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1. Introduction

Let X,, nelN, be a sequence of random variables on a probability space
(2, B, P). The o-algebra generated by X, with a<n<b is denoted by .4°.

Suppose there exists a sequence @(k), keN, of real numbers with 1= ¢(k) [0
for k— co such that

|P(E;nE5)—P(E,) P(E))| (k) P(E))

for all [ keN, E e, E,edy,, then the sequence X,, nelN, is called -
mixing.

In this paper uniform and non-uniform bounds in the random central limit
theorem for ¢-mixing processes are derived. The bounds are very near to those
given by Landers and Rogge [9, 10] in the independent case. Of course the
results are based on corresponding theorems for non-random summation.
These theorems are obtained by modifying and developing methods of Tiho-
mirov {16], Erickson [4], Babu, Ghosh and Singh [1].

The following notations are used:

If X is a random variable the measure induced by X is denoted by P = X.

Put ¢2:=Var ) X, and for xeR
=1

1=

[x]:=max (1, max {nelN:n=<x}),
) =Qm R exp(=x2),  B(= | plr)dr.

Throughout the paper D denotes a generic constant.

*  Some results presented in this paper are a part of the author’s doctoral dissertation, written at
the University of Cologne
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2. Non-Random Summation

For stationary processes the following theorem has been proved by AN. Tiho-
mirov ([16], Theorem 3). Therefore, we have only to show how in Tihomirov’s
paper stationarity can be substituted by our weaker conditions.

Theorem 1. Let X, nelN, be a ¢p-mixing sequence with

EX,=0, neN 1)
supE|X,|> <o (2)
nelN
liminfe?/n>0 3
nelN
omM=Dexp(—4in), nelN, for some 1>0. 4)

Then for all n>1

sup <Dn~"?logn. (5)

telR

P{ZXi<0nt}—<1§(t)
i=1
Proof. Using our assumptions (2} and (3) and Lemma 2 we can renounce sta-
tionarity in Tihomirov’s proof. Difficulties arise only in the proof of
Tihomirov’s Lemma 3.2. (Like in [16] we first assume m-dependence.)

We show now how we can avoid this Lemma. We adopt the notation of
Tihomirov. Lemma 3.2 and 3.3 are used only to give a bound for

n r—1 n r—1
=| X EX [T &7 5= 3 EX; [ & A0
j=1 =1 j=1 =1

But thls can be achieved directly without using stationarity. If we set a,

=EX, H £ we have by [17] Lemma 3.1
t|D r=1
aj<D (Haj>
and therefore "

L=|Eexp(itS,) ) a;n"

j=1

<|Eexp(itS,) Z a;En{”| +

<DI7, 0 ('”D‘F)' 1

Eexp(itS,) Z n\" —En\")

W+E

Here the second summand is bounded by (cf. [16], p. 806, 807)

(Ji Y. cov(a; ny),ang))) <D(IZID]/_)r 11/_

j=1 |p—jl=3rm

Y a;(n" —En?)|.

rm.

h
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Like in [16] it is easy to deduce the corresponding bound for ¢-mixing vari-
ables.
The next theorem is a specification of a result of Erickson [4].

Theorem 2. Let X,, neN, be a @-mixing sequence fulfilling (1) and (4). Further
let

supE|X <o for some real s>2, (6)
nelN
inf 62/n>0. (7
nelN

Set X{("=X,I{|X,|<1/n}.
Then for all n>1, teR

%P{_i Xi<ant} —P{i X"<o, z}

i=1 i=1

<Dn' (1 +1t])~*(logn)" (&)

Erickson only gives a proof for the d-dependent case. [t is not very difficult to
extend his proof, if the following hints are observed. (cf. [4], Sect. 6).
Instead of [4] (2.2) set

K(x):=1—=P(U>x, nBj).

The terms 7,, T,, Ty in the bound given in [4] Proposition 3.1 disappear, if
the last equation in the proof of the proposition is replaced by

Il I(dy) =18 o[ I{dy ) =s " I(dy_ ;) I(B) +(sl™ — sy, [™) I(d_)-

This shortens the proof a great deal.

