On the Speed of Convergence in the Random Central Limit Theorem for φ-Mixing Processes

E. Schneider*

Mathematisches Institut der Universität Köln, Weyertal 86-90, D-5000 Köln 41, Federal Republic of Germany

1. Introduction

Let $X_{n}, n \in \mathbb{N}$, be a sequence of random variables on a probability space (Ω, \mathscr{B}, P). The σ-algebra generated by X_{n} with $a \leqq n \leqq b$ is denoted by \mathscr{M}_{a}^{b}.

Suppose there exists a sequence $\varphi(k), k \in \mathbb{N}$, of real numbers with $1 \geqq \varphi(k) \downarrow 0$ for $k \rightarrow \infty$ such that

$$
\left|P\left(E_{1} \cap E_{2}\right)-P\left(E_{1}\right) P\left(E_{2}\right)\right| \leqq \varphi(k) P\left(E_{1}\right)
$$

for all $l, k \in \mathbb{N}, E_{1} \in \mathscr{M}_{1}^{l}, E_{2} \in \mathscr{A}_{l+k}^{\infty}$, then the sequence $X_{n}, n \in \mathbb{N}$, is called φ mixing.

In this paper uniform and non-uniform bounds in the random central limit theorem for φ-mixing processes are derived. The bounds are very near to those given by Landers and Rogge [9,10] in the independent case. Of course the results are based on corresponding theorems for non-random summation. These theorems are obtained by modifying and developing methods of Tihomirov [16], Erickson [4], Babu, Ghosh and Singh [1].

The following notations are used:
If X is a random variable the measure induced by X is denoted by $P * X$.

$$
\begin{aligned}
& \text { Put } \sigma_{n}^{2}:=\operatorname{Var} \sum_{i=1}^{n} X_{i}, \text { and for } x \in \mathbb{R} \\
& \qquad[x]:=\max (1, \max \{n \in \mathbb{N}: n \leqq x\}), \\
& \psi(x):=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right), \quad \Phi(x):=\int_{-\infty}^{x} \psi(t) d t .
\end{aligned}
$$

Throughout the paper D denotes a generic constant.

[^0]
2. Non-Random Summation

For stationary processes the following theorem has been proved by A.N. Tihomirov ([16], Theorem 3). Therefore, we have only to show how in Tihomirov's paper stationarity can be substituted by our weaker conditions.
Theorem 1. Let $X_{n}, n \in \mathbb{N}$, be a φ-mixing sequence with

$$
\begin{gather*}
E X_{n}=0, \quad n \in \mathbb{N} \tag{1}\\
\sup _{n \in \mathbb{N}} E\left|X_{n}\right|^{3}<\infty \tag{2}\\
\liminf _{n \in \mathbb{N}} \sigma_{n}^{2} / n>0 \tag{3}\\
\varphi(n) \leqq D \exp (-\lambda n), \quad n \in \mathbb{N}, \quad \text { for some } \lambda>0 . \tag{4}
\end{gather*}
$$

Then for all $n>1$

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\left|P\left\{\sum_{i=1}^{n} X_{i}<\sigma_{n} t\right\}-\Phi(t)\right| \leqq D n^{-1 / 2} \log n . \tag{5}
\end{equation*}
$$

Proof. Using our assumptions (2) and (3) and Lemma 2 we can renounce stationarity in Tihomirov's proof. Difficulties arise only in the proof of Tihomirov's Lemma 3.2. (Like in [16] we first assume m-dependence.)

We show now how we can avoid this Lemma. We adopt the notation of Tihomirov. Lemma 3.2 and 3.3 are used only to give a bound for

$$
L:=\left|\sum_{j=1}^{n} E X_{j} \prod_{l=1}^{r-1} \xi_{j}^{(l)} e^{i t S_{j}^{(r)}}-\sum_{j=1}^{n} E X_{j} \prod_{l=1}^{r-1} \xi_{j}^{(l)} f_{n}(t)\right|
$$

But this can be achieved directly without using stationarity. If we set a_{j} $=E X_{j} \prod_{l=1}^{r-1} \xi_{j}^{(l)}$ we have by [17] Lemma 3.1

$$
\left|a_{j}\right| \leqq D\left(\frac{|t| D \sqrt{m}}{\sigma_{n}}\right)^{r-1}
$$

and therefore

$$
\begin{aligned}
L & =\left|E \exp \left(i t S_{n}\right) \sum_{j=1}^{n} a_{j} \eta_{j}^{(r)}\right| \\
& \leqq\left|E \exp \left(i t S_{n}\right) \sum_{j=1}^{n} a_{j} E \eta_{j}^{(r)}\right|+\left|E \exp \left(i t S_{n}\right) \sum_{j=1}^{n} a_{j}\left(\eta_{j}^{(r)}-E \eta_{j}^{(r)}\right)\right| \\
& \leqq D\left|f_{n}(t)\right| \cdot n \cdot\left(\frac{|t| D \sqrt{m}}{\sigma_{n}}\right)^{r-1} \cdot\left|\frac{t}{\sigma_{n}}\right| \sqrt{r m}+E\left|\sum_{j=1}^{n} a_{j}\left(\eta_{j}^{(r)}-E \eta_{j}^{(r)}\right)\right|
\end{aligned}
$$

Here the second summand is bounded by (cf. [16], p. 806, 807)

$$
\left(\sum_{j=1}^{n} \sum_{|p-j| \leqq 3 r m} \operatorname{cov}\left(a_{j} \eta_{j}^{(r)}, a_{p} \eta_{p}^{(r)}\right)\right)^{1 / 2} \leqq D\left(\frac{|t| D \sqrt{m}}{\sigma_{n}}\right)^{r-1} \sqrt{n} \cdot\left|\frac{t}{\sigma_{n}}\right| r m
$$

Like in [16] it is easy to deduce the corresponding bound for φ-mixing variables.

