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Summary. An experiment in the sense of BLACKWELL is a finite parameterized set of 
probability distributions on a sample space. The product of a parameterized set of experiments 
is the experiment which describes the process in which independent elements from all of the 
sample spaces in the set are observed. In the paper, methods are developed for computing 
the properties of a product of experiments from the properties of the components. In particular, 
asymptotic properties (as N -> co) of the experiment describing N independent observations 
from a single sample space are investigated. 

1. Introduction 

BZACKWELL [1], [2] has defined an experiment to be a finite parameterized set 
of probabil i ty measures { m l , . . . ,  ink} on a measurable space (X, tg). By  the 
product of such an experiment with another, say {nl . . . .  , n~} on ( Y, A), is meant  
the experiment {ml x ns . . . . .  mk x n~} on (X x Y, ~2 • A). Clearly, the product 
experiment corresponds to taking independent observations from X and Y. 

In  sections 2 and 3 some machinery for systematically studying experiments 
and their products is developed. I t  turns out (Theorem 3.1) tha t  it is possible to 
associate to every isomorphism class (cf. [5, 9, 10, 11]) of homogeneous experi- 
ments parameterized by  1 . . . . .  k a unique "associated measure" on Euclidean 
k-space R ~ having certain properties. Thus the study of an experiment is reduced 
to the s tudy of a single measure on R 1~. The correspondence is such tha t  products 
of experiments correspond to convolutions of their associated measures. More- 
over, the properties of the associated measures are such tha t  classical limit 
theorems can be applied to them, regardless of how irregular the measures in the 
original experiment may  be. 

The results of sections 2 and 3 are applied in later sections to a particular 
problem. Let  {ms . . . . .  ink} be as above and let ai denote the a priori probabili ty 
tha t  the distribution mf is the true one. Then let B~(a  I . . . . .  a k) denote the 
probabil i ty of making the correct determination of the true distribution after 
observing N independently chosen samples from X ff the optimal procedure is 
used. Most of the properties of BN are classical and are well known, cf. [9, [10]. 
Here the properties of BN for large N will be investigated, and it  will be shown 
that  this asymptotic  behavior can be described simply in terms of a few numbers 
which can be computed from the measures ms, . . . ,  m~. 

The properties of Biv are not only of interest because of their significance from 
the standpoint of the Bayesian problem described above, but  also because the 
experiment {m~, . . . ,  m~} is determined completely by B~ up to isomorphism 
in the sense of [9], where m~ denotes N-fold product of m~. Thus the rate at  which 
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BN increases (and approaches 1 except in degenerate cases) in a sense measures 
the information obtained from observing many  independently chosen elements 
of X. 

I t  seems fair to say the method illustrated here is different from tha t  usually 
employed in large sample statistics in the following sense: The usual method is 
to apply the limit theorem of probability to the individual measures m~, ff possible, 
and then to combine the measures m~ v for large N into an experiment. We proceed 
in the opposite way, first combining measures into an experiment and then apply- 
ing limit theorems to the measure associated to it. This reversal of procedure 
seems to have some advantages which should make it  applicable to problems 
beyond the one illustrated here. 

2. Normalization of an Experiment 

Let {ml, . . . ,  ms} (/c ~ 2) be an experiment on a measurable space (X, ~) .  
For any measure m on (X, Q), N (m) will denote the a-ideal of null sets of m. The 
experiment ~ l l  be called homogeneous if N (m,) ~- N (mj) for all i, ?'. For the sake 
of simplicity here we shall be concerned with only homogeneous experiments, 
but  the methods can be extended to cover the general case with a little more 
trouble. 

Lemma 2.1. Let {ml . . . .  , m~} be a homogeneous experiment on (X, ~). Then 
there is unique measure m on (X, E2) satis/ying: (i) N (m) ~-/V (rot), (ii) m (X) - :  1, 

Ic 

(ill) there are Radon-Nilcodym derivatives d~ = dml/dm satisfying I ~  di (x) ~ A ~= 1 
i ~ 1  

where A is a positive constant. I f  n is any measure on (X, E2) satis/ying N (n) 
= N(m~), A is de/ined by 

where ~i = dmi/dn is a Radon-Nikodym derivative. (A is independent o/the choices 
o/n  and pi and will be called the associated constant o/the experiment {ml . . . . .  m~ }.) 

