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1. Introduction 

Let X,,  n~N, be a sequence of random variables on a probability space 
(f2, N, P). The a-algebra generated by X,  with a_< n-< b is denoted by J ~ .  

Suppose there exists a sequence ~0(k), keN,  of real numbers with 1> (p(k)~0 
for k ~ oo such that 

IP(E~ ~ E 2 ) - P ( E 1 )  P(E2)I ~ q~(k) P(E1) 

for all I,k~N, EI~/~, E2~JCdl~+k, then the sequence X,, n~N, is called (p- 
mixing. 

In this paper uniform and non-uniform bounds in the random central limit 
theorem for (p-mixing processes are derived. The bounds are very near to those 
given by Landers and Rogge [9, 10] in the independent case. Of course the 
results are based on corresponding theorems for non-random summation. 
These theorems are obtained by modifying and developing methods of Tiho- 
mirov [16], Erickson [4], Babu, Ghosh and Singh [1]. 

The following notations are used: 
If X is a random variable the measure induced by X is denoted by P * X. 

=Var  ~ Xi, and for x~IR Put crn.2. 
i = 1  

Ix] :=max( l ,  max {neN: n<x}),  

~(x):=(2=) -1/2 exp(-x2/2) ,  ~(x): = i ~(t) dt. 
- o o  

Throughout  the paper D denotes a generic constant. 

* Some results presented in this paper are a part of the author's doctoral dissertation, written at 
the University of Cologne 
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2. Non-Random Summation 

For stationary processes the following theorem has been proved by A.N. Tiho- 
mirov ([16], Theorem 3). Therefore, we have only to show how in Tihomirov's 
paper stationarity can be substituted by our weaker conditions. 

Theorem 1. Let Xn, neN, be a (p-mixing sequence with 

Then for all n> 1 

EX, =0, n e N  (1) 

sup E IX.I 3 < oo (2) 
n ~ N  

lim inf o-~/n > 0 (3) 
n ~ N  

qo(n)GD exp(--2n), n~N, for some 2>0. (4) 

sup P{ ~=lXi<ant}-~(t) i (5) 

Proof. Using our assumptions (2) and (3) and Lemma 2 we can renounce sta- 
tionarity in Tihomirov's proof. Difficulties arise only in the proof of 
Tihomirov's Lemma 3.2. (Like in [16] we first assume m-dependence.) 

We show now how we can avoid this Lemma. We adopt the notation of 
Tihomirov. Lemma 3.2 and 3.3 are used only to give a bound for 

n r - - 1  n r - - 1  

L.-= _---1 ~"] ~~EXJl~[~I) i tS ( r )  e J -- L E X s [ I  ?q) -i s  
j =  = j = l  / = 1  

But this can be achieved directly without using stationarity. If we set aj 
r - - 1  

=EX~ [I ~f) we have by [17] Lemma 3.1 
l = 1  

iaj[__<D (itiD~y-' 
\ G n / 

and therefore 

L = E exp (itS,)j~=~ aj rlJ r) 

< E exp(itS,)j~=lajErl~ ~) + E exp(itS,)j~ 1 aj(rl}r)--ErlJ ~') 

t " _-<DIS,(t)I.n.  /G+E Y_, as(v/Jr'- 
\ O-n / O'n 1= 1 

Here the second summand is bounded by (cf. [16], p. 806, 807) 

n ,1/2 ([tlD]//m],-1  Lrm 
j -  Ip - j l  <- 3 r m  \ (7 n ] 
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Like in [-16] it is easy to deduce the corresponding bound for o-mixing vari- 
ables. 

The next theorem is a specification of a result of Erickson [4]. 

Theorem 2. Let X . ,  n~N, be a q)-mixing sequence fulfilling (1) and (4). Further 
let 

supELX.[~<~ for some real s>2,  
n ~ N  

inf a2 /n > O. 
n~lN 

Set XI")=XiI {IX~] ~l~}. 
Then for all n > l ,  t~]R 

(6) 

(7) 

P X i < ~ n t - P  Xln)<a,t <Dnl-s/a(l+ltl)-S(logn) s. (8) 
i i 

Erickson only gives a proof for the d-dependent case. It is not very difficult to 
extend his proof, if the following hints are observed. (cf. [-4], Sect. 6). 