The next theorem is a specification of a result of Erickson [4].
Theorem 2. Let $X_{n}, n \in \mathbb{N}$, be a φ-mixing sequence fulfilling (1) and (4). Further let

$$
\begin{gather*}
\sup _{n \in \mathbb{N}} E\left|X_{n}\right|^{s}<\infty \quad \text { for some real } s>2 \tag{6}\\
\inf _{n \in \mathbb{N}} \sigma_{n}^{2} / n>0 \tag{7}
\end{gather*}
$$

Set $X_{i}^{(n)}=X_{i} I\left\{\left|X_{i}\right| \leqq \sqrt{n}\right\}$.
Then for all $n>1, t \in \mathbb{R}$

$$
\begin{equation*}
\left|P\left\{\sum_{i=1}^{n} X_{i}<\sigma_{n} t\right\}-P\left\{\sum_{i=1}^{n} X_{i}^{(n)}<\sigma_{n} t\right\}\right| \leqq D n^{1-s / 2}(1+|t|)^{-s}(\log n)^{s} \tag{8}
\end{equation*}
$$

Erickson only gives a proof for the d-dependent case. It is not very difficult to extend his proof, if the following hints are observed. (cf. [4], Sect. 6).

Instead of [4] (2.2) set

$$
K(x):=1-P\left(U>x, \cap B_{k}^{c}\right) .
$$

The terms T_{2}, T_{4}, T_{6} in the bound given in [4] Proposition 3.1 disappear, if the last equation in the proof of the proposition is replaced by

$$
\left|s_{k}\right|^{m} I\left(d_{k}\right)-\left|s_{k-1}\right|^{m} I\left(d_{k-1}\right)=\left|s_{k}\right|^{m} I\left(d_{k-1}^{c}\right) I\left(b_{k}\right)+\left(\left|s_{k}\right|^{m}-\left|s_{k-1}\right|^{m}\right) I\left(d_{k-1}\right) .
$$

This shortens the proof a great deal.
Use our Lemma 2(i) instead of Erickson's Proposition 5.2 and apply Lemma 1 where Erickson uses the d-dependence. A detailed proof of Theorem 2 can be found in [14].

With the aid of Theorem 2 we obtain a nonuniform bound in the central limit theorem by altering a proof of Babu, Ghosh, Singh [1].
Theorem 3. Let $X_{n}, n \in \mathbb{N}$, be a φ-mixing sequence satisfying (1), (4), (6) and (7).
Then there exists a constant $d>0$ so that for all $n>1, t \in \mathbb{R}$, with $t^{2} \geqq d \log n$

$$
\begin{equation*}
\left|P\left\{\sum_{i=1}^{n} X_{i}<\sigma_{n} t\right\}-\Phi(t)\right| \leqq D n^{1-s / 2}|t|^{-s}(\log n)^{s} \tag{9}
\end{equation*}
$$

Proof. Let $c=s-2, c^{\prime}=\min (1, c)$ and define $X_{i}^{(n)}$ like in Theorem 2. Assume w.l.o.g. that $t>0$.

We have by [5], p. 175, Lemma 2

$$
\begin{equation*}
\Phi(-t) \leqq D n^{-c / 2} t^{-2-c} \text { if } t^{2}>(c+1) \log n \tag{10}
\end{equation*}
$$

and by (1) and (7)

$$
\begin{equation*}
\left|\sum_{i=1}^{n} E X_{i}^{(n)} / \sigma_{n}\right| \leqq D n^{-c / 2} \tag{11}
\end{equation*}
$$

Using these inequalities, Theorem 2 and (7) we see that it suffices to show

$$
\begin{equation*}
P\left\{\sum_{i=1}^{n}\left(X_{i}^{(n)}-E X_{i}^{(n)}\right) \geqq 3 t n^{1 / 2}\right\} \leqq D n^{-c / 2} t^{-2-c} \tag{12}
\end{equation*}
$$

for all $n>1, t^{2} \geqq d \log n$ where $d>1$ can be chosen later. (The factor $(\log n)^{s}$ in (9) is only caused by Theorem 2.)

To prove (12) we use Lemma 2(i). We proceed in the same way as Babu, Ghosh and Singh in the proof of Lemma 3 [1]. So we adopt their notation and only indicate the changes to be made.

We set

$$
\begin{aligned}
X_{i}^{\prime} & =X_{i}^{(n)}-E X_{i}^{(n)}, \\
y & =12(c+1) c^{\prime-1} t^{-1} n^{-1 / 2}, \\
\xi_{j}^{*} & =\xi_{j} I\left\{\xi_{j}<1 / y\right\} .
\end{aligned}
$$

Since $\sum_{i=1}^{n} X_{i}^{\prime} \leqq n^{3 / 2}$ we can assume that $t \leqq n$ and so we can replace [1] (3.5) by

$$
\begin{aligned}
P\left\{U_{n}^{*}>t n^{1 / 2}\right\} & \leqq \exp (-(2 c+2) \log n) E \exp \left(z U_{n}^{*}\right) \\
& \leqq n^{-c / 2} t^{-c-2} n^{-c / 2} \prod_{j=1}^{k} s_{j} \quad \text { (use [1], Lemma 2) }
\end{aligned}
$$

where

$$
z:=z(n, t)=(2 c+2) t^{-1} n^{-1 / 2} \log n
$$

and

$$
s_{j}:=2 \exp \left(\left(c^{\prime} / 6\right) \log n\right) \varphi(p)+E \exp \left(z \xi_{j}^{*}\right) .
$$

Obviously the first summand of s_{j} is smaller than $D k^{-1}$, and the second is according to Lemma 4 bounded by

$$
\begin{aligned}
P\left\{\left|\xi_{j}\right|\right. & \geqq 1 / y\}+E\left(I\left\{\left|\xi_{j}\right|<1 / y\right\} \exp \left(z \xi_{j}\right)\right) \\
& \leqq y^{2 c+2} E\left|\xi_{j}\right|^{2 c+2}+1+z^{2} E \xi_{j}^{2} / 2+E\left|\xi_{j}\right|^{2+c^{\prime}} y^{2+c^{\prime}} \exp (2 z / y)
\end{aligned}
$$

Here the first and the last summand are bounded by $D k^{-1}$.
Since $t^{2} \geqq d \log n$ we have

$$
z^{2} \leqq(D / d) n^{-1} \log n
$$

yielding

$$
z^{2} E \xi_{j}^{2} \leqq(D / d) k^{-1} \log k
$$

Therefore (use $x^{n} \leqq \exp (n(x-1))$)

$$
\prod_{j=1}^{k} s_{j} \leqq\left(1+D k^{-1}+(D / d) k^{-1} \log k\right)^{k} \leqq k^{D / d} \leqq D n^{c / 2}
$$

if d is chosen large enough.
Now we have

$$
P\left\{U_{n}^{*}>t n^{1 / 2}\right\} \leqq D n^{-c / 2} t^{-c-2}
$$

and this yields the assertion like in [1].

