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w 1. Introduction and Results 

Let ((2, fro, p) be a probability space and Q a finite positive measure on fro. If ~ is 
any sub a-field o f f f  ~ we write Q~ for the restriction of Q to ft. A random variable 
will be called a density of Q over ~, understood relative to P, if 

(i) ~ is g-measurable and has its values in [0, ~ ]  (written ~E(~)+), 
(ii) The Lebesgue decomposition of Q,  relative to P, is 

Q,(A)= E( ~ ; A) + Q(A, ~ = ~ ). 

The "classical" theorem of Andersen and Jessen [-2] deals with the following 
situation: {G ~ is an increasing sequence of a-fields whose union generates ~o ,  Q is 
a finite measure on ~0 ,  and X, is a density of Q over G ~ for each n (which easily 
implies that (Xn) is a supermartingale). The statement is 

(1) Theorem. [-2] (a) Xo~---lira X ,  exists P-a.s. and Q-a.s. 
n 

(b) X ~ is a density of Q over ~o .  

In particular, X~o is finite P-a.s. and will be finite Q-a.s. iff Q is P-absolutely 
continuous. An account of this theorem similar to that in [2] will be found in [8, 
pp. 369-374]; one finds there also a reversed-time version of the theorem for a 
decreasing sequence of a-fields. We remark that, if N is a stopping time, then XN, 
defined in the obvious way, will be a density of Q over ~-o. 

Let {N~ t>0,  be an increasing family of sub a-fields (briefly: a filtration) 
whose union generates ~ o ;  no assumptions of right continuity or completeness are 
made. The family of stopping times (finite or not) of {~t ~ (respectively {N~ is 
denoted 5 :~ (resp. 50~ If Q is a finite measure on ~-0 we may again consider the 
family of densities X~ of Q over N ~ but in order to have nice properties, it is 
necessary to choose the process more carefully. The main result of this paper is the 
following continuous-time analogue of the Andersen-Jessen theorem: 
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(2) Theorem. There exists a process X = (Xt) , unique up to P + Q-evanescence, such 
that 

(a) X is optional (=well-measurable) and takes its values in [0, oe], 
(b) X r is a density of Q over ~ ~  for each Te5 p~ 
(c) X has a left (resp. right) limit at every re]0, oe] (resp. tel0,  oo[) P +Q-a.s., 
(d) X remains at 0 (resp. at oo)forever after touching 0 (resp. oo) P +Q- 

a.s., 
(e) Xr+ (resp. Xr_ ) is a density of Q over ~o+ (resp. o~~ for every TsS e~ 

(resp. predictable T~6r176 

We will say that Q dominates X in this case. 
Partial results along the lines of Theorem (2) appear in [9] and [13]; these were 

found independently by the author. The theorem is new in full generality, with an 
important observation having been supplied by P.A. Meyer. Similarly some of the 
results used in the proof of (2), e.g. the result of (4) below, have been part of the 
(unpublished) folklore of martingale theory, and were also rediscovered in 
connection with the present work. Thus the main contributions of this paper are the 
synthesis of these components to obtain Theorem (2) and the formal exposition of 
the results on strong supermartingales. 

As we shall see, the limits in (c) are finite P-a.s. and positive Q-a.s. X r is to be 
interpreted as X~ = lim X~ whenever T= c~, and the meaning of "touching 0" is 

t ~ c o  

this: X touches 0 at t if at least one ofXt_ , St,  Xt+ equals 0; similarly for "touching 
~,,. 

Conditions (a) and (b) of Theorem (2) imply that X is a strong supermartingale 
in the sense of the following definition: 

Definition. An optional process Y=(Yt) with values in [0, ~ ]  is a strong 
supermartingale, understood relative to {~,~o}, p, unless otherwise stated, if Y has 
the optional sampling property: if S, Te6 e~ are bounded, S__<T, then Ys, Yr are 
integrable and 

(3) Ys>=E(Yrt~,~s ~ a.s. 