Proo/. Define m by  
/ k \1/~ 

m(E) = c j i i~=l~(x))  n(dx), 

where c is chosen so tha t  (ii) holds. Then N(m) = N(n) ---- N(mi) and 

/ Zr \ - l / k  
d, =-dm,/dm : ~,e-1 {~[~ , (x ) )  

\{=1 / "= 

so (i) and (iii) hold where A : e -k. The inequality A ~ 1 follows by applying the 
inequality between the arithmetic and geometric means to the integrand in (2.1). 

To prove uniqueness, suppose tha t  m'  satisfies (i), (ii) and (iii) with A 
replaced by  A'.  I t  can be supposed tha t  A ~ A'.  Now if m r  there is a set E 
such tha t  p ---- dm/dm' satisfies p ~ b > 1 on E and m (E) > 0. Then there must  
be an i such tha t  d~ ~ d~ : dmi/dm' on F c E ,  where re(F):~0 hence m i ( F ) . 0 .  



On Products of Experiments 205 

Then 
m~ (F) = f d~ (x) ~o (x) m'  (dx) > b ~ d~ (x) m' (dx) = b m~ (E), 

but this contradicts b > 1 and m~ ( F ) . 0 .  This proves Lemma 2.1. 
Now with the assumptions and notation of Lemma 2.1, define the map 

TI: X -+ R ~ by letting the i-th component of T1 (x) be log (d~ (x)). Let  # and #~ 
be the measures on R k induced by T1 from m and mi, that  is # (E) = m (T{ -1 (E)) 
and tti (E) = mi (T{ -1 (E)). 

Lemma 2.2. Under the assumptions o /Lemma 2.1, the map T1 is a su//icient 
statistic so that the experiment {~1, . . . ,  #~} is isomorphic to {ml , . . . ,  m~ }. Moreover, 
the/ollowing conditions are saris/led: 

(i) N (~) = N (~d, 
(ii) u (R k) = tti (R ~) = 1, 

k 

(iii) S = suppor t t t cHB -- {ycR~:  ~y~  = B = logA}, 
i = 1  

(iv) the Radon-Nikodym derivative (d#~/d#) (y) = exp (yi), 

(v) the measure # has finite absolute moments o/all orders. 

Pro@ That  T is a sufficient statistic follows immediately from [8, Corollary 2] 
or [11, Theorem 2.1]. The conditions (i), (ii), (iii) follow immediately from the 
corresponding conditions in Lemma 2.1, where B = logA ~ 0. The definition of 
T1 implies (iv). To prove (v), first note that  for any integer p > 0 and y = (yZ,..., y~) 
in l iB,  (iii) implies tha t  f fZ1 = y1 -- B/k, [Z~[ ~ kmax{Z~: Z~ ~ 0}, and ]Z~]P 

kPmax{(Zi)P: Z ~ ~ 0}. Therefore (ii), (iii), and (iv) give 
k 

f lZ~lp#(dy) <= kpp! ~ ~ cxp(y~ --  B/k) #(dy) <= kP+~p!A -~/~. 
1~ ~ i =  1 JR ~ 

~ O W  

lyJt  

If (Pl ..... 

P 

<~ ~ IZJ lq( -  B/k)P-qC~ implies tha t  ~ [yJ[p/z(dy) <= C(p) < ~ .  
q = 0  R ~ 

p~) is given with p~ ~ 0, 

h h 

V[ IY I ' (dY) <k-1 f Z -<- k-lVc(kP ) < 
/ ~  i ~ 1  R ~ i = 1  i = 1  

where the first inequality comes from the inequality between the arithmetic and 
geometric means. This proves (v) and Lemma 2.2. 

Lemma 2.a. Let {ml . . . . .  ink} and {nl . . . . .  n~} be homogeneous experiments on 
(X, f2) and (Y, A) respectively. Let tz and {ttl . . . . .  tt~} correspond to the /irst 
experiment as in Lemma 2.2 and u and {vl . . . . .  vk} correspond to the second. Then 
the experiments are isomorphic i] and only i[ # = v. 