Instead of [4] (2.2) set 

K(x): = 1 - P ( U  > x, c~B~). 

The terms T2, T4, T 6 in the bound given in [-4] Proposition 3.1 disappear, if 
the last equation in the proof of the proposition is replaced by 

[skim i (dk ) _ is k- ~ ],n i (dk_ 1) = ]Ski m I (d~_ 1) I (bk) + (Is~l m -Isk_ lira) i ( dk_ 1). 

This shortens the proof a great deal. 
Use our Lemma 2(i) instead of Erickson's Proposition 5.2 and apply Lem- 

ma 1 where Erickson uses the d-dependence. A detailed proof of Theorem 2 
can be found in [,,14]. 

With the aid of Theorem 2 we obtain a nonuniform bound in the central 
limit theorem by altering a proof of Babu, Ghosh, Singh [1]. 

Theorem 3. Let X , ,  n~N, be a (p-mixing sequence satisfying (1), (4), (6) and (7). 

Then there exists a constant d > 0  so that for all n> 1, t6IR, with t2>=d logn 

P {  ~__ lXi<ant}-cl)( t )  < Dnl-s/Ett[-S(logn)S. (9) 

Proof. Let c = s - 2 ,  c'=min(1,  c) and define XI ") like in Theorem 2. Assume 
w.l.o.g, that t > 0. 

We have by [-5], p. 175, Lemma 2 

qB(-t)<=Dn-C/2t -2-c if tZ>(c+l)  logn (10) 

and by (1) and (7) 
n 

i~=lEXl")/a. <Dn -c/2 (11) 
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Using these inequalities, Theorem 2 and (7) we see that it suffices to show 

e (XI " ) -  (") < D n  -c/2 -~ (12) E X  i )>_3tn 1/2 t - 2  
I.i= 1 

for all n >  1, t 2 > d  logn where d >  1 can be chosen later. (The factor (log n) S in 
(9) is only caused by Theorem 2.) 

To prove (12) we use Lemma 2(i). We proceed in the same way as Babu, 
Ghosh and Singh in the proof of Lemma 3 [1]. So we adopt their notation and 
only indicate the changes to be made. 

We set 
, _  (n)__EX(n) X i - :  Xi  i ,  

y = 12(c + 1) c '-a t-1 n-  1/2 

4" = r I {~  < a/y}. 

Since ~ X' i<n 3/2 we can assume that t < n  and so we can replace [1] (3.5) by 
i=1 

P { U *  > t n  1/2} <= exp (-- (2c +2) log n)E exp (z U*) 
k 

< n-C~2 t - c -  2 n-~/2 I ]  st (use [ 1], Lemma 2) 
j = l  

where 

and 
z: = z(n, t )=(2c  +2) t -1 n -1/2 log n 

sj." = 2 exp ((c'/6) log n) rp (p) + E exp (z ~*). 

Obviously the first summand of s t is smaller than D k -1, and the second is 
according to Lemma 4 bounded by 

P{I~jl > 1/y} +E(I  {l~il < 1/y} exp (z~j)) 
<=yZC+ Z E l ~ j l z c +  2 + 1 + z Z E ~ / 2  + El~jl2+C'y 2+c' exp(Zz/y). 

Here the first and the last summand are bounded by D k-1. 
Since t 2 > d log n we have 

z 2 < (D/d) n - 1 log n 
yielding 

Z 2 E ~2 ~ (D/d) k - 1  log k. 

Therefore (use x" < exp (n(x - 1))) 

k 

]7I sa<(1 + D k  -1 +(D/d) k -1 logk)k<kD/e<DnC/2 
j=l 

if d is chosen large enough. 
Now we have 

P { U* > tn 1/2} < Dn c/2 t c-2 

and this yields the assertion like in [1]. 
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Combining Theorem 1 and Theorem 3 we get the following result (cf. [6], 
(2.4), (2.5) and [,16], Theorem 4) 

Theorem 4. Let the assumptions of Theorem 3 be fulfilled for some s > 3. 
Then for all t e N ,  n > l  

P X i < ~ . t  - ~ ( t )  <=Dn-1/2(l+ltl)-~(logn) 1+~'/2 
i 

where s '=s  if s>3  and s ' = s + l  / f s = 3 .  