Similarly, Y is a strong martingale if equality holds in (3). 
The same phrase will be used, with an obvious meaning, when P is a bounded, 

positive measure with mass different from 1. A simple argument shows that (3) 
holds without the boundedness or even finiteness of the stopping times, if we count 
Yr = 0 when T= or. A right continuous (nonnegative) supermartingale relative to a 
right continuous filtration is strong, and the following recent result of 1-4] shows 
that there are plenty of others: if U = ( U  3 is an arbitrary nonnegative super- 
martingale, then there is a strong supermartingale U* such that Ut*= U, a.s. for 
each t. 

Properties (c) and (d) are consequences of the fact that X is a strong 
supermartingale, and 1IX is a strong Q-supermartingale. It is worth isolating the 
relevant results on strong supermartingales; these are of independent interest and 
are analogues of well-known properties in the "classical" case of right continuous 
supermartingales under the "conditions habituelles" on the filtration. 
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The first result strengthens a theorem of Mertens [10] in dropping the 
hypothesis of a right continuous filtration; also, the new version [5] of the optional 
section theorem allows a more transparent proof. P.A. Meyer has informed me that 
the general result (at least for left limits) has been given independently, with a 
different proof, by Th. Eisele in Heidelberg. 

(4) Theorem. Let Y be a strong supermartingale ; then, a.s., Y has finite limits on the 
left at every t~]0, oo] and on the right at every teE0, or[. 

Both the nonnegativity and the supermartingale property may be weakened: all 
that is needed is that Yr, converge a.s. for every increasing sequence of stopping 
times T,. 

The next result extends the "minimum principle" of Meyer [ 11, VI.15] to strong 
supermartingales. 

(5) Theorem. Let Y be a strong supermartingale and 

z(co) = inf  {t: lim inf Y~(co) = 0} ( infg= oe); 
S ~ t  

then A== ]]v, oe[]-c~{Y>a} is an evanescent set for all c~>O. 

The "lira inf" is two-sided and includes the value of Y at t; in view of (4), 
coincides a.s. with the "first" time that at least one of Yt+, Yt, or Yt- equals 0. Thus 
we may paraphrase (5) as follows: a strong supermartingale "dies" after touching 
z e r o .  

As a trivial corollary of (5), we obtain a lemma of Doob [7, pp. 220-221] : 

(6) Corollary. Let (Y,(t)) be a sequence of right continuous, nonnegative super- 
martingales, and put Y(t) = inf Y,(t); then, letting 

n 

a = i n f{ t :  Y(t)=0}, P{sup Y(a+t )=O}=l .  
t > O  

Indeed, it suffices that each Y, be a strong supermartingale. 
The proofs of (3)-(5) are in w 2; then, in w 3, we discuss briefly the question of the 

existence of a dominating measure when X is given. This turns out to be almost the 
same as the existence of F611mer measures. 

Terminology from the general theory of processes is in [5, 6] ; in particular, 
"optional" refers to {~o} unless otherwise indicated. As a technical device we will 
need the usual filtration {o~} obtained by adjoining all P-null sets to ~ o ;  the 
corresponding family of stopping times is denoted 50. 

The Andersen-Jessen theorem completes certain so-called "probabilistic Fatou 
theorems" [1, 3], which assert P-a.s. convergence, with the assertion of Q-a.s. 
convergence. A similar situation obtains with respect to two classical theorems in 
analysis: (a) (Fatou's theorem) a positive harmonic function u(z) in the unit disc, 
with boundary measure #, converges for (Lebesgue) a.e. 0e [0, 2rc[ as z ~ e i~ along a 
nontangential path; (b) (Fej6r's theorem) the Ces/tro averages of the Fourier- 
Stieltjes series of a measure # on [0, 2rc[ converge a.e. In both cases we have in 
addition that the convergence takes place #-a.e. and the limit function is a density (in 
the above sense) of I~ relative to Lebesgue measure. 

I would like to thank P.A. Meyer for pointing out [3] and [13] and for many helpful suggestions, 
and M. Yor for calling my attention to [9]. 
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w Proofs 

We begin with the results on strong supermartingales. 