Use our Lemma 2(i) instead of Erickson’s Proposition 5.2 and apply Lem-
ma 1 where Erickson uses the d-dependence. A detailed proof of Theorem 2
can be found in [14].

With the aid of Theorem 2 we obtain a nonuniform bound in the central
fimit theorem by altering a proof of Babu, Ghosh, Singh [1].

Theorem 3. Let X,, nelN, be a @p-mixing sequence satisfying (1), (4), (6) and (7).
Then there exists a constant d >0 so that for all n>1, teR, with t>>d logn

!P{Z Xi<ant}—<15(t) <Dn' =2 [t|%(logn)". )
i=1
Proof. Let c=s—2, ¢ =min(l, c¢) and define X like in Theorem 2. Assume
w.lo.g. that t>0.

We have by [5], p. 175, Lemma 2

P(—1)<Dn~2t=27¢ if t*>(c+1)logn (10)
and by (1) and (7)

Y EX{/o,

i=1

<Dn—°2, (11)
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Using these inequalities, Theorem 2 and (7) we see that it suffices to show
P{Z(XE")—EX%"))_Z_Btn”Z}gDn‘”Zt‘z‘c (12)
i=1

for all n>1, t*>d logn where d>1 can be chosen later. (The factor (logn)® in
(9) 1s only caused by Theorem 2.)

To prove (12) we use Lemma 2(i). We proceed in the same way as Babu,
Ghosh and Singh in the proof of Lemma 3 [1]. So we adopt their notation and
only indicate the changes to be made.

We set

X;=X{"—EX,
y=12(c+ 1)1t~ 1n=12
57=6j1{6j<1/y}'

Since Y X;<n*? we can assume that t<n and so we can replace [1] (3.5) by
i=1
P{U*>tn'?} <exp(—(2c+2)logn) E exp(zU¥)
k
Snmel2gmem2p=el? ]_[ s; (use [1], Lemma 2)

=1
where ’
zi=z(n,t)=2c+2)t " 'n=*logn
and
s;:=2exp((c'/6) logn) ¢(p)+ E exp(zLF).

. is smaller than Dk~1, and the second is

Obviously the first summand of s;

according to Lemma 4 bounded by

P{g |z 1y} +EU (1€ <1/v} exp(zE,)
<YFRE|E 2 14 22 EE 24 EIE P y2 exp(22/y).

Here the first and the last summand are bounded by Dk~*.
Since t?=d logn we have

Z2<(D/d)n~tlogn
yielding
z? EE2Z(D/d) k=" logk.

Therefore (use x" Zexp (n(x—1)))
k
[1s;=(0+Dk~*+(D/d) k=" log k) kP < Dn?
j=1

if d is chosen large enough.
Now we have

P{U*>tn*?y<Dn/2t=~2

and this yields the assertion like in [1].
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Combining Theorem 1 and Theorem 3 we get the following result (cf. [6],
{2.4), (2.5) and [16], Theorem 4)

Theorem 4. Let the assumptions of Theorem 3 be fulfilled for some s = 3.
Then for all teR, n>1

11’{ n Xi<<fnt} — @) =D~ 2 (1 +t])~*(logn)' T/
i=1

where s'=sif s>3 and s’ =s+1 if s=3.

3. Random Summation

We are now ready to prove two theorems about the speed of convergence in
the random central limit theorem for @-mixing processes. The only result in
this direction is due to B.L.S. Prakasa Rao [12]. His technique is different
from ours and the order of convergence he reaches is far from the order in the
independent case.

First we give a @-mixing version of a theorem of Landers and Rogge [9].
Their result gives the exact rate of convergence under independence (see [8]).
Examining their proof, we see that one of the main tools, namely Lemma 7 of
[8], cannot be transferred to ¢-mixing processes because the proof heavily uses
independence and stationarity. (The last fact has not been noticed by Rychlik
[13] and so his proof is not correct in this place, see [13], p. 233.)

q

Lemma 7 of [8] allows to replace max ) X, by ) X;in a certain
situation. p<ngqgi=p+1 i=pt1

This lemma can be avoided by retaining the maximum and using Serfling’s
[157 inequality for maxima of sums in the proof of Landers’ and Rogge’s
Lemma 8 (see [8], p. 282, (x)).