3. Random Summation 

We are now ready to prove two theorems about the speed of convergence in 
the random central limit theorem for (p-mixing processes. The only result in 
this direction is due to B.L.S. Prakasa Rao [-12]. His technique is different 
from ours and the order of convergence he reaches is far from the order in the 
independent case. 

First we give a (p-mixing version of a theorem of Landers and Rogge [-9]. 
Their result gives the exact rate of convergence under independence (see [-8]). 
Examining their proof, we see that one of the main tools, namely Lemma 7 of 
[-8], cannot be transferred to (p-mixing processes because the proof heavily uses 
independence and stationarity. (The last fact has not been noticed by Rychlik 
[-13] and so his proof is not correct in this place, see [13], p. 233.) 

i ~ Lemma 7 of [-8] allows to replace max X i by ~ X i in a certain 
situation. P<n<=q i = p + l  i = p + l  

This lemma can be avoided by retaining the maximum and using Serfling's 
[,15] inequality for maxima of sums in the proof of Landers' and Rogge~s 
Lemma 8 (see [8], p. 282, (*)). 

The order of approximation we obtain differs from the order in the inde- 
pendent case only by a logarithmic factor. If the assumptions are strengthened 
a little bit, the factor disappears. 

Theorem 5. Let the assumptions of 77~eorem 1 be fulfilled. Let e,, n~N,  be a 
sequence with n -1 < e, < 1 and ~n ,~oo ~ O. 

Let ~,, n~N,  be positive integer valued random variables. Assume that ~ is a 
positive random variable independent of  ( X , ) , ~  so that one of the two following 
conditions is fulfilled. 

(i) P {z < Co/(n e,)} < D 6,, heN,  (13) 

for some constant c o >0 where g;n: =]/~,( l~ e,) a. 
(ii) There exists e>0  so that e,__>n -1+~, neN, and 

P{z<Co/(ne~+")} <Dg;n, n e N ,  (14) 

for some constant co>0 where 6 , : = ] / ~ .  
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Then 

Suppose further that for some c 1 > 0 

P{[zj(n'c)-ll>clG}<D6,, neN. 

sup P X~<otn~]t - <=DS,, 
t e n  i 

heN. 

Proof. Let n e N  be sufficiently large and teN.  In case (i) we set G:=[Co/e,] 
and in case (ii) ? , :=  [eo/e~ +~]. 

Therefore in either case 

In case (i) we have 

and in case (ii) 

Thus 

P{n'c <G} <Dc5 .. 

1/2 log (D/G) < D e. 1/2 [log GI 
g n  

e~l +~)/2 log 1 +~ 1/2 (D/G )<Den . 

7~ 1/2 log ?n < D 3n. 

Using Theorem 1 one gets, like in [9], p. 1021, 

f [nrl 
P [i~= l X i  ~ tT[n~J l;} - tl)(t) 

<=P{nZ<Tn}+ ~, DP{[nz]=l} l-1/21ogl<=DcSn. 
l=Tn 

J 
Set So--0, Sj= ~ Xi, jeN, 

i = 1  

(15) 

(16) 

(17) 

px=[x(1-cl  en)], qx=[X(l + q  e,)], x>0.  

(17) yields like in [9], the assertion, if it is shown that 

P{ rain Sj<O-tn~It}--P{ max S~<a[,,]t}_-<D@ 
Pn~ < j < qn~ Pn~ < J < qrtz 

This difference is bounded from above by 

oo 

P{nZ<?n}+ ~P{ rain Sj<a[xlt}-P { max Sj<Gtxlt}P*(nz)dx. 
7n Px<----J<qx Px<=J<q x 

For p<q, relR we have 

P{ min Sj<r}-P{  max Sj<r} =P{Sp<r<= max Sj} +P{  min Sj<r<Sp}. 
p~j<=q < "< p=J=q p~J<=q p<=j<=q 

Since we can replace X i by - X i  it apparently suffices to show for rclR, x=>?,, 
P: =Px,  q: = qx that 
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P{Sp<r< max Sj} <D(5,, 
p<=_j<=q 

where D does not depend on n, r, x. 
Set 

m : = [ - ( 2 2 )  -~ loge,], then (p(m)<D1/~%. 