Pro@ The first part  of Lemma 2.2 shows that  the experiments are isomorphic 
ff and only ff {#1 . . . . .  /~e} and {vl, . . . ,  vk} are isomorphic. But  part  (iv) of Lemma 
2.2 shows that  {#l . . . .  ,/~e} is determined by # alone and {Vl . . . . .  v~} by v alone, 
and the ,,if" part  of conclusion follows. 
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Now suppose t h a t  {ttl . . . . .  #~} and {vl, . . . ,  v~} are isomorphic,  say v{ = T,#{  
where T ,  is an isomorphism induced f rom a stat ist ical  operat ion T between two 
copies of  R ~. B y  L e m m a  2.2, 

d#l/d#J---- exp(yt  - -  yJ) a t  (yl . . . .  , y~) a S c H B .  
Then  if  

k 

~j(y) ~- ]-~ (d#~/d#l) (y) ---- e x p ( B  - -  kyJ), yl = k - l ( B  - -  logccj(y)), 

and therefore, the  coordinates of a point  y in S can be computed  f rom likelihood 
rat ios d#i/d#J at  the point.  Similarly, if  the suppor t  of  v is S '  t h e ,  and z ---- (z I . . . .  , z ~) 

is in S' ,  zJ ---- k -1 (C - -  log flj (z)), where fij (z) = ~ (dvi/dvJ) (z). Theorem 2.1 of  [11] 

implies t h a t  T preserves likelihood ratios, which now shows t h a t  T can be t aken  as a 
map  f rom IIB to I I c  such t h a t  y i n / / B  corresponds to z i n / / c  ff and  only ff ccj (y) ----- 
flj(z) or B - -  k yJ = C- - / c  zJ for j ---- 1 . . . . .  /c. Summing over  j gives (B - -  C) (/c - -  1) ---- 0. 
Since/~ >-- 2, this means  t h a t  B = C and T is the ident i ty  m a p  on S ---- S '  Bu t  
then  (d#/d#J) (y) -~ e x p ( - -  yf) ---- (dr~dr1) (y) on S = S ' ,  hence # ----- v. This 
completes the proof. 

The L e m m a s  2.2 and 2.3 just i fy  the  following terminology:  # will be called the  
associated measure of {ml . . . .  , m~}, or more precisely of  the  i somorphism class of 
{ m l  . . . .  , 

3. Products of Experiments 

The theorem below is our main  tool. Excep t  for the  last  s ta tement ,  i t  is just  a 
s u m m a r y  of the results of  the preceding section. 

Theorem 3.1. Let {ml,  . . . ,  m~} be a homogeneous experiment on (X, f2). Then 
there is associated to the isomorphism class o / { m l  . . . .  , m~} a measure # on R ~ with 

h 

its support in IIB -= {y ~ Rk:  ~ y *  ~ B = logA}, where A is the associated 
i = 1  

constant de]ined by (2.1). I ]  #, (E) ----- ] exp (y*)d#, #~ is a probability measure and 
E 

the experiment {#1 , - - , ,  #~} is isomorphic to { m l , . . . ,  m~}. The measure tt has 
moments o] every order. I] {hi . . . . .  nk } is a second homogeneous experiment on ( Y,  A)  
with associated measure ~, then the associated measure o] the product experiment 
{ml • n l ,  . . . ,  m k •  nk} on (X  • Y ,  f2 X A)  is the convolution # * ~. 

Proo]. Let  dl . . . . .  d~, m be as in L e m m a  2.1 and  el . . . . .  e~, n, the  corresponding 
objects for the other  exper iment  {hi,  . . . ,  nk}. The objects  in the l e m m a  corre- 
sponding to the  produc t  exper iment  will jus t  be dl • el . . . . .  dk • e~, m • n. The 
map  T2: X • Y --~ R ~ analogous to  T1 as defined before L e m m a  2.2 will be just  
the m a p  defined b y  sett ing the  i - th  componen t  of  T2(x) equal  to log(dl (x)) 
+ log (ei (x)). Then  it  follows f rom the definition of T2 and  of the  convolut ion 
# * v  t h a t  

m x n ( T ~ l ( E ) )  = / z •  ~ + ~ /eE)  = # * ~ ( E ) .  

This proves  the last  assert ion and  completes  the  proof  of  the  theorem.  
The  theorem shows t h a t  one can app ly  the  classical l imit theorems of pro- 

babf l i ty  to # to obta in  the  a sympto t i c  propert ies  of  the N-fold produc t  exper iment  
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{m~, . . . ,  m~} on (X ~v, Y2N). Since the moments of # are all finite the classical 
limit theorems apply without special assumptions on the m ' i S .  

4. The Function BN 
k 

Let a = (a l, . . . ,  a s) be a/c-tuple of non-negative numbers with ~ af _~ 1 and 
i = 1  

let B~ (a) be as in the first section. Then it is known that  B~v (a) depends only on 
the isomorphism class of {m~ . . . .  , m k }, cf. [9, Corollary 1]. Therefore Theorem 3.1 
above and the form of the Neyman-Pearson Lemma given in [9, Section 6] show 
that  

(4.1) BN (al, . . . ,  a s) = f max {a i exp (yi)} tt ~ (dy), 
R~ 

where #.~ denotes the N-fold convolution of tt with itself. This formula is not 
convenient for studying the asymptotic behavior of Biv because the integrand is 
large for large ] y]. This difficulty will be avoided means of the following lemma. 