The order of approximation we obtain differs from the order in the inde-
pendent case only by a logarithmic factor. If the assumptions are strengthened
a little bit, the factor disappears.

Theorem 5. Let the assumptions of Theorem 1 be fulfilled. Let ¢,, neN, be a
sequence with n™' <e, <1 and ¢,——0.

Let 1,, nelN, be positive integer valued random variables. Assume that T is a
positive random variable independent of (X ).y 50 that one of the two following
conditions is fulfilled.

{1) Plr<cy/lne)} <D6,, neN, (13)

fgr some constant ¢, >0 where 6,:=7/¢, (log ¢,)*.
(ii) There exists ¢>0 so that e,2n~'"* neN, and

P{t<cyf(nei*9}y<D6,, neNlN, (14)

for some constant c,>0 where ,: =]/6_n.
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Suppose further that for some ¢, >0

P{lt /(nt)—1|>c, ¢, <D5,, nelN.
Then

sup <DJ,, nelN.

telR

P{ Xl.<0'[m]t}—d§(t)
i=1

i

Proof. Let neN be sufficiently large and reR. In case (i) we set y,:=[cy/e,]
and in case (ii) y,:=[co/el T*].

Therefore in either case

P{nt<y,} D6,
In case (i) we have
s/ log(D/fe,) <DeM?|loge,| (15)
and in case (ii)
el 92 log(D/e; T < De. (16)

Thus
y, 1?logy,<D3,.

Using Theorem 1 one gets, like in [9], p. 1021,

[n]
P{ Xi<<7[m]t}—@(t)

= . (17
<P{nt<y,}+ Y DP{[nt]=I}1""*1ogl<D5é,.

I=y,

j
Set §,=0, S;,= ) X,, jeN,
=1

po=[x(1=cye)),  g,=[x(+cye)], x>0
(17) yields like in [9], the assertion, if it is shown that

P{ min §;<op4t}—P{ max S;<o,,i}<DJ,.

Prnc=JSqne PrcSJSqne
This difference is bounded from above by
0
P{nt<y}+ | P{ min S;<opyt} —P{ max S;<opt}Px(n1)dx.
yn  PxSJjSqx Px=jS2qx

For p<yq, relR we have

P{min §;<r}~P{max S;<r}=P{S,<r< max §;} + P{ min §;<r=<S,}.
pP=jsq pLisq psisq p=js4q

Since we can replace X; by — X it apparently suffices to show for reR, x=7y,,
p:=p,, q:=g, that
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P{S,sr< max §;} <Dg,,
pP=jsq
where D does not depend on n, 7, x.
Set

mi=[—(24)"'loge,], then @(m)=DY/z,.
Let keN, n>0 to be specified later, fulfilling.

(2k+1)ymZp/2. (18)
We now show

P{S,<r< max S;} SDk()/e, +p~"2(n+logp))+(D(—loge,)*2/n*f 1 (19)

pEjsq
where D is independent of # and k, too.

Setting
L.:=S S H:= max (§;-5)),

Jj p~(j—1)ym~ Pp—jm> ‘
PEjZq

one obtains

P{Spéréprilj‘giqu}éP{r—H§Sp§r}
o 2k+1

SP{L|>nforallj=1,...,2k+1} + Z P{r—H=S,<r|L|<n}

Jj=
2k+1

<P(ﬂ{‘L21+1l>”})+ Z P{7_77—H<Sp jm Sp SP G- 1)m<r+7’[}

Jj=

Using the ¢-mixing property and Lemma 2(ii), the first probability can be
bounded by

k
ko(m)+ T] P{ILyiy | >0} DKV e, +(D(—loge,) 2 /n ).
i=0
Let je{l, ..., 2k+1} and set Z:=§, —S
According to (3) and (18)

Since S,_j,, is .#{~"-measurable and (Z, H) is M} _;_,)n -measurable we

obtain, using Lemma 3 and Theorem 1,

p—(j—1ym*

Plr—n—HZS, ;,+Z=r+nt—p(m)
§fP{r—n—h——Z§Sp_jm§r+n—z}P*(Z,H)dzdh
éD(P—Jm)‘”ZIOg(P—jm)

+j|¢(r+n 26 y_ i) —B(r —n—h—2)c,_;,)| P+(Z,H)dzdh
=D(p/2)~ l’210gp+(271+EH)/
é p~Y?(n+logp+EH).