Combining Theorem 1 and Theorem 3 we get the following result (cf. [6], (2.4), (2.5) and [16], Theorem 4)

Theorem 4. Let the assumptions of Theorem 3 be fulfilled for some $s \geqq 3$.
Then for all $t \in \mathbb{R}, n>1$

$$
\left|P\left\{\sum_{i=1}^{n} X_{i}<\sigma_{n} t\right\}-\Phi(t)\right| \leqq D n^{-1 / 2}(1+|t|)^{-s}(\log n)^{1+s^{\prime} / 2}
$$

where $s^{\prime}=s$ if $s>3$ and $s^{\prime}=s+1$ if $s=3$.

3. Random Summation

We are now ready to prove two theorems about the speed of convergence in the random central limit theorem for φ-mixing processes. The only result in this direction is due to B.L.S. Prakasa Rao [12]. His technique is different from ours and the order of convergence he reaches is far from the order in the independent case.

First we give a φ-mixing version of a theorem of Landers and Rogge [9]. Their result gives the exact rate of convergence under independence (see [8]). Examining their proof, we see that one of the main tools, namely Lemma 7 of [8], cannot be transferred to φ-mixing processes because the proof heavily uses independence and stationarity. (The last fact has not been noticed by Rychlik [13] and so his proof is not correct in this place, see [13], p. 233.)

Lemma 7 of [8] allows to replace $\max _{p<n \leqq q} \sum_{i=p+1}^{n} X_{i}$ by $\sum_{i=p+1}^{q} X_{i}$ in a certain
Letion. situation.

This lemma can be avoided by retaining the maximum and using Serfling's [15] inequality for maxima of sums in the proof of Landers' and Rogge's Lemma 8 (see [8], p. 282, (*)).

The order of approximation we obtain differs from the order in the independent case only by a logarithmic factor. If the assumptions are strengthened a little bit, the factor disappears.

Theorem 5. Let the assumptions of Theorem 1 be fulfilled. Let $\varepsilon_{n}, n \in \mathbb{N}$, be a sequence with $n^{-1} \leqq \varepsilon_{n}<1$ and $\varepsilon_{n} \xrightarrow[n \rightarrow \infty]{ } 0$.

Let $\tau_{n}, n \in \mathbb{N}$, be positive integer valued random variables. Assume that τ is a positive random variable independent of $\left(X_{n}\right)_{n \in \mathbb{N}}$ so that one of the two following conditions is fulfilled.

$$
\begin{equation*}
P\left\{\tau<c_{0} /\left(n \varepsilon_{n}\right)\right\} \leqq D \delta_{n}, \quad n \in \mathbb{N}, \tag{i}
\end{equation*}
$$

for some constant $c_{0}>0$ where $\delta_{n}:=\sqrt{\varepsilon_{n}}\left(\log \varepsilon_{n}\right)^{2}$.
(ii) There exists $\varepsilon>0$ so that $\varepsilon_{n} \geqq n^{-1+\varepsilon}, n \in \mathbb{N}$, and

$$
\begin{equation*}
P\left\{\tau<c_{0} /\left(n \varepsilon_{n}^{1+\varepsilon}\right)\right\} \leqq D \delta_{n}, \quad n \in \mathbb{N}, \tag{14}
\end{equation*}
$$

for some constant $c_{0}>0$ where $\delta_{n}:=\sqrt{\varepsilon_{n}}$.

Suppose further that for some $c_{1}>0$

$$
P\left\{\left|\tau_{n} /(n \tau)-1\right|>c_{1} \varepsilon_{n}\right\} \leqq D \delta_{n}, \quad n \in \mathbb{N}
$$

Then

$$
\sup _{t \in \mathbb{R}}\left|P\left\{\sum_{i=1}^{\tau_{n}} X_{i}<\sigma_{[n \tau]} t\right\}-\Phi(t)\right| \leqq D \delta_{n}, \quad n \in \mathbb{N} .
$$

Proof. Let $n \in \mathbb{N}$ be sufficiently large and $t \in \mathbb{R}$. In case (i) we set $\gamma_{n}:=\left[c_{0} / \varepsilon_{n}\right]$ and in case (ii) $\gamma_{n}:=\left[c_{0} / \varepsilon_{n}^{1+\varepsilon}\right]$.

Therefore in either case

$$
P\left\{n \tau<\gamma_{n}\right\} \leqq D \delta_{n}
$$

In case (i) we have

$$
\begin{equation*}
\varepsilon_{n}^{1 / 2} \log \left(D / \varepsilon_{n}\right) \leqq D \varepsilon_{n}^{1 / 2}\left|\log \varepsilon_{n}\right| \tag{15}
\end{equation*}
$$

and in case (ii)

$$
\begin{equation*}
\varepsilon_{n}^{(1+\varepsilon) / 2} \log \left(D / \varepsilon_{n}^{1+\varepsilon}\right) \leqq D \varepsilon_{n}^{1 / 2} \tag{16}
\end{equation*}
$$

Thus

$$
\gamma_{n}^{-1 / 2} \log \gamma_{n} \leqq D \delta_{n}
$$

Using Theorem 1 one gets, like in [9], p. 1021,

$$
\begin{align*}
& \left|P\left\{\sum_{i=1}^{[n \tau]} X_{i}<\sigma_{[n \tau]} t\right\}-\Phi(t)\right| \\
& \quad \leqq P\left\{n \tau<\gamma_{n}\right\}+\sum_{l=\gamma_{n}}^{\infty} D P\{[n \tau]=l\} l^{-1 / 2} \log l \leqq D \delta_{n} . \tag{17}
\end{align*}
$$

Set $S_{0}=0, S_{j}=\sum_{i=1}^{j} X_{i}, j \in \mathbb{N}$,

$$
p_{x}=\left[x\left(1-c_{1} \varepsilon_{n}\right)\right], \quad q_{x}=\left[x\left(1+c_{1} \varepsilon_{n}\right)\right], \quad x>0
$$

(17) yields like in [9], the assertion, if it is shown that

$$
P\left\{\min _{p_{n \tau} \leqq j \leqq q_{n \tau}} S_{j}<\sigma_{[n \tau]} t\right\}-P\left\{\max _{p_{n \tau} \leqq j \leqq q_{n \tau}} S_{j}<\sigma_{[n \tau]} t\right\} \leqq D \delta_{n} .
$$