Let k~N, t />0 to be specified later, fulfilling 

(2k+ 1)re<p~2. 
We now show 

(18) 

P {Sp < r < max S j} < D k ( 1 ~  § p - ~/2 (/~ _]_ log p)) § (D ( - log e,)3/2/1/3)k + 
p<j<=q 

where D is independent of t /and  k, too. 
Setting 

L j: =Sp_(j_ 1)m -Sp_jm, 

one obtains 

H." = max (S~-Sp), 
p<=j<=q 

(19) 

P{Sp<_r< max S j } < P { r - H < = S p < r }  
p<=j<=q 

2 k + l  

=<P{Igjl>~ for a l l j = l ,  ..., 2 k + l } +  ~ P{r-H<=Sp<r,  Igjl__<~} 
j = l  

< P  {IL2~+II>F/} + ~ P { r - q - H < S p - j m + S v - S p = ( j - 1 ) m < r + r l }  �9 
i = 0  j = l  

Using the (p-mixing property and Lemma 2(ii), the first probability can be 
bounded by 

k 

k(p(m)+ F[ P {IL2,+ ,I >~} <-_Dk l/7. +(D(-log ~n)~/2/~3) k + ~ 
i = 0  

Let je{1, ..., 2k+  1} and set Z:=Sp-Sv_( j_ , ) , , .  
According to (3) and (18) 

~2 j.~> D(p-jm)>=Dp. 

Since Sv_j, , is d/~'-Jm-measurable and (Z, H) is .Mpq (j_l)m+l-measurable we 
obtain, using Lemma 3 and Theorem 1, 

P { r - r i -  H < Sp_ jm + Z <r + rl} -(p(m) 

< S P { r - r t - h - z < S p _ j ~ , < r  +71- z } P , (Z ,H)  dz dh 

<=D(p - j m )  -1/2 log (p - j m )  

+ 5 I~b((r + r / -  Z)/av_jm ) -- ~b((r -- tl -- h - z)/a v j~)[ P * (Z, H) dz dh 

< D (p/2) - ,/z log p + (2 t/+ EH)/ap_ im 

< Dp-1/2(tl + log p + EH). 
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As E H < D ( q - p )  1/2 according to Lemma 2(iii) and ( q - p ) / p < D e ,  we get (19). 
Now we choose k and t/. 
In case (i) we set k=  [ - l o g e , ] .  Since 

(2k+l)m<=D(loge,) 2 and p>DTn>D/en, 

(18) is valid. 
Let r l :=cd/3(- loge,)  1/2 where e is chosen such that 

(D( - log gn)3/2/t]3) k + 1 ~ (Die) log ~. = e--log(o/~)= e~/z. 

Using (15) it is now easy to see that the bound in (19) has the order 
l ~ ,  (log e,) 2. 

In case (ii) we choose k e N  so large that 3(k+1)~>1 and set r/:=s~ -~/2. 
Then (18) is fulfilled and 

(D(_logen)3/2/tl3)k+i<=D(_loge,)3(k+l)/2 e,3(k + 1)e/2 _<Den1/2. 

Using this and (16), we see that (19) yields the desired order of convergence. 

Remark. a) If ~ is constant, the condition (13) respectively (14) is fulfilled, and 
in case (i) we obtain the order 

6,=lloge,[(l /~,+n-1/21ogn),  if we set ~,=[nr/2] .  

b) With the additional assumption sup IrXn][~= :M<oo  we obtain in case (i) 
n~N 

the order J/~,lloge, l if we set k = 0  and rl=clloge,  I where c is a constant so 

that raM<it. If z is furthermore constant, we obtain the order ]~nq-n -1/2 logn. 

In the following theorem a non uniform bound is derived, corresponding to 
another result of Landers and Rogge [10]. For the sake of brevity it is as- 
sumed that ~ is constant. It is not difficult to weaken this assumption like in 
the preceding theorem (cf. [7]). The moment condition required by Landers 
and Rogge is somewhat surprising. But it was shown by A. Klein [-7] that the 
theorem becomes wrong, if only the existence of lower moments is assumed. 