Op_jm
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As EH <D(g~p)"/? according to Lemma 2(iii) and (g —p)/p<De, we get (19).
Now we choose &k and #.
In case (i) we set k=[ —loge,]. Since

(2k+1)m<D(loge,)* and p=Dy,=D/s,,
(18) is valid.
Let n:=0'*(—loge,)'/* where « is chosen such that

(D( —log 8’1)1’:/2/7,13)k+1 é(D/a)—loganzsn—lqg(D/u):8'1'/2’

Using (15) it is now easy to see that the bound in (19) has the order

Ve, (oge)

In case (ii) we choose k€N so large that 3(k+1)e>1 and set n:=¢
Then (18) is fulfilled and

—&/2
” .

(D(——]Og Sn)3/2/1/l3)k+1 éD(—log En)3(k+ 1)/2 82(k+1)5/2§Dsi/2.

Using this and (16), we see that (19) yields the desired order of convergence.

Remark. a) If 7 is constant, the condition (13) respectively (14) is fulfilled, and
in case (i) we obtain the order

5,=|loge,|(1/e,+n~"*logn), if we set y,=[n7/2].

b) With the additional assumption sup | X,||,,=:M <o we obtain in case (i)
nelN

the order ]/gj]ogsnj if we set k=0 and n=clloge,] where ¢ is a constant so
that mM <. If © is furthermore constant, we obtain the order 1/§+n—1/7~ logn.

In the following theorem a non uniform bound is derived, corresponding to
another result of Landers and Rogge [10]. For the sake of brevity it is as-
sumed that 7 is constant. It is not difficult to weaken this assumption like in
the preceding theorem (cf. [7]). The moment condition required by Landers
and Rogge is somewhat surprising. But it was shown by A.Klein [7] that the
theorem becomes wrong, if only the existence of lower moments is assumed.

Theorem 6. Let X,, nelN, be a ¢-mixing sequence fulfilling (1), (4), (7) and

sup E|X,|*T1<o0  for some s=2.
nelN

Let ¢,, neN, be a sequence with n='<¢, <1 and by 0.
Set §,:=(1/e,+n~2(logn) ¥+ 1) |log¢,| where s'=s if s>2 and §'=s+1
if s=2.
If &,2n=**¢, neN, for some >0 also 3,:=1/¢, is allowed.
Let t,, neN, be positive integer valued random variables with
P{lr/(nt)—1]|>te,} DS, t~5 nelN, t=t,,

Jor some constants t>0, t,>0.
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Then for all n>1, teR

P{ Yy Xl.<ta[m}} — (1)
i=1

Proof. Define S, like before. Let

<Ds,(1+]t)~*(log (2 +[thy . (20)

p=p(m t)=[nt(l—e,lt])]
q=q(m t)=[nt(1+e,t])]
I,(t)={keN:p=k=qj.

With a view to the remark after Theorem 5 we can assume that [¢|=¢, for
some constant ¢, 2t,. Then

Dne,|t|<g—p=Dne,|t|. (21)

Set m:=[A""log(n'/?|t])], then @(m)<Dn~1/?|t| =5

According to (7) and Lemma 2 we have Dn<¢2<Dn.
(i) Let n>1, teR and ¢, S[t| Sn'/39,
First we proceed like in the proof of Theorem 1 in [10] (2)-(6). Instead of
Petrov’s theorem we use Theorem 4. Like in the proof of Theorem 5 we see
that it suffices to estimate

R:=P{S,stop,,= max S;}.
pP=j=q
Since |t| £n*/?9 we have

mZD logn. (22)
We now consider two cases. ‘
Case 1. |t| g7 5— s,
Let 0<n £lt| 0y,,,4/6, keN to be specified later.