Lemma 4.1. Let (ul . . . . .  us} be a set o! numbers. I / H  is a subset o/{1 . . . .  , k} 
let M (H) =- rain {ui: i e H} and let M I be the sum o / M  (H) over all subsets H with 
exactly ] elements. Then 

lc 

(4.2) Max{u : i = 1 . . . . .  = (--  1)J-1Mj. 
]=1 

Proo/. Suppose for the moment that  Ul ~ u2 ~ "" >- Uk and let i and ?" 
satisfy 1 < ?', i ~ k. Then ff ] < i there are exactly i-1 = = C~-1 subsets containing 
exactly ?" elements such that  ui is the smallest element and ff ] > i ul is not the 
(unique) smallest element of any subset containing ] elements. Therefore 

k k k 

~. ( - -  1 ) 1 - 1 M j - - ~  ~ ( - -  1); ' - lC~-~ur 
g'=l  i = l  i=~ 

This proves (4.2) under the assumed ordering of the u~'s. However, neither side 
of (4.2) depends on the ordering, so (4.2) holds in general. 

Let  D~ (1 ~ ] g k) be defined by 

(4.3) D~ (al, . . . ,  a k) = ~ f rain {a i exp (yl): i ~ H} / t~  (dy) 
H s ~ 

where the summation is over all subsets H of {1 . . . .  ,/c} containing exactly ?" 
elements. Each term in the summation on the right side of (4.3) can be written 
in the form 

(4.4) fMin{a~exp(y/): i e H } t t ~ ( d y  ) = fMin{aCexp(z~): i e H } # ~ ( d z ,  H) 

where #.N(, H) denotes the measure formed in a way analogous to #~ but  with 
respect to the subexperiment {#/: i e H}. The support of this measure lies in some 
hyperplane ~ zi = coast., hence the integrand on the right of (4.4) is bounded 

i e H  

there. Now (4.1) can be written 
k 

(4.5) B~(a 1 . . . .  , a s) = ~ (-- 1)l-lD//v(a 1 . . . . .  ak), 
j = l  
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which in view of (4.3) and  (4.4) is a finite sum of integrals with bounded  integrands.  
k 

Since obviously D~v (a 1 . . . . .  a s) = ~ at = 1, (4.5) can also be wri t ten  as 
i = 1  

S 
(4.6) 1 - -  BN(a 1 . . . . .  a s) -~ ~ (--  1 ) IDa(a1 , . . . ,  aS). 

i = 2  

5. Bounds for BN 

The following l emma  will make  it  possible to  give bounds  for BN. 

L e m m a  5.1. Let {ml ,  . . . ,  mk} be a homogeneous experiment on (X, f2). Let A 
be the associated constant and let # be the associated measure. Then i / a  i >= O, ~ a ~ <= 1 

(5.1) S Min (a~ exp (y~)) ~ (dy) ~ A 1/k G (a 1 . . . .  , a~) , 
R~ 

where G (a 1, . . . ,  a s) denotes the geometric mean of a 1 . . . . .  a s. 

Proof. The left side of  (5.1) can be wri t ten  as 

k 

J i ,  where J i  ---- a I S exp (yi)/~ (dy). 
i=I S~ 

Si ---- {y e / / , :  a /exp(y/ )  > a~exp(y i) _~ aaexp(yh),  i < i <= h}, and 

S 

l iB  ---- {y e R s : ~ y~ ---- B = log A }. 
i = 1  

Now ff y is in Si, y~ <= yl ~- log (aJ/a i) for 1 --<_ j __< k. Summing  over  j gives 

z~ = Sup ({y~: y e s~}) __< U/k  + log{G ( a l , . . . ,  an)/a~}. 

Therefore J~ g a t # ( S ~ ) e x p ( z i ) ~ - # ( S i ) A 1 / ~ G ( a  1 . . . . .  an). Since the  suppor t  of  
/~ is in l iB ,  summing  over  i gives (5.1). 