This difference is bounded from above by

$$
P\left\{n \tau<\gamma_{n}\right\}+\int_{\gamma_{n}}^{\infty} P\left\{\min _{p_{x} \leqq j \leqq q_{x}} S_{j}<\sigma_{[x]} t\right\}-P\left\{\max _{p_{x} \leqq j \leqq q_{x}} S_{j}<\sigma_{[x]}\right\} P *(n \tau) d x .
$$

For $p<q, r \in \mathbb{R}$ we have

$$
P\left\{\min _{p \leqq j \leqq q} S_{j}<r\right\}-P\left\{\max _{p \leqq j \leqq q} S_{j}<r\right\}=P\left\{S_{p}<r \leqq \max _{p \leqq j \leqq q} S_{j}\right\}+P\left\{\min _{p \leqq j \leqq q} S_{j}<r \leqq S_{p}\right\}
$$

Since we can replace X_{i} by $-X_{i}$ it apparently suffices to show for $r \in \mathbb{R}, x \geqq \gamma_{n}$, $p:=p_{x}, q:=q_{x}$ that

$$
P\left\{S_{p} \leqq r \leqq \max _{p \leqq j \leqq q} S_{j}\right\} \leqq D \delta_{n},
$$

where D does not depend on n, r, x.
Set

$$
m:=\left[-(2 \lambda)^{-1} \log \varepsilon_{n}\right], \quad \text { then } \varphi(m) \leqq D \sqrt{\varepsilon_{n}}
$$

Let $k \in \mathbb{N}, \eta>0$ to be specified later, fulfilling

$$
\begin{equation*}
(2 k+1) m \leqq p / 2 \tag{18}
\end{equation*}
$$

We now show

$$
\begin{equation*}
P\left\{S_{p} \leqq r \leqq \max _{p \leqq j \leqq q} S_{j}\right\} \leqq D k\left(\sqrt{\varepsilon_{n}}+p^{-1 / 2}(\eta+\log p)\right)+\left(D\left(-\log \varepsilon_{n}\right)^{3 / 2} / \eta^{3}\right)^{k+1} \tag{19}
\end{equation*}
$$

where D is independent of η and k, too.
Setting

$$
L_{j}:=S_{p-(j-1) m}-S_{p-j m}, \quad H:=\max _{p \leqq j \leqq q}\left(S_{j}-S_{p}\right),
$$

one obtains

$$
\begin{aligned}
& P\left\{S_{p} \leqq r \leqq \max _{p \leqq j \leqq q} S_{j}\right\} \leqq P\left\{r-H \leqq S_{p} \leqq r\right\} \\
& \leqq P\left\{\left|L_{j}\right|>\eta \text { for all } j=1, \ldots, 2 k+1\right\}+\sum_{j=1}^{2 k+1} P\left\{r-H \leqq S_{p} \leqq r,\left|L_{j}\right| \leqq \eta\right\} \\
& \leqq P\left(\bigcap_{i=0}^{k}\left\{\left|L_{2 i+1}\right|>\eta\right\}\right)+\sum_{j=1}^{2 k+1} P\left\{r-\eta-H \leqq S_{p-j m}+S_{p}-S_{p-(j-1) m} \leqq r+\eta\right\}
\end{aligned}
$$

Using the φ-mixing property and Lemma 2 (ii), the first probability can be bounded by

$$
k \varphi(m)+\prod_{i=0}^{k} P\left\{\left|L_{2 i+1}\right|>\eta\right\} \leqq D k \sqrt{\varepsilon_{n}}+\left(D\left(-\log \varepsilon_{n}\right)^{3 / 2} / \eta^{3}\right)^{k+1}
$$

Let $j \in\{1, \ldots, 2 k+1\}$ and set $Z:=S_{p}-S_{p-(j-1) m}$.
According to (3) and (18)

$$
\sigma_{p-j m}^{2} \geqq D(p-j m) \geqq D p
$$

Since $S_{p-j m}$ is $\mathscr{A}_{1}^{p-j m}$-measurable and (Z, H) is $\mathscr{M}_{p-(j-1) m+1}^{q}$-measurable we obtain, using Lemma 3 and Theorem 1,

$$
\begin{aligned}
P\{r- & \left.\eta-H \leqq S_{p-j m}+Z \leqq r+\eta\right\}-\varphi(m) \\
& \leqq \int P\left\{r-\eta-h-z \leqq S_{p-j m} \leqq r+\eta-z\right\} P *(Z, H) d z d h \\
& \leqq D(p-j m)^{-1 / 2} \log (p-j m) \\
& \quad \int\left|\Phi\left((r+\eta-z) / \sigma_{p-j m}\right)-\Phi\left((r-\eta-h-z) / \sigma_{p-j m}\right)\right| P *(Z, H) d z d h \\
& \leqq D(p / 2)^{-1 / 2} \log p+(2 \eta+E H) / \sigma_{p-j m} \\
\leqq & D p^{-1 / 2}(\eta+\log p+E H) .
\end{aligned}
$$

As $E H \leqq D(q-p)^{1 / 2}$ according to Lemma 2(iii) and $(q-p) / p \leqq D \varepsilon_{n}$ we get (19).
Now we choose k and η.
In case (i) we set $k=\left[-\log \varepsilon_{n}\right]$. Since

$$
(2 k+1) m \leqq D\left(\log \varepsilon_{n}\right)^{2} \quad \text { and } \quad p \geqq D \gamma_{n} \geqq D / \varepsilon_{n},
$$

(18) is valid.

Let $\eta:=\alpha^{1 / 3}\left(-\log \varepsilon_{n}\right)^{1 / 2}$ where α is chosen such that

$$
\left(D\left(-\log \varepsilon_{n}\right)^{3 / 2} / \eta^{3}\right)^{k+1} \leqq(D / \alpha)^{-\log \varepsilon_{n}}=\varepsilon_{n}^{-\log (D / \alpha)}=\varepsilon_{n}^{1 / 2}
$$

Using (15) it is now easy to see that the bound in (19) has the order $\sqrt{\varepsilon_{n}}\left(\log \varepsilon_{n}\right)^{2}$.