We show that there exists a constant D independent of n, t, 5, k with

R §Dk(n‘1/2(log n)l (s +1)/2 +]/g+ks/2/n”2

/(1Y m)/[tl* + (D ((log ) 2 /my e+ (23)
For H:= max (§;—S,) we have according to Lemma 2(iii) and (21)
pP=jsq
P{H 2 t] 01,,/6} <D(q—p)"*/(t] 0,)' < DV e, 1 (24)

since [t| gV,
If p<(2k+1)m we have by Lemma 2(ii) and (22)

P{S | Z1t] 04,0/2} D P2 /(|t] 01)* S DR /(1 1 12). (25)

For ¢ <0 this yields (23).
For t>0
R=P{|S,|ztoy,/2} + P{H Zt0y,,/2}.
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Then (23) follows from (24) and (25).
Let p>Qk+1)m.
Setting L;: =S

oG- 1ym—Sp_ jm ONE Obtains

Rgp(bo {|L2,-+1|>77})

2k+1
+ Y Pltoy,—H-n<S
j=1

J=

+S, -8, yoiymStopg ). (26)

p—jm 4

Like in the foregoing proof we can bound the first probability by Dkn=*/2|¢|~*
+(D((logn)*2 )+,
Let je{l, ..., 2k+1}, Z:=§,—~S

p—({J—-1)m
F,(t):={w: H(w)=|t| O'[nr]/6 or |Z(w)| 2t O'[nr]/6}
hl(CO): :to-[nr] - H(C!)) - ’1 "“Z(CO), hl(w) : :to-[nt] + ’/I —Z(CL))
For weF,(t)° (the complement of F,(t))
|h (@) 21t 0,/2,  [hy(@) 21t 0p/2. 27)

Thus in view of Lemma 3 and Theorem 4 the j-th summand in (26) is bounded
by

n<hy(@)} Pdo

—=J

o(m)+P(F,(1))+ S P{hl(w)éSp

Fn()©

SDn Y2175+ P(F,(1))
+D(p—jm)—1/2(|t|g[nr]/gp_jm)/s—l(log(p_jm))l+(s’+1)/2
+ [ |@(hy(w)/o, ) — 2 (@)o,_;,) Pdo.

Fu(t)®

p—Jjm p—jm

It is easy to bound the first three summands here (use (24)). Now we estimate
the integral. According to (27) the integrand is bounded by

D((hZ(U‘))_hl(w))/Gp—jm)

-max {exp (—h, (0)*/Q20} ;) exp (~hy (@) /(20]_ )}
=D((h,(w) —h1(w))/0'p_jm) (Gp—jm/(|t[ U[nz]))s+l
<D(n+H(w)/(tl**! n'’?).

By using Lemma 2(iii) and (21) the proof of (23) is accomplished.

(23) yields the desired bound if we set k:=[—loge,], n:=7lt| logn where y
is chosen so that 0<y§a[m]/(6 logn) for all n>1. If sngDn‘”"‘, nelN, we set
n:=yof,ltl with 0<y=o[ /6, neN, and choose keN so large that s(k
+1)e>1.

Case 2. |t|Ze, V5,

Using this inequality, Theorem 4, Lemma 2 of Feller [5], p. 175 and the
fact that g<Dn|t|<Dn' 129 we obtain for all j<gq
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P{IS;|z 1t 01,,1/8} =2(1 — @(t] 6,8 7))
+Dj 2 (log )+ V(1] 0y, /86 ))
D a; 2s il 1+(s/+1),’2ﬂ5(1+1/(25))
(Itla[m]) +Dilogn) ([tu/ﬁ)sﬂ
v‘i 2s
D D s+1
(itlﬁ) o
<DV/e, Il

For t <0 (28) implies directly

lIA

lIA

REDVe,/ltl"
Ift>0 we set
A ={w: S(®)<top,, pSj<k, S =toy,).
Then

g—1
R=P{to, 28} + ) P(A,n{S,<to,/2}).
k=p
(28) yields the estimation for the first term.
Set d =d(k)=min (m, g—k). Then the second is bounded by

g—1

Z P(Akm{Sk_Sq >t6[nr]/2})

k=p
g—1 q-—-1
=P (kU {Sksa—8< ~“t‘f"[m]/‘l})‘i‘ D P(An{Sysg— S, >107,/4}).
=p k=p