Proof of (4). We treat the case of left limits first. Let 

= lim sup Y~, Y~ = lim inf Y~; 
sttt s~"~t 

Dab={(t, co): Y4(co)<a<b< ~(co)}. 

According to [5, IV.90], Dab is a predictable set relative to {~}.  If the theorem were 
false, Dab would fail to be evanescent for some a < b, hence, given 0 < e < P(n(Dab)) , 
there would be (section theorem) a predictable TeS ~ such that 

[[_T N CDab, P(rc(Dab))<=P(T< oo)+e. 

Thus c~=P{T<oo}>0 .  Note that {T<oo}=n[[T]]c{co:(T(co),co)~Dab }. By 
[5, IV.78] there is a T ' e5  p~ predictable relative to {fit~ and such that T ' =  Ta.s.; 
thus we may and do replace T by T' in this discussion, henceforth dropping the 
prime. 

The set B o = { Y > b} c~ [[0, T[[ is optional and 

n(So) = {T< oo} + n(Bo)c~ {T= oo}, 

the + indicating disjoint union. Hence P(n(Bo))=a+fio , say. Let 0 < a <  1, the 
exact value to be specified later. By the optional section theorem there is a T~ e ~ o  
such that 

[[Tlq]~Bo, a+flo <=P(Tl <oo)+aa, 

from which follows % =-P{T 1 < ~ ,  T <  oo}_>~(1-a). Next we consider the op- 
tional set B 1 ={ Y < a} ~ ]]T 1/x T, TIT: 

P(n(Ul) ) = P { T <  ~ ,  T i < oo} +P(n(Sl) , T= oo or T 1 = oo) 

-~1+fll. 

Thus we have T2~5~~ such that 

[[T2q]=B~, ~l +~ <P(Ti< oo)+a2~, 

hence % = P ( T 2 < o  % 7"1<00 , T<oo)>=c~(1-a-a2). Continuing in the same 
manner, we obtain a sequence T, e5  e~ such that (i) T, < oo implies T,_ 1 < T, < T, (ii) 
P(T~<oo . . . . .  T I < ~ ,  T<cc)>=a(1-a-a  2 . . . . .  a"), (iii) YT~ <a if T2n<oo, 
Yw2..l>b if T2,+1<00. The set C = { T < o o ,  T,<oo for everyn} clearly has 

P(C) => 1-~Za a c~ > 0 if a < 1/2. Moreover the sequence T, is increasing. The sequence 

Yr., being a positive supermartingale, should converge a.s., but this is impossible 
on C. 

The proof concerning right limits is similar, so we will only point out the one 
slightly different aspect. Define D'ab as Dab above, but with ~..~ instead of'FT. Then D'ab 
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is progressive [-7, IV.90] and so T, the debut of D'ab , is in 3 e. As earlier, we may 
replace Tby an { ~ ~  }-stopping time equal to it a.s., which we again denote by T. We 
then observe that E1-T]] cD',b up to an evanescent set, and finally, using [5, IV.62] 
and the section theorem, construct a decreasing sequence T~s~ ~ such that lira T, 

n 

= T a.s., and, on a set of positive probability, T, < oo for every n, YT~, < a, YT~, +~ > b, 
which contradicts the a.s. convergence of the reversed supermartingale YT,. 

Proof of(5). Since Yis optional, it is {~~ hence also {~}-progressive, 
and one derives easily from [5, IV.33] that lim inf Y~ is {~}-progressive and so z e ~  

S--+~ 

[-5, IV.50]. Thus [5, IV.59] there exists z'z 5 ~~ such that ~ = z' a.s. Let ~: IR + x ~2 ~ f2 
be the usual projection. Then 7c(A~)e~ and defining A'~ with z' in place of ~, 

t ~(A~)~Y', and ~(A~) = ~(A'~) up to a P-null set. So we need only prove that P(~(A'~)) 
= 0  for 0 < ~ < 1 .  