In case (ii) we choose $k \in \mathbb{N}$ so large that $3(k+1) \varepsilon>1$ and set $\eta:=\varepsilon_{n}^{-\varepsilon / 2}$. Then (18) is fulfilled and

$$
\left(D\left(-\log \varepsilon_{n}\right)^{3 / 2} / \eta^{3}\right)^{k+1} \leqq D\left(-\log \varepsilon_{n}\right)^{3(k+1) / 2} \varepsilon_{n}^{3(k+1) \varepsilon / 2} \leqq D \varepsilon_{n}^{1 / 2} .
$$

Using this and (16), we see that (19) yields the desired order of convergence.
Remark. a) If τ is constant, the condition (13) respectively (14) is fulfilled, and in case (i) we obtain the order

$$
\delta_{n}=\left|\log \varepsilon_{n}\right|\left(\sqrt{\varepsilon_{n}}+n^{-1 / 2} \log n\right), \quad \text { if we set } \gamma_{n}=[n \tau / 2] .
$$

b) With the additional assumption $\sup _{n \in \mathbb{N}}\left\|X_{n}\right\|_{\infty}=: M<\infty$ we obtain in case (i) the order $\sqrt{\varepsilon_{n}}\left|\log \varepsilon_{n}\right|$ if we set $k=0$ and $\eta=c\left|\log \varepsilon_{n}\right|$ where c is a constant so that $m M \leqq \eta$. If τ is furthermore constant, we obtain the order $\sqrt{\varepsilon_{n}}+n^{-1 / 2} \log n$.

In the following theorem a non uniform bound is derived, corresponding to another result of Landers and Rogge [10]. For the sake of brevity it is assumed that τ is constant. It is not difficult to weaken this assumption like in the preceding theorem (cf. [7]). The moment condition required by Landers and Rogge is somewhat surprising. But it was shown by A. Klein [7] that the theorem becomes wrong, if only the existence of lower moments is assumed.

Theorem 6. Let $X_{n}, n \in \mathbb{N}$, be a φ-mixing sequence fulfilling (1), (4), (7) and

$$
\sup _{n \in \mathbb{N}} E\left|X_{n}\right|^{s+1}<\infty \quad \text { for some } s \geqq 2 \text {. }
$$

Let $\varepsilon_{n}, n \in \mathbb{N}$, be a sequence with $n^{-1} \leqq \varepsilon_{n}<1$ and $\varepsilon_{n} \xrightarrow[n \rightarrow \infty]{ } 0$.
Set $\delta_{n}:=\left(\sqrt{\varepsilon_{n}}+n^{-1 / 2}(\log n)^{1+\left(s^{\prime}+1\right) / 2}\right)\left|\log \varepsilon_{n}\right|$ where $s^{\prime}=s$ if $s>2$ and $s^{\prime}=s+1$ if $s=2$.

If $\varepsilon_{n} \geqq n^{-1+\varepsilon}, n \in \mathbb{N}$, for some $\varepsilon>0$ also $\delta_{n}:=\sqrt{\varepsilon_{n}}$ is allowed.
Let $\tau_{n}, n \in \mathbb{N}$, be positive integer valued random variables with

$$
P\left\{\left|\tau_{n} /(n \tau)-1\right|>t \varepsilon_{n}\right\} \leqq D \delta_{n} t^{-s}, \quad n \in \mathbb{N}, t \geqq t_{0}
$$

for some constants $\tau>0, t_{0}>0$.

Then for all $n>1, t \in \mathbb{R}$

$$
\begin{equation*}
\left|P\left\{\sum_{i=1}^{\tau_{n}} X_{i}<t \sigma_{[n \tau]}\right\}-\Phi(t)\right| \leqq D \delta_{n}(1+|t|)^{-s}(\log (2+|t|))^{s+1} \tag{20}
\end{equation*}
$$

Proof. Define S_{n} like before. Let

$$
\begin{aligned}
p & =p(n, t)=\left[n \tau\left(1-\varepsilon_{n}|t|\right)\right] \\
q & =q(n, t)=\left[n \tau\left(1+\varepsilon_{n}|t|\right)\right] \\
I_{n}(t) & =\{k \in \mathbb{N}: p \leqq k \leqq q\} .
\end{aligned}
$$

With a view to the remark after Theorem 5 we can assume that $|t| \geqq t_{1}$ for some constant $t_{1} \geqq t_{0}$. Then

$$
\begin{equation*}
D n \varepsilon_{n}|t| \leqq q-p \leqq D n \varepsilon_{n}|t| \tag{21}
\end{equation*}
$$

Set $m:=\left[\lambda^{-1} \log \left(n^{1 / 2}|t|^{s}\right)\right]$, then $\varphi(m) \leqq D n^{-1 / 2}|t|^{-s}$.
According to (7) and Lemma 2 we have $D n \leqq \sigma_{n}^{2} \leqq D n$.
(i) Let $n>1, t \in \mathbb{R}$ and $t_{1} \leqq|t| \leqq n^{1 /(2 s)}$.

First we proceed like in the proof of Theorem 1 in [10] (2)-(6). Instead of Petrov's theorem we use Theorem 4. Like in the proof of Theorem 5 we see that it suffices to estimate

$$
R:=P\left\{S_{p} \leqq t \sigma_{[n \tau]} \leqq \max _{p \leqq j \leqq q} S_{j}\right\}
$$

Since $|t| \leqq n^{1 /(2 s)}$ we have

$$
\begin{equation*}
m \leqq D \log n \tag{22}
\end{equation*}
$$

We now consider two cases.
Case 1. $|t| \leqq \varepsilon_{n}^{-(s-1) / s}$.
Let $0<\eta \leqq|t| \sigma_{[n \tau]} / 6, k \in \mathbb{N}$ to be specified later.
We show that there exists a constant D independent of n, t, η, k with

$$
\begin{align*}
R \leqq & D k\left(n^{-1 / 2}(\log n)^{1+\left(s^{\prime}+1\right) / 2}+\sqrt{\varepsilon_{n}}+k^{s / 2} / n^{1 / 2}\right. \\
& +\eta /(|t| \sqrt{n})) /|t|^{s}+\left(D\left((\log n)^{1 / 2} / \eta\right)^{s}\right)^{k+1} \tag{23}
\end{align*}
$$