Theorem 6. Let Xn, n~N, be a (p-mixing sequence fulfilling (1), (4), (7) and 

supE]Xn]~+l<oo for some s>2.  
n~N 

Let ~,  nsN,  be a sequence with n-1=<gn<l and ~, n~ ~0. 

Set 6n:=(]/-~, + n -  i/2(log n) 1+~' + a~/2) Iloge, I where s '= s if s > 2  and s ' = s + l  
/f s=2.  

I f  e ,>n -1+~, heN,  for some e>0  also 6n:=l/~,  is allowed. 
Let "on, n~N, be positive integer valued random variables with 

P { [ z j ( n z ) - l l > t e , } < D 6 ,  t -s, n~N, t > t  o, 

for some constants r > 0, t o > 0. 
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Then for all n > l ,  t~lR 

P { ~ X i < t o t ~ l } - e b ( t )  <=DcS(l+,tt)-~(log(2+[t])) ~+1. (20) 

Proof. Define S. like before. Let  

p =p(n, t )=  [nz(1 - e ,  Itl)3 

q =q(n, t )=  [nz(1 + e ,  [t])] 

I . ( t )={keN:p<=k<=q}.  

With a view to the remark  after Theorem 5 we can assume that  Itl>_tl for 
some constant  t~ __> t o. Then  

Dne. Itl <= q - p < Dne,  Itl. (21) 

Set m:--=[2 -1 log(nl/2ltls)], then ~o(m)<Dn -1/2 Itl -~. 
According to (7) and L e m m a  2 we have D n < a 2 < D n .  

(i) Let  n > l ,  t~lR and t l < l t l < n  ~/(2~. 
First  we proceed like in the proof  of Theorem 1 in [10] (2)-(6). Instead of 
Petrov's theorem we use Theorem 4. Like in the proof  of Theorem 5 we see 
that  it suffices to estimate 

R: =P{Sp<_t~[.~]<= max S~}. 
p<=j<=q 

Since ]t[ <n ~/(2~) we have 
m < D log n. (22) 

We now consider two cases. 

Case 1. Itl ~ e n  (s-1)/s. 

Let  0 < t  7 <It[ o-t~/6, kEN to be specified later. 
We show that  there exists a constant  D independent  of n, t, t/, k with 

R < O k(n - 1/2 (log n) 1 +(s'+ 1)/2 + ~ + kS/2/nl/2 

+ ~/([ t[ l/n))/[ t [ S + (D ((log n)l/a/rl)s) k + 1. 

For  H:  = max ( S j - S v )  we have according to L e m m a  2(iii) and (21) 
p<j<=q 

P (H > It[ %~/6} < D (q - p)S/Z/(it I at~)~ < D ] ~ / I  tl ~ 

since It[ < e2 (s- 1)/~ 
If p < ( 2 k +  1)m we have by L e m m a  2(ii) and (22) 

P {ISpl>lti aE,~/2} < DpS/2/(It I a~,~) ~ < O kS/Z/(l t] ~ nl/2). 

For  t < 0 this yields (23). 
For  t > 0  

R <= P {ISpl > t aE.~/2} + P {H >= t a[,~j/2}. 

(23) 

(24) 

(25) 
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Then (23) follows from (24) and (25). 
Let  p >(2k + l)m. 
Setting Lj: = Sp _(j_ 1).~ - Sp -jm one obtains 

2k+l  

+ ~ P{ ta[n~l -H-r l<Sp_i ,n+Sp-Sp_( i_ l ) , .< ta~ .~+r l} .  (26) 
j = l  

Like in the foregoing proof  we can bound  the first probabil i ty by Dkn -1/2 I t l - '  
+ (D ((log n)l/2/~)s) k+ 1. 

L e t j s { 1 , . . . , 2 k + l } , Z : = S p - S p  (j-1)~ 

Fn(t): = {co: H(CO)> It[ a[~l/6 or [Z(co)[ => [tl 0.[~1/6} 

hl(co)==ta[.~l-U(co)-rl-Z(co),  h2(o):=ta[. , l+rl-Z(co) .  

