / /  {x(t), ~ ( t ) ,  t ~ O} is a process as described in Section 3, 
almost no path meets Kb. 

Le t  ~ be the p robabi l i ty  t h a t  a p a t h  meets  Kb. In  the te rminology of MmrEn 
[3, p. 157] the  process is well measurable  (since it  is r ight  continuous with left 
limits). Hence  according to a theorem of M E u  [3, p. 162] there is a s topping 
t ime 3 such t h a t  x(3) lies in Kb when ~ < c~, and P{~  < co} ~ d/2. But  then  
according to Lamina  8.2, 3 = oo a lmost  everywhere  and it  follows t h a t  d = 0, 
as was to be proved.  

9. Excessive Functions 

I f  ] is a posit ive extended real va lued  funct ion on the  integers and if  g ~ 0 
the funct ion u on K0 defined b y  

o o  

(9.1) u($) = f e-~tp(t, 2,/) dt -~ ~ r~s(g ) [(i)lg 
o i 
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will be called the :<-potential o f / .  The function u is lower semicontinuous. (The 
second expression for u is of  course valid only ff :< ~ 0.) Let  u be a positive 
extended real valued function defined either on the set of  integers or on Ko, 
satisfying 

(9.2) u(~) ~ ut(~) = e-~tp(t,  ~, u) 

on its domain for some :< ~ O and all t ~ 0. Such a function will be called :<-super- 
median. I f  u is :<-supermedian ut is also :<-supermedian, t ha t  is for fixed ~, u. (~) 
is monotone decreasing. Let  u0 --~ lim ut. Then uo ~ u, and if the two functions 

t--->0 

are identical u will be called ~-excessive. I f  u is supermedian on either domain 
and t ~ O, ut is :<-excessive. I f  u is :<-supermedian and if the domain is the set of 
integers, u is necessarily ~-excessive; if the domain is K0, u0 ~ u on the integers. 
I n  fact  in either case if i is an integer 

(9.3) u0 (i) ~ lim u (i) p (t, i, i) : u (i). 
t - + 0  

I f  u is :r on K0 the restriction of  u to the set of  integers is :<-excessive. 
I f  two ~-excessive functions on K0 are equal on the integers the functions are 
identical. The limit of  an increasing sequence of  :<-supermedian /so-excessive/ 
functions is :<-supermedian [:<-excessive]. 

I f  u is :<-supermedian and t ~ 0, define ~t on the domain of  u by  

t 

(9.4) d~(~) -~ ]e-~Sp(s,  ~, u) dslt : ~.r~j(:<) [u(]) - -  e-~tp(t,  ], u)]/:<t, 
o i 

r  

where the last expression is valid if  ]e -as p (s, ~, u ) ds < <~, and where r~i (:<)/:< 
0 

is to  be replaced by  its defining integral if ~ ~- 0. Then 4t is ~-exeessive and 
increases to u0 when t decreases to 0. Moreover 7~ ( t , . ,  ]) is continuous on K 

t 

and it follows from integrat ion by  parts  t ha t  ] e-~Sp(s , . ,  ])ds is continuous on 
0 

Ko. I t  is now clear t ha t  ~t is lower semicontinuous for fixed t and tha t  therefore 
u0, and accordingly every :<-excessive function, is lower semicontinuous. 

Theorem 9.1. I / u  is an :<-supermedian /unction on Ko and is lower semicontinuous 
then u - ~  uo on Ko - Kb. 

Since u is lower semicontinuous 

(9.5) u0(~) ~-- l imp(t ,  ~, u) ~ p(O, ~, u) . 
t-->0 

I f  ~ is no t  a branch point  this inequali ty reduces to u0 (~) ~ u (~) and since the 
reverse inequali ty is t rue the theorem is proved. 

Theorem 9.2. I /  u and v are :<-excessive/unctions on the integers, u A v is also. 
I / u  and v are :<-excessive/unctions on Ko, u A v is g-supermedian and coincides on 
Ko -- Kb with the :<-excessive/unction (u A v)o. 

I f  u and v are :<-supermedian, u A v is also. Thus the first assertion of the 
theorem is true. I f  the domain is K0, u A v is :<-supermedian and lower semi- 
continuous. Hence u A v ~-- (u A V)0 on K0 - -  Ko by  the preceding theorem. 
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According  to  the i r  defini t ion a-excessive funct ions on K0 are de te rmined  b y  
the i r  values  on the  integers.  The following theorem exhib i t s  this  fac t  expl ic i t ly  
and  sharpens  the  lower semicon t inn i ty  p r o p e r t y  of  these functions.  

Theorem 9.3. Let u be an a-excessive/unction on Ko. 

(a) For every $ in Ko, u (~) -~ p(O, ~, u). 