For $H:=\max _{p \leqq j \leqq q}\left(S_{j}-S_{p}\right)$ we have according to Lemma 2(iii) and (21)

$$
\begin{equation*}
P\left\{H \geqq|t| \sigma_{[n \tau]} / 6\right\} \leqq D(q-p)^{s / 2} /\left(|t| \sigma_{[n \tau]}\right)^{s} \leqq D \sqrt{\varepsilon_{n}} /|t|^{s} \tag{24}
\end{equation*}
$$

since $|t| \leqq \varepsilon_{n}^{-(s-1) / s}$.
If $p \leqq(2 k+1) m$ we have by Lemma 2(ii) and (22)

$$
\begin{equation*}
P\left\{\left|S_{p}\right| \geqq|t| \sigma_{[n \tau]} 2\right\} \leqq D p^{s / 2} /\left(|t| \sigma_{[n \tau]}\right)^{s} \leqq D k^{s / 2} /\left(|t|^{s} n^{1 / 2}\right) \tag{25}
\end{equation*}
$$

For $t<0$ this yields (23).
For $t>0$

$$
R \leqq P\left\{\left|S_{p}\right| \geqq t \sigma_{[n \tau]} / 2\right\}+P\left\{H \geqq t \sigma_{[n \tau]} / 2\right\}
$$

Then (23) follows from (24) and (25).
Let $p>(2 k+1) m$.
Setting $L_{j}:=S_{p-(j-1) m}-S_{p-j m}$ one obtains

$$
\begin{align*}
R \leqq & P\left(\bigcap_{i=0}^{k}\left\{\left|L_{2 i+1}\right|>\eta\right\}\right) \\
& +\sum_{j=1}^{2 k+1} P\left\{t \sigma_{[n \tau]}-H-\eta \leqq S_{p-j m}+S_{p}-S_{p-(j-1) m} \leqq t \sigma_{[n \tau]}+\eta\right\} . \tag{26}
\end{align*}
$$

Like in the foregoing proof we can bound the first probability by $D k n^{-1 / 2}|t|^{-s}$ $+\left(D\left((\log n)^{1 / 2} / \eta\right)^{s}\right)^{k+1}$.

Let $j \in\{1, \ldots, 2 k+1\}, Z:=S_{p}-S_{p-(j-1) m}$

$$
\begin{gathered}
F_{n}(t):=\left\{\omega: H(\omega) \geqq|t| \sigma_{[n \tau]} / 6 \text { or }|Z(\omega)| \geqq|t| \sigma_{[n \tau]} / 6\right\} \\
h_{1}(\omega):=t \sigma_{[n \tau]}-H(\omega)-\eta-Z(\omega), \quad h_{2}(\omega):=t \sigma_{[n \tau]}+\eta-Z(\omega) .
\end{gathered}
$$

For $\omega \in F_{n}(t)^{c}$ (the complement of $F_{n}(t)$)

$$
\begin{equation*}
\left|h_{1}(\omega)\right| \geqq|t| \sigma_{[n \tau]} / 2, \quad\left|h_{2}(\omega)\right| \geqq|t| \sigma_{[n \tau]} / 2 . \tag{27}
\end{equation*}
$$

Thus in view of Lemma 3 and Theorem 4 the j-th summand in (26) is bounded by

$$
\begin{aligned}
\varphi(m)+ & P\left(F_{n}(t)\right)+\int_{F_{n}(t) c^{c}} P\left\{h_{1}(\omega) \leqq S_{p-j m} \leqq h_{2}(\omega)\right\} P d \omega \\
\leq & D n^{-1 / 2}|t|^{-s}+P\left(F_{n}(t)\right) \\
& +D(p-j m)^{-1 / 2}\left(|t| \sigma_{[n t]} / \sigma_{p-j m}\right)^{-s-1}(\log (p-j m))^{1+\left(s^{\prime}+1\right) / 2} \\
& +\int_{F_{n}(t)^{c}} \mid \Phi\left(h_{2}(\omega) / \sigma_{p-j m}\right)-\Phi\left(h_{1}(\omega) / \sigma_{p-j m}\right) P d \omega .
\end{aligned}
$$

It is easy to bound the first three summands here (use (24)). Now we estimate the integral. According to (27) the integrand is bounded by

$$
\begin{aligned}
& D\left(\left(h_{2}(\omega)-h_{1}(\omega)\right) / \sigma_{p-j m}\right) \\
& \quad \cdot \max \left\{\exp \left(-h_{1}(\omega)^{2} /\left(2 \sigma_{p-j m}^{2}\right)\right), \exp \left(-h_{2}(\omega)^{2} /\left(2 \sigma_{p-j m}^{2}\right)\right)\right\} \\
& \quad \leqq D\left(\left(h_{2}(\omega)-h_{1}(\omega)\right) / \sigma_{p-j m}\right)\left(\sigma_{p-j m} /\left(|t| \sigma_{[n t]}\right)\right)^{s+1} \\
& \quad \leqq D(\eta+H(\omega)) /\left(|t|^{s+1} n^{1 / 2}\right) .
\end{aligned}
$$

By using Lemma 2(iii) and (21) the proof of (23) is accomplished.
(23) yields the desired bound if we set $k:=\left[-\log \varepsilon_{n}\right], \eta:=\gamma|t| \log n$ where γ is chosen so that $0<\gamma \leqq \sigma_{[n \tau]} /(6 \log n)$ for all $n>1$. If $\varepsilon_{n} \geqq D n^{-1+\varepsilon}, n \in \mathbb{N}$, we set $\eta:=\gamma \sigma_{[n \tau]}^{\varepsilon}|t|$ with $0<\gamma \leqq \sigma_{[n \tau]}^{1-\varepsilon} / 6, n \in \mathbb{N}$, and choose $k \in \mathbb{N}$ so large that $s(k$ +1) $\varepsilon>1$.
Case 2. $|t| \geqq \varepsilon_{n}^{-(s-1) / s}$.
Using this inequality, Theorem 4, Lemma 2 of Feller [5], p. 175 and the fact that $q \leqq D n|t| \leqq D n^{1+1 /(2 s)}$ we obtain for all $j \leqq q$

$$
\begin{align*}
P\left\{\left|S_{j}\right|\right. & \left.\geqq|t| \sigma_{[n \tau} / 8\right\} \leqq 2\left(1-\Phi\left(|t| \sigma_{[n \tau]} /\left(8 \sigma_{j}\right)\right)\right) \\
& \left.+D j^{-1 / 2}(\log j)^{1+\left(s^{\prime}+1\right) / 2}\left(|t| \sigma_{[n \tau]} / 8 \sigma_{j}\right)\right)^{-s-1} \\
& \leqq D\left(\frac{\sigma_{j}}{|t| \sigma_{[n \tau]}}\right)^{2 s}+D(\log n)^{1+\left(s^{\prime}+1\right) / 2} \frac{\sqrt{\left.n^{s(1+1 /(2 s)}\right)}}{(|t| \sqrt{n})^{s+1}} \\
& \leqq D\left(\frac{\sqrt{q}}{|t| \sqrt{n}}\right)^{2 s}+D /|t|^{s+1} \tag{28}\\
& \leqq D \sqrt{\varepsilon_{n}} /|t|^{s} .
\end{align*}
$$