For  conF.(t) c (the complement  of F.(t)) 

]hl(co)l>ltl0.[.~/2 , Ih2(co)l>ltlaE.,l/2. (27) 

Thus in view of L e m m a  3 and Theorem 4 the j - th  summand  in (26) is bounded  
by 

(p(m)+P(F.(t))+ ~ P{hl(co)<Sp_jm<=h2(co)} Pdco 
F n ( t )  c 

< Dn -1/2 [tl-~§ 

+ D (p - j m )  - 1/2 ([t[ 0.[~,]/0.p -~m)-S- * (log (p --jm)) 1 + (~' + 1)/2 

+ ~ [~(h2(o)/0.p-jm)- ~(hi(co)/0.v-2m) Pdco. 
F n ( t )  e 

It is easy to bound  the first three summands  here (use (24)). Now we estimate 
the integral. According to (27) the integrand is bounded  by 

D ((h 2 (co) - h 1 (co))/0.p_ j~) 
�9 max {exp ( - h I (co)2/(2 o .2 -jm)), exp ( -- h 2 (o))2/(2 0.2_jm))} 

< D ((h 2 ((2)) - h 1 (co))/0.v-J~)(0.v-J m/([t[ a[,,~] ))s+ 1 

<= D(rl + H (co))/([ t] ~+ 1 hi/2).  

By using L e m m a  2(iii) and (21) the proof  of (23) is accomplished. 
(23) yields the desired bound  if we set k : = [ - l o g e , ] ,  ll-'=~']t[ logn  where 7 

is chosen so that  O<7<=0.[,~]/(61ogn) for all n > l .  If ~,>=Dn -~+~, n~N,  we set 
r/ :=Ta[~j[t]  with 0<7<_a~,71~/6, n~N,  and choose k ~ N  so large that  s(k 
+ l ) e > l ,  

Case 2. [t] >e;(s-~/~. 

Using this inequality, Theorem 4, L e m m a  2 of Feller [51, p. 175 and the 
fact that  q =< D n [tl _-< D n 1 + 1/(2s) we obtain for all j -< q 
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P {ISjl ~ It] %~1/8} ~ 2(1 - r at.~/(8 aa))) 
+ Dj-1/2(logj)* +(~" + l)/2(It I at.~l/8a j)) -~-1 

( ~j ]2s ]~s(l+l/(2s) ,  

_-<D \[t[ aE,~l/ +D(l~ ([t[]/n)~+l 

<=D(~t~n)2S+D/It] ~+1 

<=D /Itl s. 

For t <0  (28) implies directly 

If t > 0  we set 

Then 

R <=DI/%Jltl s. 

Ak : ={co: S j(co) < t a[.q, p <=j < k, Sk >= t a[.~l }. 

q - 1  

R<P{taE.,j /2<S q} + ~ P(AkC~{Sq<tat.,~/2}). 
k=p 

(28) 

(28) yields the estimation for the first term. 
Set d=d(k)=min fin, q-k) .  Then the second is bounded by 

q 1 

P (A k ~ {S k - Sq > t r 
k=p 

<P {Sk+d--Sk< --ta~,~j4} + ~ P(AkC~{Sk+e--Sq>taEn~l/4}). 
k=p 

The first term can be estimated by using Lemma 2(ii), (21) and (22). The sec- 
ond is smaller than 

q-1 
q)(m)P(Ak)+P(Ak)P{Sq--Sk+~< -ta~,~j4} <D]/~j[t] s by (28). 

k=p 

(ii) Let n > l ,  t~]R with ]tl>=tl>=2, {tl>=n 1/28. 
Then 

q(n, t) <nz + nz e~[tl + l=< Dn [t[ ~ D ltt 1+2~ (29) 

m<=V log It]. (30) 

W.l.o.g. we assume t > 0  and then proceed like Landers and Rogge [-10], p. 102, 
(21)-(23). Apparently it suffices to show 

P{ m a x  Sk>=tcr[n~] } ~ D n  -1/2 t-S(log t) ~+1 
p<k<q 

For keN, p < k < q  define d=d(k) and A k like in (i). 
Since in view of Lemma 2 and (29) 

P {[Sq -- Sk +~1 >= t%~1/4} <= D/ts/2 



136 E. Schneider 

we obtain (for t~ sufficiently large) 

P {Sk + d -- Sq < t aerial4 } > 1/2. 