(b) The restriction o] u to Ko -- Kb is continuous at each integer. 

(c) I / ~  E K0 - -  Kb,  u (~) = lira inf  u (i) (where i is restricted to the integers). 
i-+~ 

Note  t h a t  (a) is t r iv ia l  unless $ is a b ranch  po in t  and  t h a t  (c) is weaker  t han  
(b) i f  ~ is an  integer .  

The  t r u t h  of  (a) follows f rom 

(9.6) p(O,~,u) =-lim f e - ~ t p ( t , ~ , u ) p ( O , ~ , d ~ ) = l i m p ( t , ~ , u ) = u ( ~ ) .  
t-+O t-+O 

To prove  (b) suppose  first t h a t  u is bounded .  Le t  i be an integer  and  choose ~n 
in K0 in such a w a y  t h a t  l ira Sn = i, l i ra u (~n) = lira sup u (~). There  is then  a 

n- -+  oo n - ->  c o  ~ - ~ i  

sequence {Sn, n => 1} sa t i s fy ing (5.4) Moreover,  as a glance a t  the  p roof  of  Theo- 
rem 5.2 shows, ~n can be chosen to  make  the  sequence converge to  0 a rb i t r a r i ly  
fast.  W e  can therefore  suppose  t h a t  5n is so small  t h a t  

(9.7) u(~n) • e -~"p(Sn ,  ~n, u) -~ 1/n. 

W e  conclude, using the  boundedness  of  u, t h a t  

(9.8) l im sup u(~) = l im u(~n) g u(i ) ,  
~--~i n - + o o  

and  therefore  t h a t  u is upper  semicont inuous  a t  i. Since u is lower semicont inuous,  
u mus t  be cont inuous  a t  i. I f  u is no t  bounded  and  i f  m is a posi t ive  in teger  the  
res t r ic t ions  to  K0 - -  Kb of u A m and  of  the  bounded  a-excessive funct ion  (u A m)0 
are ident ical ,  according to  Theorem 9.2. Hence  the  res t r ic t ion  to K 0 -  Kb of  
u A m and  therefore  also t h a t  of  u are cont inuous  a t  each integer.  I n  proving  (c) 
we can suppose  t h a t  ~ is no t  an integer ,  because otherwise (c) is weaker  t han  (b), 
and  le t  mA be the  in f imum of  u on the  set  of  integers  in an open set A conta in ing ~. 
Then 

(9.9) u (~) = lira ut (~) >= lim mAp (t, ~, A) = mA 
t-->O t-->O 

and  this  i nequa l i t y  combined  with  the  lower semicon t inu i ty  of  u implies  the  
t r u t h  of  (c). 

Theorem 9.4. An  a-excessive/unction on the integers is continuous. 
The p roof  of  Theorem 9.3 (b) is appl icable ,  wi th  a s implif icat ion in the  un- 

bounded  case made  possible b y  the  fact  t h a t  i f  u is a-excessive on the  in tegers  
u A m is also, for m a posi t ive  cons tant .  

I f  u is an  a-excessive funct ion on the  integers,  and  i f  u '  is defined as u on the  
t . 

integers,  as co elsewhere on K0, u '  is a - supermed ian  and  u 0 is therefore  a funct ion 
which is an  a-excessive extens ion of  u to  K0. Such an extens ion is t r iv ia l ly  unique.  

I f  u is an a-excessive funct ion on the  integers,  {u A m, m _--> l}  is an increasing 
sequence of  bounded  a-excessive funct ions  wi th  l imi t  u. i f  u is an  a-excessive 
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function on Ko, {(u A re)o, m > 1} is an increasing sequence of  :c-excessive 
functions, with limit u because the limit is equal to u on the integers. When  :c > 0 
the next  theorem strengthens this remark because the :c-potential of  a positive 
function / is u-excessive, and is bounded ff / is bounded and ff :c > O. 

Theorem 9.5. I /  :c > 0 an :c-excessive /unction is the limit of an increasing 
sequence o/:c-potentials o/positive bounded/unctions. 

We treat  only the case when the domain of  the given function is K0. The 
t ru th  of the theorem when the domain is the set of  integers then follows trivially. 
I f  u is a bounded and :c-supermedian funct ion on K0, ~t is the u-potential  of the 
bounded function [u - -  e-~tp(t , . ,  u)]/t, and if u is u-excessive z~t increases to u 
when t -+ 0. I f  u is no t  bounded let m be a positive integer and define u (m) as the 
:c-supermedian function u Am. Then ~(1~ ) is an :c-excessive function, 

1]m 

(9.10) ~(1~)~(~) = m ]e-~Sp(s, ~, u A m) ds, 
0 

and the sequence [~(~) 1} is a (.~l/m, m ~ monotone  increasing sequence of  potentials 
of bounded functions. The limit of  the sequence is at  most  u and at  least 

1In 
(9.11) h m n  ~e-~sp(s,~, u A m) ds = 41/n(~) 

~ - - >  c ~  0 

for every positive integer n. The hmit  is therefore u and the proof  of  the theorem 
is complete. 