For $t<0$ (28) implies directly

$$
R \leqq D \sqrt{\varepsilon_{n}}|t|^{s}
$$

If $t>0$ we set

$$
A_{k}:=\left\{\omega: S_{j}(\omega)<t \sigma_{[n \tau]}, p \leqq j<k, S_{k} \geqq t \sigma_{[n \tau]}\right\}
$$

Then

$$
R \leqq P\left\{t \sigma_{[n \tau]} / 2 \leqq S_{q}\right\}+\sum_{k=p}^{q-1} P\left(A_{k} \cap\left\{S_{q}<t \sigma_{[n \tau]} / 2\right\}\right)
$$

(28) yields the estimation for the first term.

Set $d=d(k)=\min (m, q-k)$. Then the second is bounded by

$$
\begin{aligned}
& \sum_{k=p}^{q-1} P\left(A_{k} \cap\left\{S_{k}-S_{q}>t \sigma_{[n \tau]} / 2\right\}\right) \\
& \quad \leqq P\left(\bigcup_{k=p}^{q-1}\left\{S_{k+d}-S_{k}<-t \sigma_{[n \tau]} / 4\right\}\right)+\sum_{k=p}^{q-1} P\left(A_{k} \cap\left\{S_{k+d}-S_{q}>t \sigma_{[n \tau]} / 4\right\}\right)
\end{aligned}
$$

The first term can be estimated by using Lemma 2(ii), (21) and (22). The second is smaller than

$$
\sum_{k=p}^{q-1} \varphi(m) P\left(A_{k}\right)+P\left(A_{k}\right) P\left\{S_{q}-S_{k+d}<-t \sigma_{[n \tau]} / 4\right\} \leqq D \sqrt{\varepsilon_{n}} /|t|^{s} \quad \text { by (28). }
$$

(ii) Let $n>1, t \in \mathbb{R}$ with $|t| \geqq t_{1} \geqq 2,|t| \geqq n^{1 / 2 s}$.

Then

$$
\begin{gather*}
q(n, t) \leqq n \tau+n \tau \varepsilon_{n}|t|+1 \leqq D n|t| \leqq D|t|^{1+2 s} \tag{29}\\
m \leqq D \log |t| \tag{30}
\end{gather*}
$$

W.lo.g. we assume $t>0$ and then proceed like Landers and Rogge [10], p. 102, (21)-(23). Apparently it suffices to show

$$
P\left\{\max _{p \leqq k \leqq q} S_{k} \geqq t \sigma_{[n c]}\right\} \leqq D n^{-1 / 2} t^{-s}(\log t)^{s+1}
$$

For $k \in \mathbb{N}, p \leqq k \leqq q$ define $d=d(k)$ and A_{k} like in (i).
Since in view of Lemma 2 and (29)

$$
P\left\{\left|S_{q}-S_{k+d}\right| \geqq t \sigma_{[n \tau]} / 4\right\} \leqq D / t^{s / 2}
$$

we obtain (for t_{1} sufficiently large)

$$
P\left\{S_{k+d}-S_{q} \leqq t \sigma_{[n \tau]} / 4\right\} \geqq 1 / 2
$$

Therefore by (29), (30)

$$
\begin{aligned}
& P\left\{\max _{p \leqq k \leqq q} S_{k} \geqq t \sigma_{[n \tau]}\right\} / 2 \leqq \sum_{k=p}^{q} P\left(A_{k}\right) P\left\{S_{k+d}-S_{q} \leqq t \sigma_{[n \tau]} / 4\right\} \\
& \leqq \sum_{k=p}^{q} \varphi(m) P\left(A_{k}\right)+P\left(A_{k} \cap\left\{S_{k+d}-S_{q} \leqq t \sigma_{[n \tau]} / 4\right\}\right) \\
& \leqq \varphi(m)+\sum_{k=p}^{q} P\left\{S_{k}-S_{k+d} \geqq t \sigma_{[n \tau]} / 4\right\}+P\left(A_{k} \cap\left\{S_{k}-S_{q} \leqq t \sigma_{[n \tau]} / 2\right\}\right) \\
& \leqq D n^{-1 / 2} t^{-s}(\log t)^{(s+1) / 2}+P\left\{S_{q} \geqq t \sigma_{[n \tau]} / 2\right\}
\end{aligned}
$$

(29) implies

$$
t \sigma_{[n \tau]} /\left(2 \sigma_{q}\right) \geqq D t \sqrt{n} / \sqrt{q} \geqq D \sqrt{t} \geqq D \sqrt{q^{1 /(1+2 s)}}
$$

This shows that Theorem 3 is applicable. It yields with (29) and Feller [5], p. 175

$$
\begin{aligned}
P\left\{S_{q} \geqq t \sigma_{[n \tau]} / 2\right\} \leqq & D q^{1-(s+1) / 2}\left(t \sigma_{[n \tau]} /\left(2 \sigma_{q}\right)\right)^{-s-1}(\log q)^{s+1} \\
& +D\left(\sigma_{q} /\left(t \sigma_{[n \tau]}\right)\right)^{4 s} \leqq D n^{-1 / 2} t^{-s}(\log t)^{s+1}
\end{aligned}
$$

Remark. If in Theorem $6 s>3$ we can apply in its proof Theorem 4 to s instead of $s+1$. Then we can replace $(\log n)^{1+(s+1) / 2}$ by $(\log n)^{1+s / 2}$ in the definition of δ_{n}.