Theorem 5.1. Let {ml ,  m2} be a homogeneous experiment on (X, ~ ) .  Then for 
2 

every iV, and a~ >= O, ~ a ~ = 1 
i = 1  

(5.3) B~  (a 1, a 2) --__ 1 - -  A NI2 G (a 1, a 2 ) 

where A and G are as in Lemma 5.1. 

Proof. The case iV ---- 1 follows immedia te ly  f rom L e m m a  5.1, (4.3) and  (4.6). 
The general case follows f rom the case iV ~ 1 on observing t h a t  the  associated 
constant  of  the  exper iment  {m~, . . . ,  m r }  is A ~. The nex t  theorem contains 
Theorem 5.1. 

Theorem 5.2. Let {ml,  . . . ,  ms} be a homogeneous experiment on (X,  f~). For any 
subset H c {1 . . . . .  k} let AI-I denote the associated constant of the subexperiment 
{m~: i e H}, let G~(a~ . . . . .  aS) be the geometric mean of the numbers {ai: i e H}, 

]r 

and ]c (H) the number of elements of H.  Then if a ~ ~ O, ~ a~ ~ 1, 
i = 1  

B~(a 1 . . . . .  a s) >= 1 --  ~ (AH) NIk(') GH(a 1 . . . .  , aS), 
H 

where the summation is over all subsets H such that k (H) is even. 
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Theorem 5.2 also follows immediately from (4.3), (4.5), (4.6) and Lemma 5.1. 
A still more general theorem is: 

Theorem 5.3. Let {roll, . . . ,  ml~}, { m 2 1  . . . .  , m2/c} . . . .  be a sequence o/ exper- 
iments on (X1, ~1), (X2, ~Q2) . . . .  respectively. Let the number AH as de/ined in 
Theorem 5.2 associated to the j-th experiment be denoted by AJH and let B N (al,. . ., a n) 
be the/unct ion corresponding to the experiment 

m ] l  , . . . ,  t a l k  o n  , ,.C2j . 

j = l  

Then 

where a i, GH and the summation have the same meaning as in Theorem 5.2. 
The proof of this theorem is the same as the proof of Theorem 5.2. 

An application of the case k ~ 2 of Theorem 5.3 shows that  ff I : I  AJ diverges 
i=1 

to zero, B~'(a 1, a 2) --> 1, where AJ denotes the associated constant of the experi- 
ment  {roll, mi2 }. The convergence of B ~ ( a  1, a 2) to one means, of course, tha t  
one can make estimates of the ,,true" parameter  with arbitrarily low probabili ty 
of error by  observing from enough of the X~'s. 

6. Use of Limit Theorems 

The theorems of the last section did not exploit the possibility of using central 
limit theorems to estimate the asymptotic properties of Bzr This possibility will 
now be illustrated in the case/c ---- 2 by employing the Berry-Essen Theorem [4], 
[6], [7, Chapter 8]. For k ~ 2 similar results can be obtained from the multivariate 
form of this theorem, which is due to B~nGSTg6M [3]. In  this case the explicit 
formulae become much more complicated. 

Now let {ml, m2} be an experiment with associated measure/z  on R 2. Define 

y i  = f y i # ( d y ) ,  o:~j = f (y~ - -  y i ) ( y i  - -  YJ )# (dy ) .  
R2 _R2 

Since the support  of/z is i n / /B  ~- {Y e R~ : yl _~ y2 : B g 0}, y1 ~_ y2 - -  B and 
~11 + 2~12 + ~22 = 0. Also 

~11 --  2 ~12 + ~22 = ] (yl __ y2 __ y1 -~ ye)2/~ (dy) >= 0 
R2 

where equality holds only in the trivial case where mi ~ m~., which we shall 
exclude here. Let  a be the positive square root of ~(~11 --  2~12 -~ ~.22) so tha t  
~2 _-  ~ (~11 - 2 ~12 + ~ )  = �89 ( ~  + ~ )  - -  - ~ 2 -  

In  the theorem below it is of interest note tha t  y1 and y2 are both negative. 
This follows by  applying Jensen's inequality to ] exp (yi)# (dy) ---- 1. The possibility 

R~ 

tha t  y i  =_ 0 is excluded by  the assumption tha t  m~ r m2. 