Theorem 9.6. I / u  is an :c-excessive/unction on Ko, the u [x (t)] process is right 
continuous with left limits/or any x(t) process as described in Theorem 3.1. 

t 

Suppose first that u is bonnded. The sum Z j)d  is a sum of 
i 0  

continuous functions on K0 (for fixed t) with a continuous limit. Hence (uniform 
summabil i ty)  ~s is continuous as well as u-excessive on K0. For  such a funct ion u, 
{e -st ~s[x(t)], t ~ 0} is therefore a r ight continuous supermartingale which in- 
creases when s --~ 0 to {e-~tu[x(t)], t ~ O} and, by  a theorem of MEYER [3] the 
lat ter  process mus t  therefore also be r ight  continuous. This process is therefore a 
separable snpermartingale and as such has left limits. I f  u is not  bounded, (u A m)0 
is bounded,  u-excessive and equal to u A m on K0 - -  Kb, for m a positive integer. 
Since the (u A m)0 [x (t)] process is r ight  continuous with left bruits and since 
almost no x(t) process sample pa th  meets a branch point, the (u A m)[x(t)]  
process mus t  also be r ight  continuous with left limits, for every m, and therefore 
the u[x (t)] process is also right continuous with left limits, as was to be proved. 

This section, which does not  pretend to completeness, shows tha t  the compli- 
cations in the s tudy  of :c-excessive functions created by  the possible presence of  
branch points are not  serious. 

10. Example 
p �9 

Under  the hypothesis  (1.5), pii(0) ~-- q~j < oo (if i ~: j ) a n d  Pii (0) -~ --q~ ~ - - r  
exist. Define qi~ = 0. Suppose that ,  for all i, qi = ~ q~i < c~, and to avoid trivi- 

J 
alities suppose that ,  for all i, ql is str ict ly positive. Then (qij/q~) is a stochastic 
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matrix.  I f  some initial distr ibution on the integers is specified and a corresponding 
stochastic process is defined, using the given transit ion function, separable for 
the Alexandrov compactifieation, the sample functions almost  all have successive 
jumps, the transitions at  the jumps being governed by  the above stochastic 
matrix,  at  times 31, 32, . . .  �9 Let  T ---- lim 3n and suppose tha t  3 is almost  surely 

n - - >  o o  

finite, to  make the sample function analysis more interesting. Then x ( 3 - - )  need 
not  exist. I f  however  the compactification studied in this paper  is used, x ( 3 - - )  
exists almost  surely for a process as described in Theorem 3.1, and the distr ibution 
of  x(z) relative to V n ~ ( 3 n )  is p(0, x (3 - - ) ,  .). I f  the value of  x ( 3 - - )  is no t  a 
branch point,  x(3) and x ( z - - )  are almost  surely equal. Suppose tha t  there is a 
distr ibution # on the integers such that ,  regardless of  the past  before t ime 3, 
x (3) has the distr ibution #. Then almost  surely p (0, x (3-- ) ,  . ) ----- # ( .  ). According 
to the last assertion of  Theorem 6.1 two different values of  ~ in K0 give different 
measures p(0, ~, .). Hence the distr ibution of  x ( 3 - - )  mus t  be supported by  a 
singleton {~}. I n  other  words the limit x ( 3 - - )  is the same point  ~ for almost all 
paths, no mat te r  wha t  the jump matr ix  (qi~/q~) is. I f  ~ is not  a branch point, x(z) 
and x ( z - - )  are almost  surely equal, f rom which we conclude tha t  ~ is an integer 
and # (~) = 1. Thus unless # is supported by  a singleton the unique limit ~ mus t  
be a branch point. I n  the Martin compactification of  the set of  integers, as deter- 
mined by  the jump matrix,  it is still t rue tha t  the limit x ---= lira x (zn) exists almost 

~ - - >  o o  

surely, as a point  of  the Martin boundary  in this context,  bu t  this eompactification 
and therefore the properties of  x depend only on the jump matr ix  and no t  on the 
character  of  the process after t ime 3. I f  in the preceding discussion/~ is allowed 
to depend on the value of  x on the Martin boundary  and is never supported by  
a singleton, a process is obtained for which, roughly, to each possible value of x 
corresponds a branch point  of  K0 and different points of  the Martin boundary  
correspond to different branch points if  and only ff the corresponding choices of  
# are different. 
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