4. Lemmas

Lemma 1. Let $\mathscr{B}_{1}, \mathscr{B}_{2}$ be sub- σ-algebras of \mathscr{B} and $c>0$.
If $\left|P\left(B_{1} \cap B_{2}\right)-P\left(B_{1}\right) P\left(B_{2}\right)\right| \leqq c P\left(B_{1}\right)$ for all $B_{i} \in \mathscr{B}_{i}, i=1,2$ then for all $r_{1}>1$, $r_{2}>1$ with $r_{1}^{-1}+r_{2}^{-1}=1, f_{i} \in \mathscr{L}_{r_{i}}\left(\Omega, \mathscr{B}_{i}, P\right), i=1,2$,

$$
\left|E f_{1} f_{2}-E f_{1} E f_{2}\right| \leqq 2 c^{1 / r_{1}}\left\|f_{1}\right\|_{r_{1}}\left\|f_{2}\right\|_{r_{2}}
$$

Proof. See [2], p. 170, Lemma 1.
Lemma 2. Let $X_{n}, n \in \mathbb{N}$, be a φ-mixing sequence. Assume that

$$
\begin{gathered}
E X_{n}=0, \quad n \in \mathbb{N} \\
\sum_{n=1}^{\infty} \varphi(n)^{1 / 2}<\infty
\end{gathered}
$$

$$
\sup _{n \in \mathbb{N}} E\left|X_{n}\right|^{s} \leqq N \quad \text { for some } \quad s>2 \quad \text { and } \quad N>1
$$

For $d>1$ set $Y_{i}:=Y_{d, i}:=X_{i} 1_{\left\{\left|X_{i}\right| \leqq d\right\}}$.
(i) Then for any real number $v \geqq 2$ there exists a constant $C(v)>0$ depending only on φ, v, s and N such that for all positive integers $n \leqq d^{2}$

$$
E\left|\sum_{i=1}^{n} Y_{i}\right|^{v} \leqq C(v)\left(n^{v / 2}+n d^{v-s}\right)
$$

(ii) For all $v \in[2, s], n \in \mathbb{N}$

$$
E\left|\sum_{i=1}^{n} X_{i}\right|^{v} \leqq 2 C(v) n^{v / 2}
$$

(iii) For any $v \in[2, s]$ there exists $D(v)>0$ such that for all $n \in \mathbb{N}, j \in \mathbb{N} \cup\{0\}$

$$
E \max _{1 \leqq l \leqq n}\left|\sum_{i=j+1}^{j+l} X_{i}\right|^{v} \leqq D(v) n^{v / 2} .
$$

Notice that the constant $C(v)$ does not alter, if we turn to a subsequence of X_{n}, $n \in \mathbb{N}$.

Proof. (i) see [1], Lemma 1.
(ii) follows from (i).
(iii) follows from (ii) on account of [15] Corollary B1.

Lemma 3. Let X_{i} be a random variable with values in a measurable space $\left(\Omega_{i}, \mathscr{B}_{i}\right), i=1,2$, and $0 \leqq c \leqq 1$.

If for all $B_{1} \in \mathscr{B}_{1}, B_{2} \in \mathscr{B}_{2}$

$$
\left|P *\left(X_{1}, X_{2}\right)\left(B_{1} \times B_{2}\right)-\left(P * X_{1}\right) \times\left(P * X_{2}\right)\left(B_{1} \times B_{2}\right)\right| \leqq c P * X_{1}\left(B_{1}\right)
$$

then

$$
\left|P *\left(X_{1}, X_{2}\right)(D)-\left(P * X_{1}\right) \times\left(P * X_{2}\right)(D)\right| \leqq c
$$

for every $D \in \mathscr{B}_{1} \times \mathscr{B}_{2}$.
Proof. See [3] (3.5).
The last lemma is obtained by evaluation of the constant b in Michel's Lemma 3 [11].
Lemma 4. Let X be a random variable with $E X=0$ and $E|X|^{2+c}<\infty$ for some $c \in(0,1]$. Then for all $z>0, h \geqq\|X\|_{2}$

$$
E(I\{|X| \leqq h\} \exp (z X)) \leqq 1+z^{2} E X^{2} / 2+E|X|^{2+c} h^{-2-c} \exp (2 h z) .
$$

References

1. Babu, G.J., Ghosh, M., Singh, K.: On rates of convergence to normality for Φ-mixing processes. Sankyā Ser. A. 40, 278-293 (1978)
2. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968
3. Eberlein, E.: An invariance principle for lattices of dependent random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 119-133 (1979)
4. Erickson, R.V.: Truncation of dependent random variables. Theor. Probability Appl. 20, 873880 (1975)
5. Feller, W.: An introduction to probability theory and its applications. Vol. 1. 3. ed., New York: Wiley 1968
6. Hipp, C.: Convergence rates in the central limit theorem for stationary mixing sequences of random vectors. J. Multivariate Anal. 9, 560-578 (1979)
7. Klein, A.: Nicht gleichmäßige Approximation beim zufälligen zentralen Grenzwertsatz mit nicht konstanter Grenzfunktion. Diplomarbeit, Köln 1978
8. Landers, D., Rogge, L.: The exact approximation order in the central-limit-theorem for random summation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 269-283 (1976)
9. Landers, D., Rogge, L.: A counterexample in the approximation theory of random summation. Ann. Probability 5, 1018-1023 (1977)
10. Landers, D., Rogge, L.: On nonuniform Gaussian approximation for random summation. Metrika 25, 95-114 (1978)
11. Michel, R.: On the accuracy of nonuniform Gaussian approximation to the distribution functions of sums of independent and identically distributed random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 337-347 (1976)
12. Rao, B.L.S.P.: Remark on the rate of convergence in the random central limit theorem for mixing sequences. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 157-160 (1975)
13. Rychlik, Z.: The order of approximation in the random central limit theorem. In: Probability theory on vector spaces (Lect. Notes in Math. 656), 225-236. Berlin-Heidelberg-New York: Springer 1978
14. Schneider, E.: Genauigkeit der Normalapproximation bei φ-mischenden Prozessen. Dissertation, Köln 1979
15. Serfling, R.J.: Moment inequalities for the maximum cumulative sum. Ann. Math. Statist. 41, 1227-1234 (1970)
16. Tihomirov, A.N.: On the rate of convergence in the central limit theorem for weakly dependent random variables. Teoriya veroyatn. i ee primen 25, 800-818 (1980)

Received October 9, 1980, revised August 10, 1981

[^0]: * Some results presented in this paper are a part of the author's doctoral dissertation, written at the University of Cologne