First we observe that A'~ is an optional set (see [5, IV.62]). Were the conclusion 
false, the optional section theorem [5] would give a o-~5 ~~ such that 

[Va]] ~ A~; P(u(A'~))<_P(a<_ ~ ) + ~  

where O<e<P(~(A'~)), so that P ( a <  oo)>0. 
Let 0<fi<c~P((r< oo)/3, and put 

Then B~ is optional and one checks easily that {o- < oo} c ~(B~) except possibly for a 
P-null set, and so P(~c(B~))>0. Let 0 <7 <eP (o -<o o ) /3  and choose 
O < 5 < e P ( a <  oo)/3 such that 

P(M)<~ implies E(Y~; M)<7,  

which is possible because Y~eL ~. The optional section theorem now gives us p~5 ~~ 
such that 

~p]]~Bz,  P(~(Bp))<=P(p< ~)+3 ,  

and this yields in turn P(a  < ~ ,  p = ~ ) =  8. The optional sampling property gives 

which translates to E ( I1o; P < ~ )  + E ( Y~; a < ~ ,  p = ~ )  >_>= E ( Y~; a < ~ ,  p < co). 
The left member is maj orized by fl P (p < ~ )  + y < ~ ~P (a < ~) ,  while the right 

member dominates aP(a  < ~ ) -  ~P(a < 0% p = ~) ,  hence 

~ctP(a < ~ ) +  ~ > 2 a p ( a <  oo) + ~P(o'< ~ ,  p =  oo) > ~P(a < ~),  

which is impossible with our earlier choice of 5. 

We turn now to the proof of Theorem (2), part of which is modeled on [-9]. Here 
is a preliminary result. 

Let z be a positive, bounded random variable. The optional projection theorem 
[-6] yields an optional process Z = (Zt) such that 

(7) E(zI~r<oo~]~O)=ZrI(r<oo}, T ~ ~  
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i.e. Z is the optional projection of the constant-in-time process z. Defining Z T = Z 
when T= o% Z becomes a uniformly integrable strong martingale (see (3)). By (4) we 
have a.s. the existence of ZT+ - whenever T< o% and an easy argument establishes 

(i) E(ZI(T < oo} I ~'r0+)-.~.ZT+ I{T < ~}, T ~ 5  e~ 
(ii) E(zI{r  < ~}] o~r~ = Z r_ I{r < ~ ,  T predictable. 

Similar results hold when the underlying finite measure is not a probability 
measure. Note that the notion of predictable stopping time is the same whether we 
start with 5 p~ or 5P+ ~ [5]. 

Suppose now that (r is a sub a-field of o ~ ~  and put M = P + Q .  Obviously 
Pe ~ Me, so we may write t/e = dPe/dM e. One checks easily that l/t/e - 1 is a density 
of Q over ~, unique up to M-equivalence. 

We apply the above observation as follows: let z--dP/dM, and let Z be the 
optional projection as in (7), but relative to M. It is immediate from (7), (i), (ii) above 
that Z T = dPT/dMT, and Z r  + - = dPT +/dMT + - under the appropriate restrictions on 
T, where, e.g. Mr+ means M~# +. Parts (a), (b), (c), (e) are now obtained upon taking 
X t = 1/Z t - 1. 

Suppose S, r ~ 5  p~ S _-< T; then 

Q s ( A ) = Q r ( A ) >  E(XT;  A), A~o~s ~ 

hence E ( X r l , ~ s ~  since X s is the "largest" ~s~ function whose 
indefinite integral is majorized by Qs. Thus: 

(8) Lemma. X is a strong supermartingale. 

We observe that 1/X T is a density of P over No with respect to Q, so the same 
proof shows that 1IX is a strong Q-supermartingale. Together with (4) this proves (c) 
anew, and Theorem (5), applied to X and 1IX respectively, yields (d). 

Remarks. (a) It is easy to see that the predictability in (e) cannot be dropped: under 
the "conditions habituelles" let T be a totally inaccessible stopping time and X a 
uniformly integrable, right continuous martingale having an upward jump of size 1 
at T; see [11, VII.46]. (b) The argument for (e) can be adapted to give a simple proof 
of Theorem (1). 