The first term can be estimated by using Lemma 2(ii), (21) and (22). The sec-
ond is smaller than

g—1

Y @(m) P(A)+P(A) P{S,~ S, u< —to, /AL <DV ltF by (29).

k=p

(i) Let n>1, teR with |¢|=1, 22, [t 2n"/2
Then
gn, t)ySnt+nte, |t| +1<Dnjt|<Dt] 2 (29

m=D loglt]. (30)

W.lo.g we assume t>0 and then proceed like Landers and Rogge [10], p. 102,
(21)~(23). Apparently it suffices to show

P{max S, 2to,}<Dn~ "2t (logt)*'.
pP=k=gq

For keN, p<k=gq define d=d(k) and 4, like in (i).
Since in view of Lemma 2 and (29)

P{IS, Sy, dl Zt0p,/4} <D/t
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we obtain (for ¢, sufficiently large)
P{Sira=S,Sto, /4 21/2.
Therefore by (29), (30)
q
P{max §,210,4}/25 3. P(4) P{Si= S5, S10,0/4)
pskzq K—p

=
k

@m) P(A) + P4 {8y g =S, 2L01,/4})

[t

g
Som)+ Y P{S, =S 4 2t00,/4 + P(4,0 {8, ~5,St0y,4/2))

k=p
<Dn~ 21 7%(log 1)+ V2 4+ P{S, 2 t0y,,/2}.

(29) implies
10,/(20) 2Dt/ nf)/q= DY/ t= DY/ q 11 +29),

This shows that Theorem 3 is applicable. It yields with (29) and Feller [5],
p- 175

P{S,2t01,4/2SDg' V2 (tay, (20,) 7~ (log g)** !
+D(o /(toy, ) <Dn 2 *(logty ™.

Remark. If in Theorem 6 s>3 we can apply in its proof Theorem 4 to s instead
of s+1. Then we can replace (logn)* ***1/2 by (logn)' **/* in the definition of
0

ne

4. Lemmas

Lemma 1. Let 4., #, be sub-c-algebras of # and ¢>0.
If |P(B,nB,)—P(B,)P(B,)|<cP(B,) for all Bie®,, i=1,2 then for all r,>1,
r,>1withr ' +r7l =1, fie? (Q %, P),i=1,2,
|Ef1f2_Ef1Efz|§201/“ ”fl”n Hlelrz-
Proof. See [2], p. 170, Lemma 1.

Lemma 2. Let X, nelN, be a ¢-mixing sequence. Assume that

EX =0, nelN

n

Y pn)'r<oo
n=1

SupE|X |’<N  for some s>2 and N>1.

nelN

Ford>1set Y=Y, =X 1,4, <q-
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(i) Then for any real number v=2 there exists a constant C(v)>0 depending
only on @, v, s and N such that for all positive integers n <d?

n

2 Y

i=1

(i) For all ve[2,s], neN

E S CW)(n** +nd° =)

E

Xi‘ <2C(v)n*
i=1

1=

(ili) For any ve[2,s] there exists D(v) >0 such that for all nelN, jeINuU {0}
j+l
E max } Y X,

1gisn \i=j+1

v

<D(v)n"2.

Notice that the constant C(v) does not alter, if we turn to a subsequence of X,
nelN.
Proof. (i) see [1], Lemma 1.

(ii) follows from (i).

(iii) follows from (ii) on account of [15] Corollary B1.
Lemma 3. Let X, be a random variable with values in a measurable space
(Q,%),i=1,2,and 02c<1. ‘

If for all B4, B,c4%,

[P (X, X5)(By x By)—(P# X ) x(PxX,)(B; xB,)|=cPxX,(B,)
then
P (X, X)(D)— (P X ) x (P X)) (D) S

Jor every De B, x B,.
Proof. See [3] (3.5).

The last lemma is obtained by evaluation of the constant b in Michel’s
Lemma3 [11].

Lemma 4. Let X be a random variable with EX =0 and E|X|*T° < o0 for some
ce(0, 1]. Then for all z>0, h= | X]|,

E(I{|X|sh} exp(zX)S1+22EX?2+E|X|**°h=>~“exp(2h2).
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