Therefore  by (29), (30) 

q 
P { max S k > t aE.,l}/2 < ~ P(Ak) P {S k + d - Sq < t aE.~/4 } 

P<k<-q k=p 

q 

N ~ (p (m) P (Ag) -k P (A k c~ {S k + d - -  Sq  ~ t O'[n ~/4}) 
k=p 

q 

< ~o (m) + ~ P {S k - -  S k + d ~ t a[n,l/4} + P (A k c~ {S k - Sq < t a[,~l/2}) 
k=p 

< Dn - 1/2 t-~(log t) (~+ ~)/2 + p {S~ > ta[nq/2}. 

(29) implies 

ta[n~l/(2aq)>=Dt ] /n /] /q> D]/-t >=D]/ql/(1 +2s) 

This shows that Theorem 3 is applicable. It yields with (29) and Feller [5], 
p. 175 

P {Sq >= t atn~]/2 } =< O q 1 -(~ + 1)/2 (t atn~]/(2 aq))-s - 1 (log q)~ + 1 

+O(aq/(tat,~l)) 4~<=Dn 1/2 t-S(log t),+,. 

Remark. If in Theorem 6 s > 3 we can apply in its proof  Theorem 4 to s instead 
of s + 1. Then  we can replace (log n) 1 +(~+1)/2 by (log n) 1 +~/2 in the definition of 

bn" 

4. Lemmas 

Lem ma  1. Let ~1,  ~2  be sub-a-algebras of J3 and c > 0 .  

I f  IP(B 1 c~B2)-P(B1)  P(B2) I < cP(B1) for all BiENi, i = 1, 2 then for all q > 1, 
r 2 > 1 with r~ -1 +r21 = 1, f i e 5 ~  (f2, Ni, P), i= 1, 2, 

I E f l f 2 - E f l E f 2 l  <2cl/r'  IlL Ilr, Ilf2ll~2- 

Proof. See [2], p. 170, Lemma  1. 

Lem ma  2. Let Xn, h e N ,  be a (p-mixing sequence. Assume that 

E X  n =0,  n e N  

~ ~o(n) 1/2 < oo 
,=1 

s u p E l X , ] S < N  for some s > 2  and N > I .  
n~N 

For d> 1 set )1//: = Ya, i: = X i  l{Ixd__<d}. 
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(i) Then for any real number v> 2 there exists a constant C(v)>0 depending 
only on (p, v, s and N such that for all positive integers n < d  2 

~1 ~ v<__ E i C(v) (n v/2 + n d  ~-s) 

(ii) For all v~[2, s], n~N 

n v 

E i~=a Xi <2C(v)n~/2" 

(iii) For any vE[2, s] there exists D(v)>0 such that for all nEN, j~Nu{0}  

j+l 1 Xi ~<D(v) E max [ /~+ n v/2. 
l < l < n  [ ' = j  

Notice that the constant C(v) does not alter, if we turn to a subsequence of X , ,  
n~N. 

Proof (i) see [1], Lemma 1. 

(ii) follows from (i). 
(iii) follows from (ii) on account of [15] Corollary B1. 

Lemma 3. Let X i be a random variable with values in a measurable space 
(~21, ~i), i = 1, 2, and 0 <_ c < 1. 

I f  for all B I ~ I ,  B 2 ~  2 

IP * (X 1, X2)(B 1 • B2)-  (P * Xl) x (P �9 X2)(B 1 • B2)] < c e  �9 XI(B1) 
then 

[P �9 (Xl ,  X 2 ) ( D ) - ( P ,  Xl) X (P ,  X2)(D)I <e  

for every D ~  x ~2.  

Proof See [3] (3.5). 

The last lemma is obtained by evaluation of the constant b in Michel's 
Lemma 3 [11]. 

Lemma 4. Let X be a random variable with E X = O  and ElXI2+c<oo for some 
c~(0, 1]. Then for all z>0,  h>  IlXl[2 

E(I{IXl <h} exp (zX))< 1 +z2EX2/2+ElXl2+Ch -2-c  exp (2hz). 
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