As a corollary, we obtain a slight generalization (with a much simpler proof) of a 
result in [3]. Recall Qt means Q~o. 

(9) Corollary. There is an optional, evanescent set N such that 

(10) Q r ( A ) = E ( X r ; A ) + Q ( A N T ) ,  T65'~~ finite, 

where N r is the section of  N at t. 

The set N = { X =  oo} is evanescent since E(Xr;  T< oe)< oo for Te5 ~~ and 
satisfies (9). This argument applies to 1/X, Q and shows 

(11) Corollary. The limits in (2c) are f ini te  P-a.s. and positive Q-a.s. 

Let z o be the debut of N; in the right continuous case (10) becomes 

(12) Q r ( A ) = Q ( A ,  z o > T ) + Q ( A ,  zo<=T), T finite. 
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This form of"progressive Lebesgue decomposition" of Q is due to Kunita [9] (cf. 
[13]) for T=const.  

We conclude by sketching how the pieces of a Riesz-type decomposition of X 
match those of a corresponding decomposition of the dominating measure Q. 
Expressions such as Q(UIo~ ~ are understood in the sense of (7). An optional 
process Ywith values in [0, oo] is strongly dominated by a finite measure R ifRT(A ) 
= E(YT; A) for all bounded T ~  ~ This implies that Y is a strong martingale. It is 
easy to see that, if a strong martingale Y is dominated by R, then it is strongly 
dominated by R*(A)=R(A,  Yt < oo for all t). 

Theorem. There are decompositions X t = u r + v~ + wt, Q = Q" + Qv + QW such that 

(i) u=(ut) is a strong potential (not necessarily class (D)) dominated by Q"; 
(ii) v is a strong martingale, v~ = lim v t = 0 a.s., strongly dominated by Q~; 

t ~ c ~  

(iii) w is a uniformly integrable strong martingale, strongly dominated by QW. 

Let Zo be the debut of N = {X= oo}, 

U={%<oo}, V={X~=oo}, W=f2\(U~V), 

and put Q"(A)= Q(AU), etc. From (2) we find that QW is the absolutely continuous 
component of Q and w~ = E(X~ I ~  ~ (optional projection), and it is easy to prove 
that 

u,=XtQ(Ul~~ v~=X,Q(Vl~ ~ 

are the required processes. Intuitively we may describe Q" and QV as, respectively, 
the "locally singular" and "asymptotically singular" parts of Q. 

One may show that the potential u has the following property (which does not 
imply class (D)): if T, e5 P~ and T, Too Q-a.s., then limE(UT,)=O. Finally we note 

that u splits further into a local martingale and a class (D) potential, which 
effects a corresponding splitting of Q": let R , =  inf {t: X, >n} and put 

U'={XR<oO for every n}, U " = U \ U " .  

Defining QU', Qu" in the obvious way, one checks that u' t =X,  Q(U' [ ~ ~ is a local 
martingale and u~'=X, Q(U" I o~ ~ is a class (D) potential. 

w 3. Existence of a Dominating Measure 

The main result here is that, roughly speaking, a dominating measure exists iff a 
F~511mer measure in the sense of [1] exists. We work with the filtration ~o  {~t+} and 
assume X is a right continuous, nonnegative { ~ ~  }-supermartingale ; according to 
[6] there is no loss of generality in assuming that X is optional, which we do. 

Recall that the F61lmer measure of X,  if it exists, is the unique measure �9 on the 
predictable o--field ~ in ]0, oo] x (2 satisfying 

(13) ~(]t,  oo] x A)=E(Xt;  A), A ~  ~ 
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Suppose a dominating measure Q exists. By (10) and (12) we have 

(14) Q r ( A ) = E ( X T ; A ) + Q ( A , % < T ) ,  T finite. 