Theorem 6.1. Let {rex, m2} be a homogeneous experiment with associated constant 
t 

A and ml  :era2. Let ~5(t) = (2~) -1/2 f exp (--  s2/2)ds, W1 = �89 
- o o  

15 Z. Wahrschein l ichkei t s theor ie  verw.  Geb., Bd. 10 
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-~ N ( Y i - -  Y2 ) } - -  N1/2(g W2-= W:  ~- 2N:/2(~. Let a l>O,  a : - l - a U = l ,  G(a 1, a 2) 
-= (a:a~) 1/2. Then 

11 --  BN(a 1, a 2) - -  a : e x p ( N  ( y :  q- �89 a2)) qi(W:) 
(6.1) 

-- a 2 exp (N ( y2 _t_ �89 02)) (1 -- (i5 (W2)) [ ~ 4 CN-1/2AN/2 G (a 1, a2), 

where C is a constant depending on the moments o//_t up to the third order. 

Proo/. 1 - -  Biv(a 1, a2) is just I N ~ jN, where 

j~N ~. a I S e x p ( y : ) ~ ( d y ) ,  S N = {yeI~ .NB ! y l  ~_ y2 _~ log(a2/al)}  
S~ 

j N  = a 2 y e x p ( y 2 ) # ~ ( d y ) ,  T N = {y GIIlvB! y: > y~ -k log(a2/a:)}, 
T~r 

since the support of #,N is in / / ~ B - - - - { y G R 2 : y l + y 2 = N B } ,  B = l o g A .  
Change coordinates in I N as follows: 

yl = N y l  -k N 1/2 a (u ~- v),  y~ = N Y~ + N :/2 a (u - -  v).  

Let ~N denote the measure induced on R~ from #~ by the map sending y to (u, v). 
The support of rN is clearly in the line u -- 0 and ~z can be described by a distribu- 
tion F~  on this line. Then 

W 

(6.2) I N ---- a x exp (N y1) S exp (N 1/2 a v) dFN,  
- - o o  

where w = �89 {log(a2/a 1) - -  N ( Y  1 - -  y2)}. Moreover, Fly is the distribu- 
tion function obtained from F1 by N-fold convolution followed by contraction by 

+oo  

the factor N -1/2 and S vdFlv ~ O. iv: has moments of all orders, hence the Berry- 
- - c o  

Essen theorem asserts that  ff Air = Fly -- ~b, IAN(v) I ~ CN-1/2,  where C is a 
constant depending on the moments of FN (hence of #) up to the third order. I f  
Fly is replaced by AN -~ ~b in (6.2), two integrals are obtained. The first can be 
estimated by an integration by parts: 

a: w [ I exp (N y l )  ~ exp (N 1/2 a v) dAiy g [ a I exp (N Y :  -F N 1/2 a w) A ~  (w) 
- - o o  

a I w 
+ N : / ~ a e x p ( N Y : ) I A N ( v ) e x p ( N : / 2 a v ) d v  g 2 C N - 1 / a A N / 2 G ( a l a ~ ) .  

- - o o  

The second integral is 

W 

(2 a)-:/2 a I exp (N yl )  ~ exp ( N  1/2 O" V - -  �89 V 2) dv 
- - o o  

= a lexp  (N(Y 1 -F �89 a2))~b (w -- N:/2 (X) �9 

Similar estimates apply to jN  and lead to integrals, one of which is in absolute 
value not greater than 2CN-]-/2ANI2G(al,  a2), while the other is 

a 2 e x p ( N ( Y  2 -k �89 -- ~(w ~- N~/~ ~)). 

This proves Theorem 6.1. 
There are other forms of the remainder in the central limit theorem which can 

be used in a similar way to estimate BN (a:, ae). Theorems of this type can be 
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found in [7, chapter8]. However the multivariate forms of these theorems do not 
seem to have been worked out. One can employ the asymptotic series for q5 to 
estimate B~v by formula (6.1). However, there are different eases to the considered 
depending on the relative size of y2 _ y1 and a. We have therefore not listed 
these results. 

I t  is also possible to generalize Theorem 6.2 to sequences of experiments 
{m11, m12}, {m21, m22},... ; on (Zl ,  s (Z2, s . . . .  respectively. To obtain a 

1 y 
---- ~fitJ,  fi~t ----- i-th result analogous to (6.1), one needs the assumption that  if B~ v ~-J=~, 

abso lu t e  m o m e n t  o fassoc ia l  m e a s u r e  of{rot1, mi2 } (v iew as a m e a s u r e  on  a line),  t h e n  

l im  sup B~CIB 2%a/2 <: oo as N --> oo 3/ 2 /  

The proof is essentially the same as the proof of Theorem 6.1, except that  the 
Berry-Essen theorem must be replaced by a theorem of Essen [6, p. 43]. We omit 
the exact statement of this generalization of Theorem 6.1. 
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