Define, for U~(N)+, i.e. U=(U~) a nonnegative, predictable process, 

(15) ~Udq~= ~ U~od Q. 
tO>  0 

The measure ~ so defined is immediately verified to be the F611mer measure of X, 
using (14). Thus, following [13-1, we have 

(16) Theorem. I f  a dominating measure exists, so does a Fgllmer measure. 

Going in the opposite direction we consider separately the cases in which X is a 
class (D) potential and a local martingale, respectively. The general case is then 
obtained by addition. Further, by subtracting a uniformly integrable martingale 
(for which domination and F/illmer measures are both trivial) we may assume the 
latter is also a potential but, of course, not of class (D). Notice that, under the 
present conditions, it suffices to check that X r is a density of Q over ~o+ for each 
T e 6  ~~ in order to have all the conclusions of (2). 

1 ~ Class (D) potentials. There always exists a F/511mer measure ~ in the sense of(13) 
in this case, namely 

0 

where A -- (At) is the predictable, integrable, increasing process which generates X. 
Let f2 be a space on which are defined killing operators k t and a lifetime ~ subject 

to some "natural"  axioms set down in [3] or [5, Ch. IV]. 
We define (as in [3]) a measure Q on I2 by 

oo 

(17) ~ r  s. 
12 0 

If Ce(~~ then ~ o ks=~ whenever s>t ,  whence 

t 

S ~dQ =E(~Xt)+ES~ o k s dA s. 
0 

The second term on the right defines a measure which is carried by {ff < t} e g  ~ 
Clearly P{ff < oe} = 0  implies that Q is a dominating measure. 
Suppose Q is a space of trajectories, with or without lifetime. Adding a new 

deathpoint * not in the state space and defining killing operators 

k,  oo(s)={o.(s) if s < t  
if s>t ,  
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we may  consider f2 as a set of  probabil i ty 1 in a space f2* of  trajectories in which, 
with the obvious notat ion,  P * ( ( * < o o ) = 0 .  The construct ion (20) then gives a 
measure Q* which dominates  X on the larger space. 1 

2 ~ Local martingale-potentials. Keeping the assumpt ion of  right continuity,  we 
now also require that  (2 be a Souslin space [-5-]. 

(18) Theorem. Suppose ~ exists as in (13); then a dominating measure Q exists. 

Let T, eSQ ~ (To=0)  be an increasing sequence of  reducing times for X, Too 
= l i m  T,, so P { T ~ <  oo} =0 .  By [,1-], 

n 

(19) q~(~]T, oo]])=E(Xr; T< oo), T~5 P~ 

Using ~b(]]T,, T,+I-[])=0, we find easily that  ~b lives on ~_Too]]. 
A slight extension of  [-5, IV.45,] shows that  there is a measure Q on ~ 0  such that 

is the image measure of  Q under  the mapping  co~(T~(co), o~); then (19) gives 

(20) Q(T<T~)=E(Xr ;  T<oo) ,  T~5  p~ 

which yields (14) with T~ replacing %. 
We conclude with a remark  on the not ion of  F611mer measure given in [-3-]. 

There one finds, leaving aside all the technical details, a measure # such that 

(21) # ( A , T < ( ) = E ( X r ; A , T < ( )  , A e ~ ~  Te5 ~~ 

corresponding to an a.s. right continuous,  nonnegat ive supermart ingale X such 
that  X ~ = 0  for t > ( .  In the class (D) potential  case, # is the same as Q in (17). 

Suppose X is a local martingale and let Tn, T~ be as in the p roof  of(18). Then (21) 
gives #(Tn < ~) = E(Xo) = #(O), whence T, < ( for all n and To~_-< ~ #-a.s., and #(Too < () 
=0 .  Thus 

#(A, T< T~)=E(XT; A, T< oo), A ~ ~  TeSP~ 

and so # dominates X. 
Finally, let Z t = X 71 i{ t < ~/ '  A m o n o t o n e  class a rgument  at (21) shows that  Z is a 

(strong) #-supermartingale. It  follows that  there is a P + #-modification of X which is 
right continuous and has left limits P + #-a.s. 
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